
EMI Execution Service Specification

Editor:
Aleksandr Konstantinov

Contributors:
Bernd Schuller (JUELICH)

Balázs Kónya (Lund University)
Oxana Smirnova (Lund University)
Florido Paganelli (Lund University)

Aleksandr Konstantinov (Oslo University)
Martin Skou Andersen (University of Copenhagen)

Morris Riedel (JUELICH)
Shahbaz Memon (JUELICH)

Shiraz Memon (JUELICH)
Lisa Zangrando (INFN)

Massimo Sgaravatto(INFN)
Eric Frizziero (INFN)

version: 1.16, 2012/11/12

EMI Execution Service specification 1 / 59

Contents
 1 Introduction ... 3

 1.1 Notational conventions ... 4
 1.2 Architecture ... 4
 1.3 Data staging functionality .. 5
 1.4 Delegation .. 7

 2 Interface: ActivityCreation Port-Type .. 8
 2.1 CreateActivity operation .. 8

 3 Interface: ResourceInfo Port-type .. 10
 3.1 GetResourceInfo operation .. 10
 3.2 QueryResourceInfo operation ... 11

 4 Interface: ActivityManagement Port-Type .. 12
 4.1 PauseActivity .. 12
 4.2 ResumeActivity ... 13
 4.3 NotifyService ... 14
 4.4 CancelActivity operation ... 15
 4.5 WipeActivity operation .. 16
 4.6 RestartActivity operation (optional) ... 17
 4.7 GetActivityStatus operation ... 17
 4.8 GetActivityInfo operation ... 18

 5 Interface: ActivityInfo Port-Type ... 20
 5.1 ListActivities .. 20
 5.2 GetActivityStatus .. 21
 5.3 GetActivityInfo ... 21

 6 Interface: Delegation Port-Type .. 22
 6.1 getVersion operation ... 22
 6.2 getInterfaceVersion operation ... 22
 6.3 getServiceMetadata operation .. 23
 6.4 getProxyReq operation ... 23
 6.5 getNewProxyRequest operation ... 23
 6.6 renewProxyReq operation .. 24
 6.7 putProxy operation .. 24
 6.8 getTerminationTime operation .. 25
 6.9 destroy operation .. 25

 7 Activity State model ... 26
 7.1 State definitions .. 26
 7.2 State transitions .. 28

 8 Resource and Activity representation .. 29
 8.1 Resource information: the resource document ... 29

 8.1.1 Structure of the resource document ... 30
 8.1.2 GLUE2 resource document attribute values .. 33

 8.2 Activity information: the EMI-ES activity document ... 36
 8.2.1 Structure of the EMI-ES activity document .. 36
 8.2.2 EMI-ES activity document attributes .. 37

 9 Activity description: request for activity creation .. 39
 9.1 Processing of the activity description by the execution service ... 39
 9.2 Optional elements of the submitted activity description .. 40
 9.3 EMI ActivityDescription language .. 40

 9.3.1 High-level structure ... 40
 9.3.2 Types ... 40
 9.3.3 ActivityIdentification ... 41
 9.3.4 Application ... 42
 9.3.5 Resources ... 43
 9.3.6 DataStaging .. 47

 10 Security Considerations .. 50
 10.1 Authentication and Authorization ... 50
 10.2 Security bootstrapping information .. 50
 10.3 Delegation for Data-Staging .. 50

EMI Execution Service specification 2 / 59

 11 Outlook and list of deferred issues .. 50
 12 References .. 51
 13 Appendices .. 51

 13.1 Appendix A: ES WSDL .. 51
 13.2 Appendix B: EMI activity description schema ... 51
 13.3 Appendix C: EMI Activity description examples .. 52

 13.3.1 Parallel application example .. 52
 13.4 Appendix D: Resource description example ... 53
 13.5 Appendix E: GetActivityInfo examples .. 58
 13.6 Change log ... 59

Status of this document
This document presents the first version of an EMI agreement around a production execution service.

 1 Introduction
This document provides the interface specification, including related data models such as state model,
activity description, resource and activity information, of an execution service, matching the needs of the
EMI production middleware stack composed of ARC, gLite and UNICORE components. This service
therefore is referred to as the EMI Execution Service (or “ES” for short).
This document is a continuation of the work previously know as the GENEVA, then AGU (“ARC, gLite
UNICORE”), then PGI execution service. As a starting point, the v0.42 of the “PGI Execution Service
Specification” (doc15839) was used.

The targets for this specification are the so-called Computing Elements (CEs), that is Grid services providing
access to computing resources usually localized at a site (e.g. a cluster, a computing farm), usually managed
by a Local Resource Management System (LRMS). Higher level services (such as workload managers,
brokering services, or workflow systems) are out of scope.

This document covers the following items:

• Interfaces to create and manage activities
• Activity description language (“EMI-ADL”), an XML dialect for describing the activity including data

staging and resource requirements
• Data staging capabilities
• Activity related information, that can be retrieved by clients
• Resource related information, required for clients to access information relevant for making brokering

and resource selection decisions
• Delegation, needed to implement data staging

The relationships between these “elements” are shown in Figure 1 below.

EMI Execution Service specification 3 / 59

An Execution Service can be implemented using different security setups (see Security Considerations).
Therefore it is assumed that the clients obtain security setup info through out-of-band mechanisms which are
not covered by this specification.

Resource and activity information is provided according to the GLUE2 specification[3] with some extensions,
more specifically its XML rendering.

Several items were considered during the preparation of this version of the specification, but were postponed
to a later version. A full list of these items is provided in Section 11.

 1.1 Notational conventions

The key words “MUST”, “MUST NOT,” “REQUIRED,” “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” are to be interpreted as described in RFC 2119 (see
http://www.ietf.org/rfc/rfc2119.txt).

We consider an “activity” within this document as consisting of a computational task (activity) plus any
associated data movement to and from the activity. The executable part of the activity is referred to as “user
job”, or just as “job”.

 1.2 Architecture

The EMI-ES consists of five main modules. These modules offer different functionalities realized as
independent port-types, and can be grouped and offered via independent services, usually on the same
machine, eventually running separately on different machines.
Each of them implements a set of operations. The following describes each module's purpose and the
operations corresponding to each port-type.

• ActivityCreation port-type: CreateActivity
• ResourceInfo port-type: GetResourceInfo, QueryResourceInfo
• ActivityManagement port-type: GetActivityStatus, GetActivityInfo, NotifyService, PauseActivity,

ResumeActivity, CancelActivity, WipeActivity, RestartActivity
• ActivityInfo port-type: ListActivities, GetActivityStatus, GetActivityInfo
• Delegation port-type: InitDelegation, PutDelegation, GetDelegationInfo

For convenience, some (GetActivityStatus and GetActivityInfo) operations can be accessed via both the
ActivityManagement and ActivityInfo port-types.

EMI Execution Service specification 4 / 59

Figure 1: Relationship between execution service elements

http://www.ietf.org/rfc/rfc2119.txt

It must be stressed that the ResourceInfo port-type refers only to information related to the Computing
Element and it does not contain information about activities. Activities information can be retrieved using the
ActivityInfo port-type.

 1.3 Data staging functionality
This section describes the data staging functionality of the EMI Execution Service.
As entities to be considered for data staging, we refer to files.
We consider here only data staging done before or after job execution. Of course the job itself is free to do
any data staging during its execution, but this is not something implemented using functionality provided by
the EMI ES.
We call stage-in directory the place offered to clients to upload data. This is also the place to which the ES
may pull input data in the “server data pull” stage-in scenario (see below). This directory is created by the ES
and either returned as part of the CreateActivity response or obtainable from GetActivityInfo. There is a
single stage-in directory per activity, possibly accessible by multiple protocols (in future specifications it will
be investigated the possibility to have different stage-in directories for the different data objects). The
Execution Service MUST provide this directory when entering the PREPROCESSING phase of states.
We call stage-out directory the place where the output data are collected and can be retrieved from the
client. It is used for the “client data pull” scenario (see below). Output data for the “server data push” scenario
(see below) can also appear in this directory. This directory is created by the ES and either returned as part
of the CreateActivity response or obtainable from GetActivityInfo. There is a single stage-out directory per
activity, possibly accessible by multiple protocols (in future specifications it will be investigated the possibility
to have different stage-out directories for the different data objects). The Execution Service MUST provide
this directory upon entering the POSTPROCESSING phase of states.
We call session directory the directory on the worker node where the user job is executed. The provision of
access to the end user to this session directory (which in general can not be accessible from the Execution
Service) is optional. The access to the session directory enables client to access and modify the content of
the session directory between stage-in and stage-out states. The session directory address is published as
part of activity info. The possibility of accessing the session directory provides some sort of interactivity. The
Execution Service MUST provide this directory in the PROCESSING phase of states.

For what concerns stage-in, that is the staging of input data to the execution service done before job
execution, there are two possible scenarios:

1. Server data pull: the ES pulls the needed data from the specified (in the activity description
document) sources and makes them available later in the session directory. These data MAY be first
uploaded into the stage-in directory. This “server data pull” scenario requires delegation support,
since the server has to act on behalf of the activity owner. Server data pull takes place in the
preprocessing or processing-running state. The server-stagein attribute is used to report about
this server-initiated data transfer.

2. Client data push: The client uploads the data into the stage-in directory. The activity description
MUST contain a flag informing the server that the client wishes to push data (attribute
ClientDataPush of the DataStaging element, see section 9.3.6.1). When done with data push, the
client explicitly tells the server to continue processing the activity via the NotifyService operation.
The data to be pushed MAY be declared in the activity description. In this case, client
implementations MUST stage-in all the declared files. Data can be pushed when the stage-in
directory has been created, and the activity is in a state with the client-stagein-possible attribute
set.

For what concerns stage-out, that is the staging of output data from the execution service done after job
execution, there are two possible scenarios:

1. Server data push: the ES pushes the relevant data to the specified (in the activity description
document) targets. The “server data push” scenario requires delegation support, since the server
has to act on behalf of the activity owner. Takes place when the server-stageout state attribute is
set.

2. Client data pull: the client pulls the data from the stage-out directory of the ES. The downloading
MUST take place in states with the client-stageout-possible state attribute set. The data to be
pulled MUST be declared in the activity description.

EMI Execution Service specification 5 / 59

The Execution Service should properly advertise data staging capabilities as part of the resource information.
Because one can't expect all implementations to be capable of supporting the same set of data transfer
capabilities there must be a way for execution service to announce its capabilities and their possible
combinations (e.g.: stage-out-to-https).
For what concerns the handling of failures:

• If there is a failure during “server pull” stage-in, the activity is moved to terminal state with one of
*-failure attributes set and the user job is not run at all.

• If there is a failure during execution of the user job, the user can decide for each data object whether
stage-out should be performed, see the UseIfFailure attribute (section 9.3.6.3.2.6).

• If there is a failure during the stage out of a file, activity will go into the terminal with
postprocessing-failure attribute. At any rate the stage out process must be done for all the other
data output objects (i.e. it must not stop at the first data stage out failure)

If the activity is cancelled during user job execution, the ES can optionally (configurable in the activity
description document, see attribute UseIfCancel, section 9.3.6.3.2.7) try to carry out the stage-out phase.
Possible options that could be specified for each data object in case of job cancellation are:

• Don't try the stage-out
• Let the output objects available in the stage-out directory (even for the “server data push”

scenario) for manual download

 1.4 Delegation
Clients need to be able to pass delegation tokens to the ES. The ES uses those tokens to access third party

EMI Execution Service specification 6 / 59

Figure 2: Data staging: directories and actors

services, mostly storage services. This is needed in particular to support “server data pull” and “server data
pull” staging scenarios (see Sect. 1.3).
There are two main delegation tokens considered:

• X.509 proxy credentials (proxies): the content of the proxy is well agreed while the transfer of the
proxy is not agreed (i.e. no standard exists for that). Two solutions to “transfer” proxies are in use:

• GSI mechanisms, i.e. via a modified SSL protocol which is not compatible with off-the-shelf,
industry-standard SSL .

• Service-specific interfaces
• SAML: transferred as part of SOAP communication. The content of SAML token is NOT standardized

(EMI may offer a common profile). The transfer mechanism is instead standardized.
There are several “consumers” of X.509 delegation tokens, e.g. GridFTP, SRM, LFC, LB servers. Instead
currently there aren't yet EMI services (apart from the UNICORE services) that are able to consume SAML
tokens.
For this reason, the scope of delegation in this specification refers only to X.509 proxy token delegation
(SAML tokens will be supported in future versions of the EMI ES specification).
Only RFC3820 proxies are allowed. Any extension is allowed. Extensions marked as “must” must be
understood, otherwise the service must throw failure.
The ES MUST support the direct “push” of X.509 proxy tokens to the ES directly from the client.
Section 6 describes the details of the delegation model.

 2 Interface: ActivityCreation Port-Type

 2.1 CreateActivity operation

Functionality
The operation is used to request the creation of multiple activities where each activity is described by an
activity description document. The service MUST perform a certain amount of validation on each activity.
These validations MAY be performed after the activity creation i.e. non-validated activities can be created.
The service creates an instance of each activity that is identified by a unique identifier, the activityID
assigned by the service. The activityID should not be assumed by client applications to contain any
meaningful information like service address, i.e. a activity is NOT directly globally addressable by its
activityID.

Data-Staging Implications
One key feature of the EMI Execution Service is the support for client initiated data stage-in to the stage-in
directory, as explained in Section 1.3.

To enable client data push,

• The service MAY immediately return a data-staging-in location as part of the response of the
CreateActivity operation, or

• The service MUST expose the data-staging-in location information via the GetActivityInfo operation
as soon as the activity enters a state with the client-stagein-possible attribute set.

If the client wants to perform client initiated data-staging-in,
• The client MUST specify this in the activity description
• After retrieving the URL for stage-in directory from service, the client is able to push the data to the

execution service as long as service advertises client-stagein-possible attribute.

The Figure 3 illustrates the activity creation and validation process, and the client interactions required for
client data push.

EMI Execution Service specification 7 / 59

State Model Implications
The service MUST perform all mandatory and optional validation steps (see below) of the activity description
document as part of the accepted-validating state, before the activity can enter the preprocessing state.
Some of these validation steps MAY be performed after the CreateActivity response was returned.

Request

The CreateActivity operation has one mandatory input parameter:

• Vector of activity descriptions composed of one activity description document per element that is
compliant with Section 9 of this specification.

Response
The response of the CreateActivity operation returns a vector of values in the same order as in the request;
each value is as follows:

• For those activities for which the activity creation was successful the execution service returns the
following:

• It MUST return an activityID assigned to the activity and uniquely identifying it inside the
service

• It MUST return the ActivityManagement Endpoint URL that MUST be contacted to manage
the activity.

• It MUST return the ResourceInfo Endpoint URL that MAY be contacted to retrieve CE
information.

• It MUST return the current activity state
• It MAY return the estimated time of the next state change
• It MAY return the stage-in directory and/or the session directory and/or the stage-out

directory, which are accessible via possibly multiple protocols
• For those activities for which the activity creation failed the execution service SHOULD return one

of the following
◦ For those activities where the service could perform validation and the activity description is not

compliant with the EMI-ADL schema, the service must return a response containing the
message error InvalidActivityDescriptionFault

◦ For those activities where the service could perform validation and the activity description
contains a semantic error that occurs during the semantic validation step (see below), the
service MUST return a response message error InvalidActivityDescriptionSemanticFault

◦ For those activities where the activity description requests a capability that is not provided by the
service, the service MUST return a response containing a message error
UnsupportedCapabilityFault.

EMI Execution Service specification 8 / 59

Figure 3: Activity creation, validation and client data push

◦ For those activities which can't be processes due internal access control decisions specific to
those activities the service MUST return a response containing a message error
AccessControlFault.

◦ In all other cases where activity could not be created error message InternalBaseFault is used.
• In case the number of submitted activities is too large, instead of CreateActivity response the service

MUST return SOAP fault VectorLimitExceededFault, which contains the maximal allowed number of
activity descriptions per single CreateActivity request. In this case the service MUST NOT attempt to
create any activities.

Faults
All faults returned by all EMI ES operations are derived from InternalBaseFault. This base fault provides
numerical FailureCode of fault, short textual Message and longer Description. All these values are
implementation specific and are not defined in this document. The base fault also provides Timestamp of
when failure happened. Other kinds of faults may also provide additional information.
AccessControlFault – client is not allowed to perform CreateActivity operation.

VectorLimitExceededFault – number of elements in request exceeds allowed one.

InternalBaseFault – any other failure preventing service from processing all activities.

Activity Description Document Validation
The service takes a activity description document as input. The service MUST perform a certain amount of
validation steps during the accepted-validating state. In case of validation failure the activity enters the
validation-failure secondary state of terminal state. The list of mandatory validation steps is as follows:

 XML Validation: Check whether XML is a valid XML document (i.e. well-formed and such like).

 Schema validation: Check against the schema of the service

 Semantic validation: This validation includes that the service is capable to understand the values of
the XML elements of the activity description. It also includes checks that cannot be proofed against
the schema.

 Service capability validation: several features are optional and thus a service MAY not be supporting
some of the activity description elements. The service capability validation checks if all of the
requested mandatory activity attributes are supported by the service. For example,

• notifications
• specific runtime environments

The service MAY also perform an optional validation functionality that is called ‘matchmaking’, which checks
whether the requested resources match the provided resources by the service.

It is important that activity description elements marked as critical MUST NOT be ignored by the service, a
corresponding fault MUST be thrown in the case that the service does not support this particular client
request.

 3 Interface: ResourceInfo Port-type
The ResourceInfo port-type offers two operation to obtain information about the EMI-ES resources. The
GetResourceInfo operation returns all the information wrapped as a single “resource document” while the
QueryResourceInfo operation enables server-side queries on the same document.
The resource information served by this port-type refers only to information related to the Computing
Element, represented via a “resource document” composed of GLUE2 entities and attributes. It MUST
contain information related to all EMI-ES port-types regardless whether these are hosted by a single service
or deployed in a distributed fashion. The document MAY contain other non EMI-ES endpoints and resource
information in case these are hosted by the same services running EMI-ES. The documents MUST NOT
include information about activities (not even the list of activity ids).

EMI Execution Service specification 9 / 59

 3.1 GetResourceInfo operation

Functionality
This operation provides the resource information according to the GLUE2 model ComputingService entity
and all its related entities.. Activity records are not part of the resource information.

The operation is used to obtain information about EMI-ES Endpoints and their optional distribution across
various services and the resources behind those, as a single document composed of GLUE2 XML elements
that abides the GLUE2 computing service model.

The resource document is described in Section 8.1

Data-Staging Implications
The resource document MUST contain data staging capabilities expressed as GLUE2 Endpoint Capability.
Actual Capability attribute values are in Section 8.1.

State Model Implications

None

Request
None

Response
• The response MUST include the resource document as described in Section 8.1.
• In case of no possibility to return a complete resource document, an appropriate fault MUST be

returned.

Faults
InternalResourceInfoFault – service failed to generate/retrieve requested information
ResourceInfoNotFoundFault – service has no information to report and this is not information generation fault
AccessControlFault – client is not allowed to perform GetResorceInfo operation
InternalBaseFault – any other failure preventing service from performing request

A conceptual sketch of the response document is shown below:
<GetResourceInfoResponse>
 <Services>
 <ComputingService CE>
 <Endpoint1 ActivityCreation>
 <URL>https://somehost.somedomain:8000/ActivityCreation</URL>
 </Endpoint1>
 <Endpoint2 ResourceInfo>
 <URL>https://somehost.somedomain:8000/ResourceInfo</URL>
 </Endpoint2>
 <Endpoint3 ActivityManagement>
 <URL>https://somehost.somedomain:8000/ActivityManagement</URL>
 </Endpoint3>
 <Endpoint4 Delegation>
 <URL>https://somehost.somedomain:8000/Delegation</URL>
 </Endpoint4>
 </ComputingService>
 <Service JobInfo>
 <Endpoint ActivityInfo >
 <URL>https://otherhost.otherdomain:8111/ActivityInfo</URL>
 </Endpoint>
 </Service>
 </Services>
</GetResourceInfoResponse>

EMI Execution Service specification 10 / 59

Full example documents are presented in section 13.4.

 3.2 QueryResourceInfo operation

Functionality
This operation provides flexible access to query the full resource document (see Section 8.1). The Query
operates on the resource information document (no activities!). The operation can be used to obtain any
kind of resource characteristics through a query expressed in one of the supported query languages.

Query Languages
The Execution Service MAY support multiple query languages in addition to the mandatory one. The
supported query dialects MUST be published as part of the resource description via a GLUE2 Capability
element in the resource document.

Data-Staging Implications
None

Request
The request includes the following information:

• A query expression given in one of the supported query languages
• The type of the query language

An Execution Service MUST support XPath 1.0 and MAY support additional query languages such as
XQUERY, SQL, sparql and custom defined ones (e.g. python-based). The XPath queries must be
processed by service as if GLUE2 document has no namespace defined. The reason is that GLUE2
document can contain only elements of one namespace and stripping it allows for simpler XPath
expressions and no need to handle namespace definitions.

Response
The response includes the following information:

• Results of the query.
• In case of a failed query, an appropriate FAULT is returned

Faults
NotSupportedQueryDialectFault – the requested query dialect is not supported by service
NotValidQueryStatementFault – the query expression is not recognized as valid query for specified query
dialect
InternalResourceInfoFault – service failed to generate/retrieve requested information
ResourceInfoNotFoundFault – service has no information to report and this is not information generation fault
AccessControlFault – client is not allowed to perform QueryResourceInfo operation
InternalBaseFault – any other failure preventing service from performing request

 4 Interface: ActivityManagement Port-Type

 4.1 PauseActivity
Functionality
This operation requests to stop execution of the activity (stop whatever the service was doing). It may be
not possible for service to perform stop immediately. For example it takes time to propagate a stop request
to the underlying batch system. In such case the service MUST inform the client that the operation is going
to happen asynchronously and optionally provide estimated time.

EMI Execution Service specification 11 / 59

Depending on implementations and execution environment it may be not possible to perform a stop in a
particular state. In such a case either the request fails and the service informs the client about that, or the
service performs the request asynchronously and stops processing in the next state. The last case should
be acceptable only in very short transitional states.
If during application of PauseActivity request failure happens and the activity is transferred to one of states
applicable for failure processing, the request to stop processing is still applicable unless that new state is
terminal.

The following list describes the effect of PauseActivity on various states:

accepted state - any activity validation and provisioning stops. Once the activity processing is paused the
service assigns the activity client-paused attribute.

preprocessing state – any provisioning and data staging activities are stopped. Once the activity processing
is paused the service assigns the activity client-paused attribute.

processing-accepting – the job submission procedure to batch system is stopped. Once the job processing
is paused the service assigns the activity client-paused attribute. Note: it is highly likely that due to short
lifetime of this state service will choose to stop activity processing in next processing-queued state.

processing-queued – the batch system is informed to pause processing of the job. If the batch system does
not support such functionality, the request fails. Once job processing is paused the service assigns the
activity the client-paused attribute.

processing-running – the batch system is informed to pause execution of the job. If the batch system does
not support such functionality the request fails. Once job processing is paused the service assigns the
activity the client-paused attribute.

postprocessing – any de-provisioning and data staging activities are stopped. Once processing is paused
the service assigns the activity the client-paused attribute.

terminal – not applicable.

Request
vector of activityID elements

Response
The response of the PauseActivity() operation returns a list of values; each value is as follows:

• For those activities which can be paused, the execution service should return information on the
timing in which the pause will be done (i.e., whether the activity has already been paused, or pause
will be attempted in the future)

• Time estimation: ETP - Estimated time to pause, with the following special values:
◦ 0 means already paused (i.e. immediately),
◦ undefined if the service is not able to perform an estimation

• For those activities which cannot be paused, an appropriate error element is returned
◦ ActivityNotFoundFault – specified activityID does not match any known activity
◦ OperationNotPossibleFault – operation can't be performed because properties of activity

somehow prevent it
◦ OperationNotAllowedFault - operation can't be performed because activity is not in suitable state
◦ AccessControlFault - operation can't be performed due to internal access control decisions

specific to this activity
◦ InternalBaseFault – any other error preventing service to perform operation on specific activity

Faults

AccessControlFault – client is not allowed to perform PauseActivity operation.

VectorLimitExceededFault – number of elements in request exceeds allowed one.

InternalBaseFault – any other failure preventing service from processing all activities.

 4.2 ResumeActivity

EMI Execution Service specification 12 / 59

Functionality
This operation is the counterpart of PauseActivity. It instructs the service to remove the client-paused
attribute of the activity state. This will resume activities stopped as result of a PauseActivity operation. This
operation may be processed asynchronously. Whether activity processing is resumed exactly at the place
where it was stopped or there is some activity repeated is implementation specific. But the final result must
be independent of whether the activity was paused or not.
Request
vector of activityID elements

Response
The response of the ResumeActivity() operation returns a list of values; each value is as follows:

• For those activities which can be resumed, the execution service should return information on the
timing in which the resuming will be done (i.e., whether the activity has already been resumed, or
resume will be attempted in the future).

• Time estimation: ETP - Estimated time to resume, with the following special values:
◦ 0 means already resumed (i.e. immediately),
◦ undefined if the service is not able to perform an estimation

• For those activities which cannot be resumed, an appropriate error element is returned
◦ ActivityNotFoundFault – specified activityID does not match any known activity
◦ OperationNotPossibleFault – operation can't be performed because properties of activity

somehow prevent it
◦ OperationNotAllowedFault - operation can't be performed because activity is not in suitable state
◦ AccessControlFault - operation can't be performed due internal access control decisions specific

to this activity
◦ InternalBaseFault – any other error preventing service to perform operation on specific activity

•

Faults

AccessControlFault – client is not allowed to perform ResumeActivity operation.

VectorLimitExceededFault – number of elements in request exceeds allowed one.

InternalBaseFault – any other failure preventing service from processing all activities.

 4.3 NotifyService
Functionality
The operation is used to notify the service that the client completed an operation. It is in particular used to
notify the service when the client completed the client data push or client data pull.

Data-Staging Implications
As discussed in section 1.3, there are two possible approaches for data stage in:

• Server data pull
• Client data push

In the client data push, the user is supposed to upload the needed data in the stage-in directory as soon as
the activity reaches a status with the client-stagein-possible flag. When the client has completed this data
push, it MUST inform the service (with the NotifyService operation) that it completed the stage in. Otherwise
the activity won't proceed its processing.

Similarly, there are two possible approaches for data stage out:
• Server data push
• Client data pull

In the client data pull, the user is supposed to retrieve the output data from the stage-out directory as soon
as the activity reaches a status with the client-stageout-possible flag. When the client has completed the
data push, it CAN (it is not mandatory) inform the service (with the NotifyClient operation) that it completed
the stage out.

EMI Execution Service specification 13 / 59

Request
This operation accepts as input a vector where each element of it contains:

• The activityID

• A string, which specifies what the client wants to notify service about. This string allows for one of the
possible values:

• client-datapull-done: this is used to notify the service that the client has completed the
client data pull action

• client-datapush-done: this is used to notify the service that the client has completed the
client data push action

Response
The response of the NotifyService operation returns a vector of values; one per input element with each
value as follows:

• For those activities for which the notification has been accepted, an acknowledgement is returned
• For those activities for which the notification could not be accepted, an appropriate error element is

returned
◦ ActivityNotFoundFault – specified activityID does not match any known activity
◦ OperationNotPossibleFault – operation can't be performed because properties of activity

somehow prevent it
◦ OperationNotAllowedFault - operation can't be performed because activity is not in suitable state

(like client-datapush-done notification while activity is in postprocessing state)
◦ AccessControlFault - operation can't be performed due internal access control decisions specific

to this activity
◦ InternalNotificationFault - any other failure preventing service to perform operation on specific

activity and related to notification functionality
◦ InternalBaseFault – any other error preventing service to perform operation on specific activity

Faults
• VectorLimitExceededFault – request contains vector with too many elements (see CreateActivity)
• AccessControlFault – client is not allowed to perform NotifyService operation
• InternalNotificationFault - any other failure preventing service from processing all activities and

related to notification functionality
• InternalBaseFault – any other failure preventing service from processing all activities

 4.4 CancelActivity operation
Functionality
This operation is used to request the cancellation of a set of activities while this operation does not wait for
the cancellation of these activities. The execution service cancels the requested activities which in turn
enter the final state terminal with *-cancel attribute according to the state model. The cancel means that
active data-staging processes SHOULD be cancelled and active executions in LRMS MUST be cancelled.

Data-Staging Implications
Any data-staging activities that are processed during the invocation of the CancelActivity() operation
SHOULD be immediately cancelled.
In the context of data, any kind of data that has been marked as stage-in or any kind of temporarily
generated data is not available when activities enter the ‘cancelled’ state.
For what concerns staging-out, if the user job is cancelled, the user can configure for each data object
whether the ES should perform the stage-out This is done using the UseIfCancel attribute, see section
9.3.6.3.2.7.

Data objects that have been already staged by the service to an external target (i.e. remote storage
elements) are not affected by these operations.

EMI Execution Service specification 14 / 59

State Model Implications
The cancel operation is applicable to any state of the state model except the terminal states. Upon
successful cancellation the activity enters terminal state with one the *-cancel attributes, depending on the
current main state, i.e. preprocessing-cancel, etc.

Request
The input parameter is a vector of activity identifiers. Other mechanisms of specifying a subset of the
affected activity identifiers (e.g. filtering, grouping) are considered to be out of scope, because of simplicity
of the service interface itself.

Response
The response of the CancelActivity() operation returns a list of values; each value is as follows:

• For those activities which can be cancelled, the execution service should return information on the
timing in which the cancellation will be done (i.e., whether the activity has already been cancelled, or
cancellation will be attempted in the future);

• Time estimation: ETC - Estimated time to cancellation, special values: 0 means already
cancelled (i.e. immediately), undefined if the service is not able to perform an estimation

• For those activities which cannot be cancelled, an appropriate error element is returned
◦ ActivityNotFoundFault – specified activityID does not match any known activity
◦ OperationNotPossibleFault – operation can't be performed because properties of activity

somehow prevent it
◦ OperationNotAllowedFault - operation can't be performed because activity is not in suitable state
◦ AccessControlFault - operation can't be performed due internal access control decisions specific

to this activity
◦ InternalBaseFault – any other error preventing service to perform operation on specific activity

•

Faults
AccessControlFault – client is not allowed to perform CanelActivity operation.

VectorLimitExceededFault – number of elements in request exceeds allowed one.
InternalBaseFault – any other failure preventing service from processing all activities.

 4.5 WipeActivity operation

Functionality
This operation can be used to request the complete removal of a set of activities, including the activity-
related information as well as the removal of all temporary data associated with these activities. As a result
of this operation, the activity disappears from the service environment and thus no further operations can be
invoked on wiped activity identifiers.

Data-Staging Implications
In the context of data, any kind of data (i.e. stage-in directory, stage-out directory, session directory) or any
kind of temporarily generated data is NOT available after the invocation of the WipeActivity() operation.

State Model Implications
This operation is only allowed on any final (terminal) state according to the state model. If the activity is
not in any final state yet, the service must return error element OperationNotAllowedFault

Request
The input parameter is a vector of activity identifiers. Other mechanisms of specifying a subset of the
affected activity identifiers (e.g. filtering, grouping) are considered to be out of scope, because of simplicity
of the service interface itself.

Response
The response of the WipeActivity() operation returns a list of values; each value is as follows:

• For those activities which can be wiped out, the execution service should return information on the
timing in which the activities will be no longer in the system (i.e., whether the activity has already
been wiped out, or it will be attempted in the future);

• Time estimation: ETW - Estimated time to wipe out the activity , special values: 0 means
already wiped (i.e. immediately), undefined if the service is not able to perform an

EMI Execution Service specification 15 / 59

estimation
• For those activities which cannot be wiped out, an appropriate error element is returned

◦ ActivityNotFoundFault – specified activityID does not match any known activity
◦ OperationNotPossibleFault – operation can't be performed because properties of activity

somehow prevent it
◦ OperationNotAllowedFault - operation can't be performed because activity is not in suitable state

(one of terminal states)
◦ AccessControlFault - operation can't be performed due internal access control decisions specific

to this activity
◦ InternalBaseFault – any other error preventing service to perform operation on specific activity

Faults
AccessControlFault – client is not allowed to perform WipeActivity operation.

VectorLimitExceededFault – number of elements in request exceeds allowed one.

InternalBaseFault – any other failure preventing service from processing all activities.

 4.6 RestartActivity operation (optional)
The RestartActivity operation MAY be implemented by the execution service to allow failed activities to be
restarted. Its may intention is to take advantage of already delivered, produced data and to recover from
errors caused by problems external to Execution Service.

Functionality
This operation is requesting service to restart an activity at the state where it failed. The service SHOULD
change the state of the requested activities to the state at which processing would resume at point as close
to failure point as possible (implementation specific). Activity is still considered as same activity and its
activityID is unchanged.

Data-Staging Implications
Restarting activity which failed during data staging phase MUST result in failed staging parts to be retried.

State Model Implications
The RestartActivity operation can be only used for transitions according to the state model with the
restriction of one-step transitions only.

Request
This operation accepts as input a vector of activityID elements.

Response
The response of the RestartActivity operation returns a vector of values; each value is as follows:

• For those activities which can be restarted, the execution service should return time estimation in
which the restart will be done;

• EstimatedTime: estimated time restart the activity , special values: 0 means already
restarted (i.e. immediately), undefined if the service is not able to perform an estimation

• For those activities which cannot be restarted, an appropriate error element is returned
◦ ActivityNotFoundFault – specified activityID does not match any known activity
◦ OperationNotPossibleFault – operation can't be performed because properties of activity

somehow prevent it
◦ OperationNotAllowedFault - operation can't be performed because activity is not in suitable state
◦ AccessControlFault - operation can't be performed due internal access control decisions specific

to this activity
◦ InternalBaseFault – any other error preventing service to perform operation on specific activity

Faults
OperationNotPossibleFault – if service does not support this operation
AccessControlFault – client is not allowed to perform RestartActivity operation.

VectorLimitExceededFault – number of elements in request exceeds allowed one.

InternalBaseFault – any other failure preventing service from processing all activities.

EMI Execution Service specification 16 / 59

 4.7 GetActivityStatus operation
Functionality
This operation provides the state information according to the state model (see Section 7) of a vector of
activities. The service MUST publish the primary state together with all the state attributes.

Data-Staging Implications
Since this method returns also the data-staging related state attributes, it plays an important role for
deciding when it is possible to do client data push and client data pull.

Request
The request includes a vector of activityID elements

Response
The response includes the following information:

• For those activities for which state can be obtained the following information is provided for each
activity:
◦ activity identifier
◦ the corresponding state (see section 7.1)
◦ the corresponding state attributes (optional) (see section 7.1)
◦ a timestamp of last state change
◦ an optional description (or message)

• For those activities where the state cannot be provided (for example, because the activity identifier
does not exist), an appropriate error structure is returned
◦ ActivityNotFoundFault – specified activityID does not match any known activity
◦ UnableToRetrieveStatusFault – although activity does exist retrieving its status failed
◦ OperationNotPossibleFault – operation can't be performed because properties of activity

somehow prevent it
◦ OperationNotAllowedFault - operation can't be performed because activity is not in suitable state
◦ AccessControlFault - operation can't be performed due internal access control decisions specific

to this activity
◦ InternalBaseFault – any other error preventing service to perform operation on specific activity

Faults
AccessControlFault – client is not allowed to perform GetActivityStatus operation.

VectorLimitExceededFault – number of elements in request exceeds allowed one.

InternalBaseFault – any other failure preventing service from processing all activities.

A conceptual sketch of an example response is as follows:
<GetActivityStatusResponse>
 <ActivityStatusItem>
 <ActivityID>556a7fbc-28ff-414e-bcee-6d1116c7d399</ActivityID>
 <ActivityStatus>
 <State>accepted</State>
 <StateAttribute>validating</StateAttribute>
 <StateAttribute>client-stagein-possible</StateAttribute>
 <StateAttribute>client-stageout-possible</StateAttribute>
 <Timestamp>2012-07-11T10:23:40.559+02:00</Timestamp>
 <Description>Running through validation</Description>
 </ActivityStatus>
 </ActivityStatusItem>
 <ActivityStatusItem>
 <ActivityID>20503220-d0bb-11e1-9c3f-001e331f6e47</ActivityID>
 <ActivityStatus>
 <State>terminal</State>
 <Timestamp>2012-07-11T10:23:40.559+02:00</Timestamp>
 <Description>Failure: not restartable</Description>
 </ActivityStatus>
 </ActivityStatusItem>
</GetActivityStatusResponse>

EMI Execution Service specification 17 / 59

 4.8 GetActivityInfo operation

Functionality
This vector operation provides the activity information according to the GLUE2 activity model. The set of
activities for which the information is requested MUST be explicitly provided in the request and the
operation will return either a full EMI-ES activity document or a selection of EMI-ES activity elements.
The latter can be achieved additionally specifying a set of requested elements.
The EMI-ES activity document uses attributes from the GLUE2 ComputingActivity entity and it extends it
with EMI-ES attributes for capturing key concepts such as data staging..

Data-Staging Implications
If the Execution Service possesses the corresponding capabilities then the activity information MUST be able
to publish the session directory and stage-in and stage-out directories related information as described in
Section 8.2. This operation MAY be used to retrieve that information.

State Model Implications
The state information is a mandatory part of the activity information. The GLUE2 model enables the
publication of activity states in multiple state models. The GetActivityInfo response MUST publish the
activity state according to the EMI ES state model and MAY publish additional state model values as well.
EMI-ES states and state attributes MUST be published following a format defined in Section 8.2.

Request
The request includes the following information:

• A vector of activityID elements
• A vector of EMI-ES activity attributes. In case this parameter is not specified then the full activity

record MUST be returned.

Response
The response includes the following information:

• The detailed activity information about each of the activities is provided as a pair of activity identifiers
and either a vector of requested EMI-ES attributes or the full EMI-ES activity document if no attribute
is specified in the request.

• For those activities where the activity information cannot be returned (for example, because the
activity identifier does not exist or an invalid attribute was requested), an appropriate error structure
is returned
◦ ActivityNotFoundFault – specified activityID does not match any known activity
◦ UnableToRetrieveStatusFault – although activity does exist retrieving its information failed
◦ OperationNotPossibleFault – operation can't be performed because properties of activity

somehow prevent it
◦ OperationNotAllowedFault - operation can't be performed because activity is not in suitable state
◦ AccessControlFault - operation can't be performed due internal access control decisions specific

to this activity
◦ InternalBaseFault – any other error preventing service to perform operation on specific activity

Faults
UnknownAttributeFault – at least one of specified activity attributes is not recognized
AccessControlFault – client is not allowed to perform GetActivityInfo operation.

VectorLimitExceededFault – number of elements in request exceeds allowed one.

InternalBaseFault – any other failure preventing service from processing all activities.

A conceptual sketch of the two possible activity responses is shown below:

1) Full activity documents are returned. Note that the mandatory elements are always present in the full
document response.

<GetActivityInfoResponse>
 <ActivityInfoItem>
 <ActivityID>15f4a518</ActivityID>
 <ActivityInfoDocument>
 <ID>15f4a518<ID>

EMI Execution Service specification 18 / 59

 <IDFromEndpoint>https://cream-
10.pd.infn.it:8443/Activity/15f4a518</IDFromEndpoint>
 <State>emies:accepted</State>
 <State>emiesattr:validating</State>
 <Owner>CONFIDENTIAL</Owner>

 …

 </ActivityInfoDocument>
 <ActivityInfoItem>
 <ActivityInfoItem>
 <ActivityID>798ac354</ActivityID>
 <ActivityInfoDocument>
 <ID>798ac354<ID>
 <IDFromEndpoint>https://cream-10.pd.infn.it:8443/Activity?
798ac354</IDFromEndpoint>
 <State>emies:preprocessing</State>
 <State>emiesattr:server-stagein</State>
 <Owner>/DC=eu/DC=KnowARC/O=Lund University/CN=demo1</Owner>

 …

 </ActivityInfoDocument>
 <ActivityInfoItem>
<GetActivityInfoResponse>

2) Filtered documents are returned; in this case the document contains only the requested elements, namely
Error and StageOutDirectory:

<GetActivityInfoResponse>
 <ActivityInfoItem>
 <ActivityID>15f4a518</ActivityID>
 <ActivityInfoDocument>
 <Error>Error code 476259</Error>

<StageOutDirectory>gsiftp://localhost:2811/FILESPACE/15f4a518</StageOutDirectory
>
 </ActivityInfoDocument>
 </ActivityInfoItem>
 <ActivityInfoItem>
 <ActivityID>798ac354</ActivityID>
 <ActivityInfoDocument>
 <Error>Error code 421223</Error>

<StageOutDirectory>gsiftp://localhost:2811/FILESPACE/798ac354/</StageOutDirector
y>
 </ActivityInfoDocument>
 </ActivityInfoItem>
<GetActivityInfoResponse>

Complete XML documents examples are provided in section 13.5.

EMI Execution Service specification 19 / 59

 5 Interface: ActivityInfo Port-Type

 5.1 ListActivities

Functionality

The main purpose of this operation is to allow the user to retrieve the list of his/her Activities (as allowed by
access control) handled by the EMI Execution Service. The user identity is not an explicit parameter of the
ListActivities operation, but is considered to be prerequisite, already obtained through the authentication
process.
The association between the user identity and his/her activities is managed by the server.
The operation returns just a list of the activityIDs while detailed information about those Activities can be
obtained by invoking the getActivityInfo. Moreover the ListActivities operation provides as set of optional
parameters useful for filtering the Activities by date (e.g. created in a well defined time window) and/or by
current status. It is also possible to specify a threshold value for limiting the result size (e.g. size of matched
Activities).

Request
The ListActivities operation accepts as input the following NOT mandatory parameters:

• FromDate, ToDate: the activity creation time window
• ActivityStatus elements: the list of possible statuses, that is, each item of the list is a state with all its

attributes.
• Limit: an non-negative integer giving the maximum number of activityIDs within the returned list

If no parameters are specified, the operation returns the full list of activityIDs belonging to that user.
Otherwise the IDs of those activities are returned that were created in the given window AND are in one of
the listed states.

A conceptual sketch of the ListActivities request is shown below:

<ListActivitiesRequest>
 <FromDate />
 <ToDate />
 <Limit />
 <ActivityStatusList>
 <ActivityStatus>
 <State>accepted</State>
 <StateAttribute>validating</StateAttribute>
 <StateAttribute>client-stagein-possible</StateAttribute>
 <StateAttribute>client-stageout-possible</StateAttribute>
 </ActivityStatus>
 <ActivityStatus>
 <State>terminal</State>
 <StateAttribute>validation-failure</StateAttribute>
 <StateAttribute>app-failure</StateAttribute>
 </ActivityStatus>
 <ActivityStatus>
 <State>processing-queued</State>
 <StateAttribute>server-paused</StateAttribute>
 <StateAttribute>client-paused</StateAttribute>
 </ActivityStatus>
 </ActivityStatusList>
</ListActivitiesRequest>

Response
The response of the ListActivity operation returns a list of ActivityIds or an appropriate fault.

EMI Execution Service specification 20 / 59

An additional boolean flag “truncated” indicates that the result list was truncated.

Faults
InvalidParameterFault - some input parameter is illegal (for example FromDate is older than ToDate)
AccessControlFault – client is not allowed to perform ListActivities operation.

InternalBaseFault – any other failure preventing service from processing all activities.

 5.2 GetActivityStatus
This operation is as described in section 4.7 above.

 5.3 GetActivityInfo
This operation is as described in section 4.8 above.

 6 Interface: Delegation Port-Type
Delegation is a critical ingredient for the Execution Service, since data staging often must be performed on
behalf of clients. This delegation port-type provides operations by which the clients can temporarily convey
their X.509 proxy certificates (that MAY carry also attributes) to the execution service. The delegated
credential MAY be used in further delegations and additional extensions MAY be inserted during this
process. This port-type is extremely important to support some parts of the data staging functionality (it is
needed for “data server push” and “data server pull” data staging scenarios: see sect. 1.3).

The interface described in this section describes the direct delegation of RFC3820 X.509 proxies between
clients and ES. Since delegation is critical for other services as well (such as data management services), a
common solution for all the EMI services is desirable. Currently EMI ES adopts not yet released version 2.1
of GridSite[6] delegation service. Version 2.1 is modified version 2.0 adapted to document/literal WSDL
style. Below GridSite delegation operations are described as applicable to EMI Execution service.

 6.1 getVersion operation
Functionality
The getVersion operation provides version of service implementing Delegation capability. This version is
specific to implementing service and can be any.

Data-Staging Implications
None.

State model Implications
None.

Request
The request is empty.

Response
The response contains getVersionReturn string element with version information.

Faults
DelegationException – generic error

EMI Execution Service specification 21 / 59

 6.2 getInterfaceVersion operation
Functionality
The getInterfaceVersion operation provides version of this interface. Its value must be 2.1.

Data-Staging Implications
None.

State model Implications
None.

Request
The request is empty.

Response
The response contains getInterfaceVersionReturn string element containing “2.1” value.

Faults
DelegationException – generic error

 6.3 getServiceMetadata operation
Functionality
The getServiceMetadata operation provides access to meta-data describing this service. Meta-data is
organised in key-value pairs. Service is free to provide any meta-data. For EMI ES no meta-data is
required.

Data-Staging Implications
None.

State model Implications
None.

Request
The request contains key of requested meta-data.

Response
The response contains corresponding value of requested meta-data.

Faults
DelegationException – generic error. Also returned if meta-data for requested key does not exist.

 6.4 getProxyReq operation
Functionality
The getProxyReq operation starts the delegation procedure by asking for a certificate signing request from
the server. The server answers with a certificate signing request which includes the public key for the new
delegated credentials. The PutProxy operation is used to complete the delegation procedure.

Data-Staging Implications
The delegationID supplied in request MAY be used in the DataStaging element of the activity description in
order to assign a delegated credential (once the delegation process was completed) to a data-staging
operation to be performed by the Execution Service on behalf of the client (in the “server data push” and
“server data pull” data staging scenarios).

State model Implications
The two-step delegation process MUST be performed at least once before the invocation of the
CreateActivity operation which uses the delegationID passed within the DataStaging JSDL block. The
delegationID MAY be (re-)used in multiple CreateActivity operation invocations.

Request
• delegationID: the ID to be assigned to be used in putProxy and assigned to stored delegation.

GridSite allows for empty delegationID which is then replaced by hash of certificate subject and

EMI Execution Service specification 22 / 59

VOMS(7) attributes. But because neither hashing algorithm nor way to combine VOMS attributes are
defined delegationID MUST be not empty in EMI ES implementation.

Response
The response includes getProxyReqReturn with an X.509 certificate signing request in PEM format.

Faults
DelegationException – generic error.

 6.5 getNewProxyReq operation
Functionality
The getProxyReq operation starts the delegation procedure by asking for a certificate signing request from
the server. The server answers with a certificate signing request which includes the public key for the new
delegated credentials. The PutProxy operation is used to complete the delegation procedure.

Data-Staging Implications
The delegationID provided in response MAY be used in the DataStaging element of the activity description
in order to assign a delegated credential (once the delegation process was completed) to a data-staging
operation to be performed by the Execution Service on behalf of the client (in the “server data push” and
“server data pull” data staging scenarios).

State model Implications
The two-step delegation process MUST be performed at least once before the invocation of the
CreateActivity operation which uses the delegationID passed within the DataStaging JSDL block. The
delegationID MAY be (re-)used in multiple CreateActivity operation invocations.

Request
Request is empty.

Response
The response includes proxyRequest with an X.509 certificate signing request in PEM format and
delegationID assigned by service.

Faults
DelegationException – generic error. Also returned if credentials with specified delegationID already exists.

 6.6 renewProxyReq operation
Functionality
The renewProxyReq operation requests to replace already existing delegation with new one. The server
answers with a certificate signing request which includes the public key for the renewed delegated
credentials. The PutProxy operation is used to complete the delegation procedure.

Data-Staging Implications
The credentails renewal operation may happen after CreateActivity. In this case after PutProxy is performed
renewed credentials are to be passed to already existing activity. If activity is in data-staging state it is up to
implementation how soon new credentials become active.

State model Implications
The two-step delegation process MUST be performed before credentials renewal operation is complete.

Request
• delegationID: the ID of delegation to be replaced.

Response
The response includes renewProxyReqReturn with an X.509 certificate signing request in PEM format.

Faults
DelegationException – generic error. Also returned if delegationID does not match any of client's delegated
credentials.

EMI Execution Service specification 23 / 59

 6.7 putProxy operation
Functionality
The putProxy operation completes the delegation procedure by sending the signed proxy certificate along
with the delegationID to the server. The signed certificate is based on the certificate signing request
previously retrieved together with the delegationID via an getProxyReq, getNewProxyRequest or
renewProxyReq operation invocation.

Data-Staging Implications
The delegated credential MAY be used by the Execution Service to carry out data-staging operations on
behalf of the user. The delegated credential is assigned to the data transfer via a dedicated activity
description element of the DataStaging block of the EMI-JSDL.
In general, it is possible that the same user delegates different kind of credentials (with different delegation
IDs) to the same Execution Service. This could be useful, for example, if the user belongs to different Virtual
Organizations (VOs) and wants to delegate credentials bound to different VOs to the same service. Different
VOs could be necessary to access data on different Storage Elements (SEs).

State model implications
The two-step delegation process MUST be performed at least once before the invocation of the
CreateActivity operation which uses the delegationID passed within the DataStaging JSDL block. The
DelegationID MAY be (re-)used in multiple CreateActivity operation invocations.

Request
The request includes the following information:

• the delegationID identifying delegation session as assigned in getProxyReq/renewProxyReq or
obtained by getNewProxyRequest

• the proxy element which contains RFC 3280 style proxy certificate, signed by the client

Response
The response includes the SUCCESS string in case of successful putProxy operation.

Faults
DelegationException – generic error. This is also returned if session for delegationID was not started using
getProxyReq/getNewProxyRequest.

 6.8 getTerminationTime operation
Functionality
The getTerminationTime operation returns expiration time of specified delegation.

Data-Staging Implications
None.

State model implications
The delegation is two-step process. Hence getTerminationTime can succeed only after second step
delegation process is complete.

Request
The request includes the delegationID identifying delegated credentials for which information is requested.

Response
The response includes the getTerminationTimeReturn element which contains expiration time of delegated
credentials.

Faults
DelegationException – generic error. This is also returned of no delegated credentials found matching
delegationID for requesting client.

 6.9 destroy operation
Functionality
The destroy operation erases delegated credentials or open delegated session from service.

EMI Execution Service specification 24 / 59

Data-Staging Implications
None.

State model implications
None.

Request
The request includes the delegationID identifying delegated credentials or delegated session started by
getProxyReq/getNewProxyRequest/renewProxyReq operations.

Response
Successful response is empty.

Faults
DelegationException – generic error. This is also returned if no delegated credentials or session found
matching delegationID for requesting client.

 7 Activity State model
This section describes the state model of the EMI Execution service, i.e. it specifies the possible states of
activities created using the EMI ES and lists the possible transitions between states.
The state model is the external one, i.e. intended for clients. Internally, the service implementation might use
a different state model.

 7.1 State definitions

The EMI ES state model consists of states and state attributes. An activity can only be in one state but can
have multiple state attributes. A state and all its assigned attributes together defines an activity status.
The states can be grouped into 5 phases:

• ACCEPTED phase: the activity has been created and is being validated. This phase is represented
by state accepted.

• PREPROCESSING phase: the activity environment, including data is being prepared. This phase is
represented by state preprocessing.

• PROCESSING phase: the job is being submitted to and processed by the underlying system or it is
already handled by the batch system. This phase is split into the following states:
◦ processing-accepting – intermediate state representing the time slot while the Execution

Service communicates with the underlying batch system.
◦ processing-queued – this state indicates that the job was accepted by the batch system, but

the payload is not yet running.
◦ processing-running – this state indicates that the job was accepted by the batch system and

the payload is running.
• POSTPROCESSING phase: the job has left the batch system. It is possibly activity is doing stage-

out, releasing resources (de-provisioning). This phase is represented by state postrpocessing.
• TERMINAL phase: there is no more activity by the service, the activity is in a final state. Output data

is available for client data pull. This phase is represented by state terminal.

Each state may by assigned multiple attributes. The purpose of attributes is to provide information about
particular functions being performed by the service. It is main source of information for clients to choose
action to perform. There may be few or no attributes assigned to the current state. Not every attribute may be
assigned to every state.
The following state attributes are defined:

• validating informs that service is performing validation of activity request.
• server-paused means server stopped activity processing due to some internal decisions. This flag

can be raised and removed only by service itself.
• client-paused is raised by client through submitting a PauseActivity request. This is a flag which can

EMI Execution Service specification 25 / 59

be removed by client through submitting a ResumeActivity request. The activity processing is
stopped and will not continue until the client-paused attribute is removed.

• client-stagein-possible and client-stageout-possible are indicating that client can access stage-
in/stage-out location. This is a flag which can be removed by client through submitting NotifyService
request. The service will stop activity processing at the point where it can't continue waiting for the
client-stagein-possible to be removed. It must be noted that there is no need for removing the
client-stageout-possible attribute.

• provisioning and deprovisioning refer to any preparations before and after user job goes to batch
system not related to data staging.

• server-stagein and server-stageout are representing service performing server data pull and
server data push.

• batch-suspend refers to situation when batch system decides to suspend execution of payload
• app-running denotes execution of payload specified in the activity description – the user job. This

attribute is meant to distinguish between execution of payload specified by client and other actions
which service may choose to delegate to batch system.

• *-cancel attributes [preprocessing-cancel, processing-cancel, postprocessing-cancel] inform
that activity was cancelled on client request. First part of name refers to phase of activity when
cancellation request was executed.

• *-failure attributes [validation-failure, app-failure, preprocessing-failure, processing-failure,
postprocessing-failure] inform that activity processing failed. First part of name refers to phase of
activity where failure was detected. Additionally validation-failure refers to job failed due to failure to
validate activity request. app-failure means failure of specified payload.

• expired indicates that the activity was cancelled because its expiration time has been exceeded.
The expiration time is optionally set in the activity description, see section 9.

The following table 1 shows the applicability of attributes to states.

EMI Execution Service specification 26 / 59

Table 1. Applicability of attributes to states

a
cc

e
p

te
d

p
re

p
ro

ce
ss

in
g

p
ro

c
es

si
n

g
-a

c
ce

p
ti

n
g

p
ro

c
es

si
n

g
-q

u
e

u
e

d

p
ro

c
es

si
n

g
-r

u
n

n
in

g

p
o

s
tp

ro
c

es
s

in
g

te
rm

in
a

l

validating X

client-paused X X X X X

client-stagein-possible X X

server-paused X X X X X

provisioning X

server-stagein X X X

batch-suspend X X

app-running X

server-stageout X X

deprovisioning X

client-stageout-possible X X

preprocessing-cancel X X

processing-cancel X X

postprocessing-cancel X X

validation-failure X X

app-failure X X

preprocessing-failure X X

processing-failure X X

postprocessing-failure X X

expired X

 7.2 State transitions
The optimal state transition chain is the following:

accepted → preprocessing → processing-accepting → processing-queued → processing-running →
postprocessing → terminal
The following table 2 represents the other possible state transitions: for each state of the first row, the
possible target states are listed

EMI Execution Service specification 27 / 59

Table 2. Allowed state transitions

Initial
state

accepted preprocessing processing-
accepting

processing-
queued

processing-
running

postprocessing terminal

Allowed
transitions

preprocessing processing-
accepting

processing-
queued

processing-
running

processing-
queued

terminal

terminal postprocessing processing-
running

postprocessin
g

postprocessin
g

terminal postprocessin
g

terminal terminal

terminal

From terminal state with *-failure attributes following failure recovery transitions are allowed:
validation-failure → NO
app-failure → processing
processing-failure → processing
preprocessing-failure → preprocessing
postprocessing-failure → postprocessing
The implementation of such "failure recovery transitions" is optional (i.e. some services can be able to
support some recoveries)

 8 Resource and Activity representation
The EMI Execution Service, as one of its key features, has the capability of publishing information about the
resource characteristic exposed by the service and the detailed properties of the activities being managed
by the service. In this section a normative definition of the information to be published through the
information port-types will be given based on GLUE2 model.
It is important to note that notion of Activity as defined in this document corresponds to a job in GLUE2
terms, that is, information related to an EMI-ES Activity can be published as a GLUE2 ComputingActivity
element.

 8.1 Resource information: the resource document
The resource information is available through the ResourceInfo port type. The port type provides the
GetResourceInfo and QueryResourceInfo operations. The former returns the full resource information while
the latter enables flexible queries over the same information content. Resource information is defined as
information related to the service characteristics only, therefore activity information is completely excluded.
The resource description used by the EMI ES follows the GLUE2 model [3].
The resource information is contained in a “resource document” composed of GLUE2 XML elements that
abides the GLUE2 computing service model. The main entity of the model being endorsed is the
ComputingService, which further aggregates the ComputingManager, ComputingEndpoint,
ComputingShare, ExecutionEnvironment, and ApplicationEnvironment.

The resource document MUST contain information related to all EMI-ES port-types represented as GLUE2
Endpoints or ComputingEndpoints. These Endpoints MAY be deployed on separate services: in this case,
the document MUST contain information about these services as well.

The resource document MAY contain other non EMI-ES endpoints and resource information in case these
are hosted by the same services running EMI-ES.
The documents MUST NOT include information about activities (not even the list of activity Ids).

EMI Execution Service specification 28 / 59

 8.1.1 Structure of the resource document
The mandated structure follows the hierarchical XML rendering of the GLUE2 model.
The structure is presented through two examples based on different deployment scenarios. In the first
scenario (A), all the EMI-ES port-types are implemented in the same service. In the second case (B), EMI-
ES port-types are distributed over multiple services. The two examples should be read as normative
definitions of the resource document. The first occurrence of an element identifies the mandatory and
optional attributes of an entity. Items must be rendered as XML elements, and they are presented here as
simple strings for ease of reading.
There is no limitation on the number of endpoints per port-type. For example, there can be more than one
ActivityCreation endpoints, provided that their GLUE2 ID is different.
Attribute values and their semantics are given in Section 8.1.2.

 8.1.1.1 Response document for Scenario A

<GetResourceInfoResponse>
 <Services>
 <ComputingService>
 <!-- Mandatory -->
 ID
 Type
 HealthState
 Capability
 QualityLevel

 <!-- Optional -->
 CreationTime
 Validity
 Name
 OtherInfo
 StatusInfo
 Complexity
 TotalJobs
 RunningJobs
 WaitingJobs
 StagingJobs
 SuspendedJobs
 PreLRMSWaitingJobs
 Associations

 <ComputingEndpoint>
 <!-- Mandatory -->
 InterfaceName = org.ogf.glue.emies.activitycreation
 Capability
 URL
 ID
 ImplementationName
 ImplementationVersion
 QualityLevel
 HealthState
 ServingState
 Staging
 JobDescription

 <!-- Optional -->
 CreationTime
 Validity
 Name
 OtherInfo
 Technology
 InterfaceVersion

EMI Execution Service specification 29 / 59

 InterfaceExtension
 WSDL
 SupportedProfile
 Semantics
 Implementor
 HealthStateInfo
 StartTime
 IssuerCA
 TrustedCA
 DowntimeAnnounce
 DowntimeStart
 DowntimeEnd
 DowntimeInfo
 TotalJobs
 RunningJobs
 WaitingJobs
 StagingJobs
 SuspendedJobs
 PreLRMSWaitingJobs
 Associations
 <AccessPolicy></AccessPolicy>

 </ComputingEndpoint>
 <ComputingEndpoint>
 InterfaceName = org.ogf.glue.emies.activitymanagement
 Capability
 ...
 </ComputingEndpoint>
 <ComputingEndpoint>
 InterfaceName = org.ogf.glue.emies.activityinfo
 Capability
 ...
 </ComputingEndpoint>
 <ComputingEndpoint>
 InterfaceName = org.ogf.glue.emies.resourceinfo
 Capability
 ...
 </ComputingEndpoint>
 <ComputingEndpoint>
 InterfaceName = org.ogf.glue.emies.activityinfo
 Capability
 ...
 </ComputingEndpoint>
 <ComputingManager></ComputingManager>
 <ComputingShare></ComputingShare>
 <Location></Location>
 <Contacts></Contacts>
 <!-- non EMI-ES endpoints -->
 <ComputingEndpoint>
 InterfaceName = org.nordugrid.gridftpjob
 Capability
 ...
 </ComputingEndpoint>
 <ComputingEndpoint>
 InterfaceName = org.nordugrid.ldapng
 Capability
 ...
 </ComputingEndpoint>
 </ComputingService>
 <Services>
</GetResourceInfoResponse>

EMI Execution Service specification 30 / 59

 8.1.1.2 Response document for Scenario B

<GetResourceInfoResponse>
 <Services>
 <ComputingService>
 ID = bd9aa2ca-ccf3-11e1-be88-001e331f6e47
 Type = org.distributed.CE
 Name = jobmanager service
 OtherInfo = This service hosts two EMI-ES port-types
 OtherInfo = and one non EMI-ES Endpoint

 <ComputingEndpoint>
 InterfaceName = org.ogf.glue.emies.activitycreation
 Capability
 ...
 </ComputingEndpoint>
 <ComputingEndpoint>
 InterfaceName = org.ogf.glue.emies.activitymanagement
 Capability
 ...
 </ComputingEndpoint>
 <ComputingManager></ComputingManager>
 <ComputingShare></ComputingShare>
 <Location></Location>
 <Contacts></Contacts>
 <!-- non EMI-ES endpoints -->
 <ComputingEndpoint>
 InterfaceName = org.nordugrid.gridftpjob
 Capability
 ...
 </ComputingEndpoint>
 </ComputingService>

 <ComputingService>
 ID = 17e5f658-ccf4-11e1-970e-001e331f6e47
 Type = org.distributed.CE
 Name = jobinfo service
 OtherInfo = This service hosts one EMI-ES port-type
 <ComputingEndpoint>
 InterfaceName = org.ogf.glue.emies.activityinfo
 Capability
 ...
 </ComputingEndpoint>
 </ComputingService>

 <Service>
 ID = 9ddec5b4-ccf4-11e1-817a-001e331f6e47
 Type = org.distributed.CE
 Name = resourceinfo service
 OtherInfo = This service hosts one EMI-ES port-type
 OtherInfo = and one non EMI-ES Endpoint
 <Endpoint>
 InterfaceName = org.ogf.glue.emies.resourceinfo
 Capability
 ...
 </Endpoint>
 <!-- non EMI-ES endpoints -->
 <Endpoint>
 InterfaceName = org.nordugrid.ldapng

EMI Execution Service specification 31 / 59

 Capability
 ...
 </Endpoint>
 </Service>

 <Service>
 ID = cba592a2-ccf4-11e1-a51f-001e331f6e47
 Type = org.distributed.CE
 Name = delegation service
 OtherInfo = This service hosts one EMI-ES port-type
 <Endpoint>
 InterfaceName = org.ogf.glue.emies.delegation
 Capability
 ...
 </Endpoint>
 </Service>
 <Services>
</GetResourceInfoResponse>

 8.1.2 GLUE2 resource document attribute values
In this section a detailed explanation of the GLUE2 attribute values is given, The mandatory/optional nature
of the element is also repeated for ease of reading. Section 13.4 provides the detailed schema-level example
of the resource information model used within the ResourceInfo port type.

 8.1.2.1 ID
 Each GLUE2 ID element of the resource document MUST have a universally unique valid URI as a value;
The IDs must not be interpreted by the user or the system as having any meaning other than identifiers. In
particular, there is no predefined relationship between an ID and a network endpoint or activityID. IDs MUST
be persistent, as long as the service is considered to be the same. For example, a service restart or
configuration changes should not result in a new ID unless it is deliberately requested by operational needs.
It is up to implementation how to generate suitable IDs.

 8.1.2.2 Service Type
The value of this element should be the Type of the service hosting the EMI-ES Endpoints. These values
SHOULD be taken from the official GLUE2 enumeration list of ServiceType_t [5].

 8.1.2.3 Service Capability
The value of this mandatory element MUST be the union of the capabilities of the endpoints hosted by the
service.

 8.1.2.4 ComputingService TotalJobs, RunningJobs, WaitingJobs, StagingJobs,
SuspendedJobs and PreLRMSWaitingJobs

These element values, if published, SHOULD reflect all the activities managed by the service through any of
its endpoints, including non EMI-ES ones.

 8.1.2.5 Endpoint InterfaceName
For EMI-ES endpoints, the value of this element MUST be the InterfaceName of the port-type offered by the
endpoint. The mapping between port type and InterfaceName is defined in the table 3.
If the service contains non EMI-ES endpoints, then their InterfaceName must be published according to the
official GLUE2 Enumeration list for InterfaceName_t.

EMI Execution Service specification 32 / 59

Table 3: Port-types and GLUE2 related open enumerations. A Capability with * means that the capability is
mandatory: must be present in all instances of that endpoint. Capabilities and InterfaceNames in bold are
newly defined in this document.

EMI-ES Port Type GLUE2 InterfaceName_t GLUE2 Capability_t

ActivityCreation org.ogf.glue.emies.activitycreation

executionmanagement.jobcreation*
executionmanagement.jobdescription*
data.access.sessiondir.<proto>
data.access.stageindir.<proto>
 data.access.stageoutdir.<proto>
data.transfer.cepull.<proto>
data.transfer.cepush.<proto>

ActivityManagement org.ogf.glue.emies.activitymanagement

executionmanagement.jobmanagement*
information.lookup.job*
data.access.sessiondir.<proto>
data.access.stageindir.<proto>
data.access.stageoutdir.<proto>
data.transfer.cepull.<proto>
data.transfer.cepush.<proto>

ResourceInfo org.ogf.glue.emies.resourceinfo
information.discovery.resource*
information.query.xpath1*
information.query.<language>

ActivityInfo org.ogf.glue.emies.activityinfo
information.discovery.job*
 information.lookup.job*

Delegation org.ogf.glue.emies.delegation security.delegation*

 8.1.2.6 Endpoint InterfaceVersion
The value of this optional element should contain the version of the EMI-ES Specification document (that is,
this document or other versions of this document) to which the implementation refers to.

 8.1.2.7 Endpoint WSDL
The value of this optional element should point to the URL of the WSDL document describing EMI-ES port-
type.

 8.1.2.8 Endpoint Semantics
The value of this optional element MAY be a URL to a location where this EMI-ES Specification document is
stored.

 8.1.2.9 Endpoint Implementor
The value of this optional element is the name of the organization developing and maintaining the EMI-ES
implementation.
Examples:

<Implementor>NorduGrid</Implementor>
<Implementor>gLite</Implementor>

 8.1.2.10 Endpoint Capability
The values for this multivalued mandatory element MUST be taken as shown in table 3 for all the EMI-ES
endpoints.
Please note the mandatory and non-mandatory values in the table.
The implementations should take care of publishing the values only if they are relevant, for example, a
data.transfer.cepull.<proto> should be published if and only if the server is capable of doing server pull
transfers. For the detailed definition of all capabilities refer to table 4.

EMI Execution Service specification 33 / 59

Table 4: GLUE2 EMI-ES Capabilities and their description.

Capability_t Description

data.access.sessiondir.<protocol> Capacity of providing access to the directory
(eventually on a worker node) where the job is
executed by means of <protocol>
<protocol> is one of: ftp, https, gridftp

data.access.stageindir.<protocol> Capacity of offering clients a place where to upload
data by means of <protocol>
<protocol> is one of: ftp, https, gridftp

data.access.stageoutdir.<protocol> Capacity of offering clients a place from where to
download output data by means of <protocol>
<protocol> is one of: ftp, https, gridftp

data.transfer.cepull.<protocol> Capacity of the Computing Element to fetch files
from remote network location.
<protocol> is one of: ftp, https, gridftp, srm

data.transfer.cepush.<protocol> Capacity of the Computing Element to upload files to
remote network location.
<protocol> is one of: ftp, https, gridftp, srm

executionmanagement.jobcreation Capacity of creating an activity or a set of activities

executionmanagement.jobmanagement Capacity of managing an activity or a set of activities
on a Computing Element

information.discovery.job Capacity of locating activities, possibly satisfying a
set of requirements

information.lookup.job Capacity of providing information about an activity or
a set of activities

information.query.<language> Capacity of answering information system queries
specified in a <language>
<language> can be one of:
xpath1 (for XPath v 1.0),
xpath2 (for XPath v 2.0),
xquery1 (for Xquery v 1.0),
custom (for custom queries)

 8.1.2.11 Endpoint URL
The element value as defined in the GLUE2 Specification is the network location of the endpoint to contact
the related service. The URL MUST contain all the necessary information to contact that endpoint.

 8.1.2.12 Endpoint ImplementationName and ImplementationVersion
The values of these mandatory elements should follow the agreement for product name and version;
ImplementationName should contain the product name and ImplementationVersion the product version.
Example:
ImplementationName: CREAM
ImplementationVersion: 1.14.0

 8.1.2.13 Endpoint Staging
The closed enumeration values of this mandatory element for an EMI-ES endpoint corresponds to the
following EMI-ES data-staging functionalities (see Section 1.3):

• none: the server MAY only provide support for client data push or client data pull
• stagingin: the server MUST provide server data pull
• stagingout: the server MUST provide server data push
• staginginout: the server MUST provide both server data pull and server data push

EMI Execution Service specification 34 / 59

 8.1.2.14 Endpoint JobDescription
The value of this multivalued mandatory element should contain at least the string emies:adl, a value that
identifies the EMI-ES Activity Description Language in GLUE2 context.
Example:

<JobDescription>emies:adl</JobDescription>
<JobDescription>nordugrid:xrsl</JobDescription>

 8.1.2.15 Endpoint OtherInfo
According to the common agreement among services constituting EMI [9] middleware this field MUST
contain strings “MiddlewareName=EMI” and “MiddlewareVersion=[EMI version]”. Here [EMI version] is
substituted with official EMI version of released middleware.
Example:

<OtherInfo>MiddlewareName=EMI</OtherInfo>
<OtherInfo>MiddlewareVersion=2.0.0_1</OtherInfo>

 8.1.2.16 AccessPolicy
This optional element represents rights to the endpoint based on the basic PolicyScheme.

 8.2 Activity information: the EMI-ES activity document
Activity information, that provides an elaborate description of activity properties, is available through the
ActivityInfo and ActivityManagement port types via the GetActivityInfo operation. Activities of EMI-ES are
modelled by the GLUE2 information model. In particular, the ComputingActivity element of the XML
rendering of the GLUE2 is used as the basis for the GetActivityInfo Response document.
The EMI-ES activity document includes all the GLUE2 ComputingActivity elements plus some EMI-ES
specific elements to form a deliberately flat structure.
See also section 13.4 which provides the detailed schema-level example of the activity information model
used within the GetActivityInfo operation.

 8.2.1 Structure of the EMI-ES activity document
The mandated structure follows a flat XML representation of all the activity attributes.
All the items in the following representation must be considered as XML tags; this representation is used for
ease of reading. The structure identifies the mandatory and optional elements.
<ActivityInfoDocument>
 <!-- Mandatory -->
 ID:
 State:
 IDFromEndpoint:
 Owner:

 <!-- Optional -->
 CreationTime:
 Validity:
 LocalIDFromManager
 JobDescription:
 RestartState:
 ExitCode:
 ComputingManagerExitCode:
 Error:
 WaitingPosition:
 UserDomain:
 LocalOwner:
 RequestedTotalWallTime:
 RequestedTotalCPUTime:
 RequestedSlots:
 RequestedApplicationEnvironment:

EMI Execution Service specification 35 / 59

 Sdtin:
 Stdout:
 StdErr:
 LogDir:
 ExecutionNode:
 Queue:
 UsedTotalWallTime:
 UsedTotalCPUTime:
 UsedMainMemory:
 SubmissionTime:
 ComputingManagerSubmissionTime:
 StartTime:
 ComputingManagerEndTime:
 EndTime:
 WorkingAreaEraseTime:
 ProxyExpirationTime:
 SubmissionHost:
 SubmissionClient:
 OtherMessages:
 StageInDirectory:
 StageOutDirectory:
 SessionDirectory:
 ComputingActivityHistory:
<ActivityInfoDocument>

 8.2.2 EMI-ES activity document attributes

 8.2.2.1 ID
This mandatory element is the universally unique ID of the activity document, as mandated in GLUE2: each
GLUE2 ID element MUST have a universally unique valid URI as a value; The IDs must not be interpreted
by the user or the system as having any meaning other than identifiers. In particular, there is no relationship
between an ID and a network endpoint. IDs MUST be persistent during the lifetime of the activity. The activity
document ID MAY be the same as the ActivityID (the one returned by the CreateActivity operation).

 8.2.2.2 State
This mandatory element values are taken from a special set of ComputingActivity_t strings with the syntax
mandated by GLUE2. Values are defined in this specification for both EMI-ES states and state attributes as
follows:

• For EMI-ES states, the state name is prefixed with the string “emies:” followed by the EMI-ES state
name.
Example: EMI-ES state processing-queued is represented as emies:processing-queued

• For EMI-ES state attributes, the state attribute name is prefixed with the string “emiesattr:” followed
by the EMI-ES state attribute name.
Example: EMI-ES state attribute client-stagein-possible is represented as emiesattr:client-stagein-
possible

In case of a state with multiple state attributes, all the state attributes MUST be published together with the
state. In addition to EMI-ES states, the state element of the activity document MAY contain also other
GLUE2 states belonging to different state models.
Example:

<State>emies:terminal</State>
<State>emiesattr:app-failure</State>
<State>emiesattr:processing-failure</State>
<State>nordugrid:failed</State>
<State>bes:terminated</State>

Several state attributes trigger the publication of other elements of the activity document:
StageInDirectory element MUST be published IF activity state includes client-stagein-possible state
attribute.
StageOutDirectory element Must be published IF activity state includes client-stageout-possible state
attribute.

EMI Execution Service specification 36 / 59

 8.2.2.3 IDFromEndpoint
This mandatory element value is a URI that SHOULD contain the EMI-ES activityID obtained from the
CreateActivity operation prepended with urn:idfe: to fit requirement for this element to be URI.

 8.2.2.4 Owner
This mandatory element value as defined in the GLUE2 model is a String containing the Grid identity of the
activitie's owner. It is RECOMMENDED that the Grid identity is specified as the subject name of client's
credentials presented during authentication process. If anonymity is requested, the reserved value
CONFIDENTIAL should be used.

 8.2.2.5 CreationTime
This optional element value contains the creation time of the activity document, and not of the activity.

 8.2.2.6 JobDescription
This optional element value as defined in GLUE2 model should be the activity description language used to
specify the activity request. Currently this value can only be set to emies:adl.

 8.2.2.7 StageInDirectory
This optional element is defined as part of the EMI-ES specification. If published, the value MUST contain a
URL which can be used by the client to stage in data as described in section 1.3. This element MUST be
published IF activity state includes client-stagein-possible state attribute.

 8.2.2.8 StageOutDirectory
This optional element is defined as part of the EMI-ES specification. If published, the value MUST contain a
URL which can be used by the client to stage out data as described in section 1.3. This element MUST be
published IF activity state includes client-stageout-possible state attribute.

 8.2.2.9 SessionDirectory
This optional element is defined as part of the EMI-ES specification. If published, the value MUST contain a
URL which can be used by the client to access activity execution directory as described in section 1.3.

 8.2.2.10 ComputingActivityHistory
This optional element is defined as part of the EMI-ES specification, represents historical record about
activity state changes and operation requests.

The state changes are represented by ActivityStatus elements which contain information about state with
attributes and timestamp representing when state was reached.

The operation requests are presented in Operation elements. Each element contains name of operation with
Timestamp when it was requested and either operation succeeded. Operations names are implementation
specific and represent internal activity management flow inside service. Names MUST be composed of
lowercase ASCII symbols.

Below is an example of such history records.

<ComputingActivityHistory>
 <ActivityStatus>
 <State>accepted</State>
 <Timestamp>2012-07-13T09:20:43.000+02:00</Timestamp>
 </ActivityStatus>
 <ActivityStatus>
 <State>preprocessing</State>
 <Timestamp>2012-07-13T09:20:43.000+02:00</Timestamp>
 </ActivityStatus>
 <ActivityStatus>
 <State>processing-accepting</State>
 <Timestamp>2012-07-13T09:20:43.000+02:00</Timestamp>
 </ActivityStatus>
 <Operation>
 <RequestedOperation>create_activity</RequestedOperation>
 <Timestamp>2012-07-13T09:20:42.000+02:00</Timestamp>

EMI Execution Service specification 37 / 59

 <Success>true</Success>
 </Operation>
 <Operation>
 <RequestedOperation>start_activity</RequestedOperation>
 <Timestamp>2012-07-13T09:20:47.000+02:00</Timestamp>
 <Success>true</Success>
 </Operation>
</ComputingActivityHistory>

 9 Activity description: request for activity creation
 This section defines the activity description, an XML document that serves as a request description for
creating activities on an execution service.

There are several possible use cases of activity description instances:
a) for describing an activity to a end-user client
b) for controlling resource selection (matchmaking) by a client or a brokering service
c) to pass activity parameters to the execution service (what to run, data staging, environment info)

All of these cases have different semantics and may require additional elements.
Therefore, this specification defines the activity description for direct consumption by the execution service
(case c). Additional information and structures to be used for match making can be added, but will be
ignored by the execution service. Activity description instances for clients/brokers are at different level, and
outside the scope of this specification.

Since the execution service interface is a web-service interface, the activity description rendering is in XML.
Its normative XML schema is defined as part of the web service WSDL and XML schema.

 9.1 Processing of the activity description by the execution service
The execution service uses the activity description to generate a set of steps (for example, encoded into an
executable script) that is then processed by the underlying resource management and/or operating system.
The exact script is of course implementation specific, but the following tasks will typically be performed by
the execution services:

• adding resource information to be processed by the batch system (e.g. how many CPUs should be
allocated)

• adding server data pull (stage in), for example using GridFTP or other data transfer tools
• setting environment variables, including those contained in the activity description
• generating the main command line from the requested runtime and parallel environments, and the

user-specified executable and arguments
• generating the main command line from the executable and arguments contained in the activity

description
• generating code to process the user job's exit code
• adding server data push (stage out)

Since the activity description contains several abstractions, for example the Software, RuntimeEnvironment
or ParallelEnvironment, this concretization is a mandatory step.

 9.2 Optional elements of the submitted activity description
The following section defines the individual XML elements that make up a activity description instance. The
importance of elements varies, and the following criticality levels can be defined:
“critical”: it is hard requirement. The service MUST provide this feature, satisfy the requirement otherwise
the activity must be rejected (during the validation phase)

EMI Execution Service specification 38 / 59

“non-critical”: it is a soft requirement, which the service SHOULD honour. However, the activity still MUST be
run at a service even if the service is not capable satisfying the requirement.
As an example, one could consider user notifications on state changes. Notifications by SMS may be
considered “nice to have”, while notification by email might be mandatory.
The default level is: “critical”, meaning an element MUST be honoured by the service.
The implementation of the criticality level is by using an XML attribute called “optional”, with the values “true“
and “false”. If not set, it is interpreted as “false”, and the XML element is assumed to be critical.
Elements supporting this feature are marked “OPT-IN” in the following sections.

 9.3 EMI ActivityDescription language
This section defines the individual elements that can be used to compose activity descriptions.

 9.3.1 High-level structure
An activity description is composed of four major blocks, each described in details in the following sections.
<ActivityDescription>
 <ActivityIdentification... />?
 <Application .../>?
 <Resources .../>?
 <DataStaging .../>?
</ActivityDescription>

 9.3.2 Types
In addition to the basic types such as string, integer, dateTime and URI, the activity description utilizes the
following types:

 9.3.2.1 ExecutableType
This complex element denotes an executable having path and optional argument subelements. An optional
attribute failIfExitCodeNotEqualTo allows to specify that the Execution Service should treat the job as failed
if the exit code is not equal to the specified value. Typically, this value will be set to “0” to indicate that exit
code of zero indicates successful execution. By default, the Execution Service MUST NOT check the exit
code of the user application to decide whether to continue processing.

• path: the path to the executable, relative to the session directory. Multiplicity is one.
• argument: optional subelements specifying the arguments, multiplicity is zero or more.
• failIfExitCodeNotEqualTo: optional integer-valued attribute

 9.3.2.2 SoftwareRequirement
The SoftwareRequirement structure provides the general envelope to express logical relation of Software
requests.
The SoftwareRequirement element specifies the software requirements of a job. It MAY contain multiple
Software elements. This element MAY contain a Boolean that specifies that all OR one of its child elements
has to be satisfied. The multiplicity of this element is zero or more. There is no default value of this element.

 9.3.2.3 Software
The Software is a triplet of strings. The multiplicity is zero or more. There is no default value of this element.
The structure is composed of Family, Name and Version string elements.

 9.3.2.4 BenchmarkType
The benchmark type is composed of the name of the benchmark as defined by GLUE2 and the non-negative
integer benchmark value.
The benchmark name is an open enumeration with values of the GLUE2 Benchmark_t type:

• bogomips
• cfp2006
• cint2006
• linpack

EMI Execution Service specification 39 / 59

• specfp2000
• specint2000

 9.3.3 ActivityIdentification
The main goal of this element is to name the activity and define its type and identify the activity in general.
The multiplicity of this element is zero or one.

 9.3.3.1 Name
This optional string element MAY be specified by a user to name the activity. It may not be unique to a
particular activity description, which means that a user MAY specify the same ActivityName for multiple
activity descriptions. Some project defines their own format for the ActivityName in order to categorize and
explicitly define the particular version of activity they run. However the recommended way to attach user
specified categories to the activity is to use ActivityAnnotation element.
This element has no default value. The multiplicity of this element is zero or one.

 9.3.3.2 Description
This optional longer string element may contain a longer textual description of the activity. This element has
no default value. The multiplicity of this element is zero or one.

 9.3.3.3 Type
This optional element provides a classification of the activity in compliance with GLUE2. The default value
of this element is single. The multiplicity of this element is zero or one. The type of this element is an
enumeration with the following elements:

• collectionelement: an activity submitted as part of a collection of individual activities which do not
• communicate among them,
• parallelelement: an activity submitted as part of a collection of individual activities which

communicate among them,
• single: an individual stand-alone activity,
• workflownode: an activity submitted as part of a workflow.

 9.3.3.4 Annotation
This optional string-valued element is for human readable comments, tags for free grouping or identifying
different activities. This element has no default value. The multiplicity of this element is zero or more.

 9.3.4 Application
The main goal of this block is to explicitly describe the executed application and its software environment.
This activity description block is mandatory and its multiplicity is one.

 9.3.4.1 Executable
This optional element of type ExecutableType is specifying the main executable of the job. Multiplicity is
zero or one. If no executable is specified, it is assumed that the selected runtime environment provides an
executable.

 9.3.4.2 Input
This optional element is a string specifying the input (Standard Input) for the Executable. The Input element
is a filename which should be relative to the session directory of the job. There is no default value of this
element. The multiplicity is zero or one.

 9.3.4.3 Output
This optional element is a string specifying the output (Standard Output) for the Executable. The Output
element is a filename which should be relative to the session directory of the job. There is no default value
of this element.. The multiplicity is zero or one.

 9.3.4.4 Error
This optional element is a string specifying the error output (Standard Error) for the Executable. The Error
element is a filename which should be relative to the session directory of the job. There is no default value

EMI Execution Service specification 40 / 59

of this element. The multiplicity is zero or one.

 9.3.4.5 Environment
This optional element specifies the operating system environment variables which should be defined at the
execution service in the execution environment of the job. It consists of a Name Value pair of strings. The
multiplicity of this element is zero or more with strict ordering. There is no default value of this element.
Name
This mandatory string element defines the name of the environment variable. Multiplicity is one. There is no
default value of this element.
Value
This mandatory string element defined the value of the environment variable. Multiplicity is one. There is no
default value of this element. It is not recommended to use system specific notion, macro etc as a value of
this element.

 9.3.4.6 PreExecutable
This optional element of type ExecutableType specifies an command that should be executed before
invoking the user's application. Multiplicity is zero or more.

 9.3.4.7 PostExecutable
This optional element of type ExecutableType specifies an command that should be executed after invoking
the user's application. Multiplicity is zero or more.

 9.3.4.8 RemoteLogging
The optional elements specifies a logging service to send reports about activity. There is no default value of
this element. Multiplicity is zero or more. In case of multiple elements computing service MUST try to send
reports to all specified logging services. It is not a failure if communication fails. It is up to a user to make
sure the requested logging service accepts reports from the set of computing service he or she intends to
use.
The content of this element and information sent may be very specific to type of logging service. So we only
define minimal set of information. One example is the OGSA Resource Usage Service (RUS) [7] which
accepts Usage Records (UR) [8].

OPT-IN

 9.3.4.8.1 ServiceType

This mandatory string element specifies the type of logging service.

 9.3.4.8.2 URL

If applicable this optional element specifies the endpoint at which the service may be contacted.

 9.3.4.9 ExpirationTime
The element is optional and specifies the date and time after which the processing of the activity MUST be
cancelled. The activities not completed before the expiration time – if defined - MUST be cancelled by the
service. Multiplicity is zero or one. There is no default value of this element.
OPT-IN.

 9.3.4.10 WipeTime
The requested duration the activity MUST stay in the terminal phase before it MAY be wiped by the service.
There is no default value of this element. Multiplicity is zero or one.
OPT-IN.

 9.3.4.11 Notification
This optional element defines the request in custom format for notifications on activity state change.
Multiplicity is zero or more. There is no default value of this element. The service advertises its notification
capabilities
OPT-IN.

EMI Execution Service specification 41 / 59

 9.3.4.11.1 Protocol

This mandatory element specifies the protocol to be used for notification. Multiplicity is one. The initial list of
protocol is “email”. (TBD: others, e.g. “ws-notification”). This field will be used for validating whether the
execution service has the required capability.

 9.3.4.11.2 OnState

This optional element denotes the state which should trigger the notification. This can be one of the valid
primary states of the activity (accepted, etc). The default value of this element is “terminal”, i.e. by default,
notifications will be sent when the activity enters a terminal state. Multiplicity is zero or more.

 9.3.4.11.3 Recipient

The string-valued address to send notifications to, e.g. “user@domain.org”. Multiplicity is one or more.

 9.3.5 Resources
The optional complex resource element describe the resource requirements of the job. Multiplicity is zero or
one.

 9.3.5.1 OperatingSystem
This optional complex element specifies the operating system required for the user job. Its type is
SoftwareRequirement. Multiplicity is zero or more, where multiple values are interpreted as giving
alternatives (i.e. “OR” semantics are implied). There is no default value of this element.
In case of OperatingSystem the Family element of the Software structure embedded in the
SoftwareRequirement is open enumeration with values of the GLUE2 OSFamily_t type:

• linux: Family of operating systems based on Linux kernel
• macosx: Family of operating systems based on MacOS X
• solaris: Family of operating systems based on Solaris
• windows: Family of operating systems based on Windows
• aix: AIX
• centos: CentOS
• debian: Debian
• fedoracore: RedHat Fedora
• gentoo: Gentoo Linux
• leopard: Mac OS X 10.5 (Leopard)
• linux-rocks:
• mandrake: Mandrake
• redhatenterpriseas: RedHat Enterprise Server
• scientificlinux: Scientific Linux
• scientificlinuxcern: Scientific Linux CERN
• suse: SUSE
• ubuntu: Ubuntu
• windowsvista: Microsoft Windows Vista
• windowsxp: Microsoft Windows XP

In case of OperatingSystem the Name element of the Software structure embedded in the
SoftwareRequirement is open enumeration with values of the GLUE2 OSName_t type:

• aix: AIX
• centos: CentOS
• debian: Debian
• fedoracore: RedHat Fedora
• gentoo: Gentoo Linux
• leopard: Mac OS X 10.5 (Leopard)
• linux-rocks:
• mandrake: Mandrake
• redhatenterpriseas: RedHat Enterprise Server
• scientificlinux: Scientific Linux
• scientificlinuxcern: Scientific Linux CERN
• slackware: Slackware Linux
• suse: SUSE

EMI Execution Service specification 42 / 59

mailto://user@domain.org

• ubuntu: Ubuntu
• windowsvista: Microsoft Windows Vista
• windowsxp: Microsoft Windows XP

 9.3.5.2 Platform
Optional element specifies the platform architecture required for the user job. Multiplicity is zero or one.
There is no default value of this element. Its is an open enumeration with a values of the GLUE2 Platform_t
type:

• amd64: AMD 64bit architecture
• i386: Intel 386 architecture
• itanium: Intel 64-bit architecture
• powerpc: PowerPC architecture
• sparc: SPARC architecture

 9.3.5.2.1 Coprocessor

This is an open enumeration that specifies the type of coprocessing unit that is available.
• CUDA: Compute Unified Device Architecture, a parallel computing architecture developed by NVIDIA
• FPGA: Field programmable gate array

OPT-IN.

 9.3.5.3 NetworkInfo
This optional element specifies the type of the interconnect, the internal network connection available inside
the computing element. Multiplicity is zero or one. There is no default value of this element. Multiplicity is
zero or one. Its is an open enumeration with the values of GLUE2 NetworkInfo_t type:

• 100megabitethernet: Network based on 100 MBit/s Ethernet technology
• gigabitethernet: Network based on 1 GBit/s Ethernet technology
• 10gigabitethernet: Network based on 10 GBit/s Ethernet technology
• infiniband: Network based on Infiniband technology
• myrinet: Network based Myrinet technology

OPT-IN

 9.3.5.4 NodeAccess
The optional element defines the required connectivity of the executation node. Multiplicity is zero or one. If
it is not defined, then network connection is not required for the user job. It is an enumeration with the
following values:

• inbound: inbound network is required for the user job
• outbound: outbound network is required for the user job
• inoutbound: both directions are required for the user job

 9.3.5.5 IndividualPhysicalMemory
This optional element is a integer value specifying the amount of physical memory required to be available
on every node of the computing element used by (a multi slot) job. The amount is given in bytes. Multiplicity
is zero or one.

 9.3.5.6 IndividualVirtualMemory
This optional element is a integer range value specifying the amount of virtual memory required to be
available on every node of the computing element used by (a multi slot) job. The amount is given in bytes.
Multiplicity is zero or one.

 9.3.5.7 DiskSpaceRequirement
This optional integer element specifies the total required disk space of the job in bytes.

 9.3.5.8 RemoteSessionAccess
A boolean to request remote access to the session directory. Multiplicity is zero or one. If it is not defined that
the user not interested to access session directory remotely (default is false).

EMI Execution Service specification 43 / 59

 9.3.5.9 SlotRequirement
This optional complex element specify the requested count of slots and its distribution for multi-slot jobs.
Multiplicity is zero or one.

 9.3.5.9.1 NumberOfSlots

This mandatory integer range element specifies the total number of slots to allocate on the batch system.
The term “Slot” is used to denote a logical CPU visible to and allocatable by the resource management
system. It may correspond to a physical CPU, a physical CPU core or a virtual CPU or core, depending on
the hardware capabilities. Multiplicity is one.

 9.3.5.9.2 SlotsPerHost

This optional integer element specifies the number of slots to be allocated on each single host.
An optional attribute “useNumberOfSlots” can be set to “true” to indicate that the value of the NumberOfSlots
element should be used. In this case the value of the SlotsPerHost element MAY be left empty, and if it is
given anyway, it MUST be ignored by the execution service.

 9.3.5.9.3 ExclusiveExecution

This optional boolean element specifies whether a host should be allocated for exclusive use by the user job.
Each site has a default value for this, which should be advertised through GLUE2.

 9.3.5.10 QueueName
This optional string element defines the name of the preferred queue. Multiplicity is zero or one. There is no
default value of this element.

 9.3.5.11 IndividualCPUTime
This optional element specifies the number of CPU seconds requested for each slot of the user job. There is
no default value of this element. Multiplicity is zero or one.

 9.3.5.12 TotalCPUTime
This optional element specifies the total number of CPU seconds requested for the user job. It is the sum of
the times requested for each individual slot. There is no default value of this element. Multiplicity is zero or
one.

 9.3.5.13 WallTime
This optional element is the wall clock time requested for the user job, from the start of the first process until
the completion of the last process. Multiplicity is zero or one.

 9.3.5.14 Benchmark
This optional element of type BenchmarkType specifies a required minimum benchmark value (as
performance indicator). The multiplicity is zero or one.
OPT-IN.

 9.3.5.15 RuntimeEnvironment
This optional SoftwareRequirement element defines the runtime environment required by the user job.
Multiplicity is zero or more. There is no default value of this element.

A runtime environment MAY provide a default executable for the job, i.e. the end-user need not specify an
executable, but may rely on the default one for the given runtime environment.

The available runtime environments MUST be advertised in the services's description via GLUE2.

OPT-IN.

 9.3.5.15.1 Name

The mandatory name of the runtime environment.

EMI Execution Service specification 44 / 59

 9.3.5.15.2 Version

The optional version of the runtime environment.

 9.3.5.15.3 Option

This optional element specifies an option that should be enabled in the selected runtime environment. For
example, it can be used to enable debugging or verbose mode. Multiplicity is zero or more.

 9.3.5.16 ParallelEnvironment
The parallel environment is used to specify the execution environment for parallel jobs. Multiplicity is zero
or one.
If a ParallelEnvironment element is present, the execution service MUST create the correct invocation for
the requested parallel environment. The execution service MAY also add environment variables and path
settings as appropriate.
The parallel environments available at an execution service MUST be advertised through the GLUE2
description of the execution service using ApplicationEnvironment element.

 9.3.5.16.1 Type

This optional element defines the type of multi-slot application. There is no default value of this element. It is
string valued, with the following initial set of values taken from the SPMD extension [4] for the JSDL

• MPI: Any MPI environment
• GridMPI:The GridMPI environment
• IntelMPI:The Intel MPI environment
• LAM-MPI:The LAM/MPI environment
• MPICH1:The MPICH version 1 environment
• MPICH2: The MPICH version 2 environment
• MPICH-GM: The MPICH-GM environment
• MPICH-MX: The MPICH-MX environment
• MVAPICH: The MVAPICH (MPI-1) environment
• MVAPICH2: The MVAPICH2 (MPI-2) environment
• OpenMPI: The Open MPI environment
• POE: The POE (IBM MPI) environment
• PVM: A Parallel Virtual Machine environment

Other values are possible.

 9.3.5.16.2 Version

The optional version of the parallel environment.

 9.3.5.16.3 ProcessesPerHost

This optional integer element specifies the number of instances of the executable that the consuming
system MUST start on each allocated host. Multiplicity is zero or one. Default value is “1”.
An optional flag "useSlotsPerHost" allows to indicate that the value of "SlotsPerHost" should be used.

 9.3.5.16.4 ThreadsPerProcesses

This optional integer element specifies the number of threads per process (i.e., per instance of the
executable). There is no default value of this element. Multiplicity is zero or one.
An optional flag "useSlotsPerHost" allows to indicate that the value of "SlotsPerHost" should be used.

 9.3.5.16.5 Option

This optional element is a string valued name/value pair allowing to specify additional options to the parallel
environment. This allowed names and values depend on the type of environment. Exact set of allowed
options is advertised through the GLUE2 description of the execution service.

EMI Execution Service specification 45 / 59

 9.3.6 DataStaging
Data staging is an optional complex element which describes all the files that should be transferred to the
computing element (stage in) and the files that should be transfered from the computing element (stage
out). The data movement can be performed by both the client and execution service. Multiplicity is zero or
one. There is no default value of this element.

 9.3.6.1 ClientDataPush
This optional boolean element indicates that the client wishes to push data to the service under control of the
client. If this element is present with the value “true”, the execution service MUST allow client access to the
stage-in directory and MUST wait for the end of client data push indicated by a call to NotifyService, as
detailed in section 1.3. If the file path in a file transfer request from the client includes hierarchy in respect to
stage-in directory all intermediate directories MUST be created automatically.
If the element is not present, or has the value “false”, the execution service is not obliged to provide stage-in
directory access for the client and will not wait for a call to NotifyService before moving the activity to the
PROCESSING phase (also see Source element below).

 9.3.6.2 InputFile
InputFile is an optional complex element which describes a file that should be transferred to the computing
element (stage-in) and later made available in session directory. Multiplicity is zero or more.
Note: service MAY choose to provide access to input file in session directory using way other than ordinary
copying. For example, an implementation might choose to cache input files and provide them to the job via a
file system link). Hence the job should not expect any access to specified file other than read-only.

 9.3.6.2.1 Name

This mandatory string element defines the name of the staging object on the execution service. The name is
given as a relative path to the session directory.
Multiplicity is one.

 9.3.6.2.2 Source

This optional complex element specifies the source location of the stage in data transfer of a file. Multiplicity
is zero or more. In case of multiple sources it is up to the computing service implementation how utilize them.
All Sources are treated as binary identical. The ordering of the Source sub-elements is not significant. All
files to be transferred via server data pull (transfer initiated by the service) MUST be specified and MUST
contain Source element.
If no Source sub-element is provided this means that the file will be staged by the client into the stage-in
directory (client data push).
The files to be transferred via client data push (i.e. that will be uploaded on the stage-in directory by the
client) MAY be specified (it is not mandatory).

 9.3.6.2.2.1 URI

This mandatory URI element defines the source location of the file. It is up to a user to make sure the
computing service or the client is able communicate to the given data source.
Multiplicity is one.

 9.3.6.2.2.2 Option

This optional key/value pair can be used to convey additional parameters needed for the transfer. Multiplicity
is zero or more.

 9.3.6.2.2.3 DelegationId

This string attribute specifies the delegationId to be used for the transfer of this file. It is mandatory only if the
protocol expressed in the URI element requires it.
There is no default value.

EMI Execution Service specification 46 / 59

 9.3.6.2.3 IsExecutable

This optional boolean element specify whether the executable flag has to be put on the file or not. Multiplicity
is zero or one. The default value is false.

 9.3.6.3 OutputFile
OutputFile is an optional complex element which describes a file that should be transferred from the
computing element (stage-out). Multiplicity is zero or more.

All files for both client data pull (i.e. the ones that will be downloaded from the client from the stage-out
directory) and server data push must be declared.

 9.3.6.3.1 Name

This mandatory string element defines the name of the staging object on the execution service. Multiplicity is
one. The name is given as a relative path to the session directory.

 9.3.6.3.2 Target

This optional complex element specifies the target location of the stage out data transfer of a file. Multiplicity
is zero or more. There is no default value of this element. The ordering of the Target sub-elements is not
significant.
In case of multiple targets the execution service MUST upload the file to all the mandatory targets (see
below) or at least one of the targets in case there was no mandatory element defined. In case of both
mandatory and non-mandatory Target elements present non-mandatory elements are used only if all
mandatory failed. If staging file to any of Target elements failed it is treated as having no Target elements
(see below).
To inform the service that the file has to be copied in the stage-out directory for client data pull, there MUST
NOT be a Target element. In that case file MUST be provided in stage-out directory under the specified
name.

 9.3.6.3.2.1 URI

This mandatory URI element defines the target location of the file, and refers to a remote location (server
data push). It is up to a user to make sure the computing service or the client is able communicate to the
given data target. Multiplicity is one.

 9.3.6.3.2.2 Option

This optional key/value pair can be used to convey additional parameters needed for the transfer. Multiplicity
is zero or more.

 9.3.6.3.2.3 DelegationId

This string attribute specifies the delegationId to be used for the transfer of this file. It is mandatory only if the
protocol expressed in the URI element requires it. There is no default value.

 9.3.6.3.2.4 Mandatory

This optional boolean attribute defines if the given Target must be used during the stage out data transfer or
not. There is no default value of this element.

 9.3.6.3.2.5 CreationFlag

This optional flag allows to choose whether existing files should be overwritten or appended to, or whether
an error should occur if the file already exists. It can take the values “Overwrite”, “Append”, or
“DontOverwrite”. Default is “Overwrite”.

 9.3.6.3.2.6 UseIfFailure

This optional element defines if the specified Target element is to be used if activity failed in previous states.
Default value is false.

EMI Execution Service specification 47 / 59

 9.3.6.3.2.7 UseIfCancel

This optional element defines if the specified Target element is to be used if activity was cancelled by client
request in previous states. Default value is false.

 9.3.6.3.2.8 UseIfSuccess

This optional element defines if the specified Target element is to be used if activity reached
POSTPROCESSING phase without failures. Default value is true.

Note: if all default values of UseIf* elements are applied in case of failure or cancelation of the activity, the
OutputFile is treated as stageable by client.

 10 Security Considerations

Security setup is extremely important in the context of the execution service. So although the details of
security setup are out of scope for this document, in this section some considerations are provided. Those
are not required for implementing the Execution Service but rather reflect expectations the authors had of
typical set-ups.

 10.1 Authentication and Authorization
Access to the execution service should be authenticated, and the authenticated user should posses the
appropriate rights to execute activities. However, the precise mechanisms are out of scope of this
specification.

 10.2 Security bootstrapping information
In order to be able to communicate to the service, a client needs to know the security setup of the service. If
information about the service is provided by the service itself, the so-called 'chicken-and-egg' problem of
initially contacting a resource is present. We assume that either some generic information service is queried
prior to contacting the EMI Execution Service or the ES itself accepts such queries using a well defined
minimal security setup.
In any case, a suitable GLUE2 instance with service capabilities that provide security information about the
Execution Service with TLS communication setup might be as follows:
<Capability>security.authentication.emi.ssl</Capability>

 10.3 Delegation for Data-Staging
Describing all possible delegation mechanisms is out of scope for this specification. This specification only
covers one of the possible scenarios (i.e. X.509 proxy delegation) through the adoption of a dedicated
delegation portType (see section 6) and a way to use the provided delegation tokens for performing data-
stagings as requested in the activity description document. Common examples are GridFTP transfers and
SRM access as part of a computational activity.
Furthermore, the concrete delegation interface and mechanism covered in this specification is intended as a
temporary solution, since other groups within EMI are in the progress of defining an EMI-wide mechanism
for delegation, which eventually will be used also by the Execution Service.

EMI Execution Service specification 48 / 59

 11 Outlook and list of deferred issues

This appendix lists a number of items that were considered out of scope for the first version of the EMI ES
specification, but are of considerable interest for an updated version.

Delegation:
• support credential service (similar to MyProxy)

Activity Management
• more options for filtering in ListActivities

Data staging:
• support file sets
• In order to inform users about the progress of data staging, the activity information SHOULD include

a progress value (in percent from 0-99) that indicates how much of the processing in the present
state has been already completed. Implementations are free in how they calculate the progress.

Activity Description:
• allow to specify activities and their priorities (QoS attributes)
• “scalable time”, i.e. specification of requested time values in relation to some benchmark value.

Information:

• ComputingActivityProgress – contains percentage of activity completeness. Exact mapping of
presented value to activity state is not defined and number is provided for reference only. This
element is optional.

• AccessPolicy – possible values are undefined. This needs a separate agreement.

Activity Information:

• EMI-ES GLUE2 XML rendering is currently based on an XSD schema that features a hierarchical
representation of GLUE2 objects. The GLUE2 Working Group is currently working on a non-
hierarchical XSD schema that represent the model objects as a flat list. The EMI-ES specification
may be eventually updated in future to be compliant with the GLUE2 Group recommendations
regarding the Resource and Activity Documents.

 12 References

[1] Strawman of the AGU Execution Service: Functionality Description,
http://forge.gridforum.org/sf/go/doc 15736

[2] Job Submission Description Language (JSDL) Specification, Version 1.0
http:// www.gridforum.org/documents/ GFD . 136 .pdf

[3] GLUE Specification v. 2.0,
http:// www.gridforum.org/documents/ GFD . 147 .pdf

[4] JSDL SPMD Application Extension, Version 1.0,
http:// www.gridforum.org/documents/ GFD . 115 .pdf

[5] GLUE2 ServiceType_t unofficial list,
https://docs.google.com/spreadsheet/ccc?key=0An1CLx-
Ye4OFdDkxWmxjNkZkS0xrc0tLRk94N2dmcnc#gid=1

[6] GridSite. Grid Security for the Web. Web platforms for Grids,
http://www.gridsite.org/

[7] OGSA Resource Usage Service (RUS),

EMI Execution Service specification 49 / 59

http://www.gridsite.org/
https://docs.google.com/spreadsheet/ccc?key=0An1CLx-Ye4OFdDkxWmxjNkZkS0xrc0tLRk94N2dmcnc#gid=1
https://docs.google.com/spreadsheet/ccc?key=0An1CLx-Ye4OFdDkxWmxjNkZkS0xrc0tLRk94N2dmcnc#gid=1
http://www.gridforum.org/documents/GFD.115.pdf
http://www.gridforum.org/documents/GFD.115.pdf
http://www.gridforum.org/documents/GFD.115.pdf
http://www.gridforum.org/documents/GFD.115.pdf
http://www.gridforum.org/documents/GFD.115.pdf
http://www.gridforum.org/documents/GFD.115.pdf
http://www.gridforum.org/documents/GFD.147.pdf
http://www.gridforum.org/documents/GFD.147.pdf
http://www.gridforum.org/documents/GFD.147.pdf
http://www.gridforum.org/documents/GFD.147.pdf
http://www.gridforum.org/documents/GFD.147.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://forge.gridforum.org/sf/go/doc15736
http://forge.gridforum.org/sf/go/doc15736

https://forge.gridforum.org/sf/projects/rus-wg

[8] Usage Record (UR),
http://www.ogf.org/documents/GFD.98.pdf

[9] European Middleware Initiative (EMI),
http://www.eu-emi.eu

 13 Appendices

 13.1 Appendix A: ES WSDL

The WSDL files and related schema files are available from
https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService

 13.2 Appendix B: EMI activity description schema
The XML schema for the activity description is available from the EMI Wiki page
https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService

 13.3 Appendix C: EMI Activity description examples

 13.3.1 Parallel application example

Simple execution using a runtime environment “DEBUG” and a parallel environment “OpenMPI”. The client
pushes an input file in, the service will download a data file. The output file is staged out.
<ActivityDescription xmlns="http://www.eu-emi.eu/es/2010/12/adl">
 <ActivityIdentification>
 <Name>test job</Name>
 <Description>A test job showing the features of EMI-ES</Description>
 <Type>single</Type>
 <Annotation>test</Annotation>
 </ActivityIdentification>
 <Application>
 <Executable>
 <Path>./a.out</Path>
 <Argument>my_datafile</Argument>
 <FailIfExitCodeNotEqualTo>0</FailIfExitCodeNotEqualTo>
 </Executable>
 <RemoteLogging optional="true">
 <URL>log://globallogger</URL>
 </RemoteLogging>
 <RemoteLogging optional="false">
 <URL>log://locallogger</URL>
 </RemoteLogging>
 <Notification>
 <Protocol>email</Protocol>
 <Recipient>user@site.org</Recipient>
 <OnState>postprocessng</OnState>
 <OnState>terminal</OnState>
 </Notification>

EMI Execution Service specification 50 / 59

https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService
https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService
https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService
https://forge.gridforum.org/sf/projects/rus-wg

 </Application>
 <Resources>
 <RuntimeEnvironment>
 <Name>DEBUG</Name>
 </RuntimeEnvironment>
 <ParallelEnvironment>
 <Type>OpenMPI</Type>
 <ProcessesPerSlot>1</ProcessesPerSlot>
 </ParallelEnvironment>
 <Coprocessor optional="true">CUDA</Coprocessor>
 <NetworkInfo>gigabitethernet</NetworkInfo>
 <SlotRequirement>
 <NumberOfSlots>128</NumberOfSlots>
 <SlotsPerHost>32</SlotsPerHost>
 <ExclusiveExecution>true</ExclusiveExecution>
 </SlotRequirement>
 </Resources>
 <DataStaging>
 <InputFile>
 <Name>my_datafile</Name>
 </InputFile>
 <InputFile>
 <Name>data</Name>
 <Source>
 <URI>http://dataserver.com/user/files/inputdata</URI>
 </Source>
 </InputFile>
 <OutputFile>
 <Name>output_data</Name>
 <Target>
 <URI>http://dataserver.com/user/files/outfile</URI>
 </Target>
 </OutputFile>
 </DataStaging>
</ActivityDescription>

 13.4 Appendix D: Resource description example
This section presents an example resource description returned by the GetResourceInfo operation specified
in section 3.1.

<ComputingService
 xmlns= "http://schemas.ogf.org/glue/2009/03/spec_2.0_r1"
 BaseType="Service" CreationTime="2012-10-03T15:25: 18Z" Validity="60">
 <ID>urn:ogf:ComputingService:host:id</ID>
 <Name>host</Name>
 <Capability>executionmanagement.jobdescription</Capability>
 <Capability>information.discovery.resource</Capability>
 <Capability>security.delegation</Capability>
 <Capability>executionmanagement.jobexecution</Capability>
 <Capability>executionmanagement.jobcreation</Capability>
 <Capability>information.discovery.job</Capability>
 <Capability>information.lookup.job</Capability>
 <Capability>executionmanagement.jobmanagement</Capability>
 <Capability>information.query.xpath1</Capability>
 <Type>org.nordugrid.execution.arex</Type>
 <QualityLevel>pre-production</QualityLevel>
 <Complexity>endpoint=10,share=1,resource=1</Complexity>
 <Location>
 <ID>urn:ogf:Location:host:ComputingService:id</ID>

EMI Execution Service specification 51 / 59

http://schemas.ogf.org/glue/2009/03/spec_2.0_r1

 <PostCode>NNNNNN</PostCode>
 </Location>
 <Contact>
 <ID>urn:ogf:Contact:host:ComputingService:id:con0</ID>
 <Name>admin</Name>
 <Detail>mailto:admin@domain</Detail>
 <Type>usersupport</Type>
 </Contact>
 <TotalJobs>0</TotalJobs>
 <RunningJobs>0</RunningJobs>
 <WaitingJobs>0</WaitingJobs>
 <StagingJobs>0</StagingJobs>
 <SuspendedJobs>0</SuspendedJobs>
 <PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
 <ComputingEndpoint BaseType="Endpoint" CreationTime="2012-10-03T15:25:18Z"
Validity="60">
 <ID>urn:ogf:ComputingEndpoint:host:emies:https://host:443/id:ac</ID>
 <Name>ARC CE EMI-ES ActivityCreation Port Type</Name>
 <URL>https://host:443/id</URL>
 <Capability>executionmanagement.jobcreation</Capability>
 <Capability>executionmanagement.jobdescription</Capability>
 <Technology>webservice</Technology>
 <InterfaceName>org.ogf.glue.emies.activitycreation</InterfaceName>
 <InterfaceVersion>1.15</InterfaceVersion>
 <WSDL>https://twiki.cern.ch/twiki/pub/EMI/EmiExecutionService/</WSDL>

<Semantics>https://twiki.cern.ch/twiki/pub/EMI/EmiExecutionService/</Semantics>
 <Implementor>NorduGrid</Implementor>
 <ImplementationName>ARC CE</ImplementationName>
 <ImplementationVersion>trunk</ImplementationVersion>
 <QualityLevel>development</QualityLevel>
 <HealthState>ok</HealthState>
 <ServingState>production</ServingState>
 <IssuerCA>/O=Grid/O=Test/CN=CA</IssuerCA>
 <TrustedCA>/O=Grid/O=Test/CN=CA</TrustedCA>
 <AccessPolicy BaseType="Policy">
 <ID>urn:ogf:AccessPolicy:host:basic</ID>
 <Scheme>basic</Scheme>
 <Rule>developer.nordugrid.org</Rule>
 </AccessPolicy>
 <Staging>staginginout</Staging>
 <JobDescription>emies:adl</JobDescription>
 <TotalJobs>0</TotalJobs>
 <RunningJobs>0</RunningJobs>
 <WaitingJobs>0</WaitingJobs>
 <StagingJobs>0</StagingJobs>
 <SuspendedJobs>0</SuspendedJobs>
 <PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
 <Associations>
 <ComputingShareID>urn:ogf:ComputingShare:host:fork</ComputingShareID>
 </Associations>
 </ComputingEndpoint>
 <ComputingEndpoint BaseType="Endpoint" CreationTime="2012-10-03T15:25:18Z"
Validity="60">
 <ID>urn:ogf:ComputingEndpoint:host:emies:https://host:443/id:am</ID>
 <Name>ARC CE EMI-ES ActivityManagement Port Type</Name>
 <URL>https://host:443/id</URL>
 <Capability>executionmanagement.jobmanagement</Capability>
 <Capability>information.lookup.job</Capability>
 <Technology>webservice</Technology>
 <InterfaceName>org.ogf.glue.emies.activitymanagement</InterfaceName>

EMI Execution Service specification 52 / 59

 <InterfaceVersion>1.15</InterfaceVersion>
 <WSDL>https://twiki.cern.ch/twiki/pub/EMI/EmiExecutionService/</WSDL>

<Semantics>https://twiki.cern.ch/twiki/pub/EMI/EmiExecutionService/</Semantics>
 <Implementor>NorduGrid</Implementor>
 <ImplementationName>ARC CE</ImplementationName>
 <ImplementationVersion>trunk</ImplementationVersion>
 <QualityLevel>development</QualityLevel>
 <HealthState>ok</HealthState>
 <ServingState>production</ServingState>
 <IssuerCA>/O=Grid/O=Test/CN=CA</IssuerCA>
 <TrustedCA>/O=Grid/O=Test/CN=CA</TrustedCA>
 <AccessPolicy BaseType="Policy">
 <ID>urn:ogf:AccessPolicy:host:basic</ID>
 <Scheme>basic</Scheme>
 <Rule>developer.nordugrid.org</Rule>
 </AccessPolicy>
 <Staging>staginginout</Staging>
 <JobDescription>ogf:jsdl:1.0</JobDescription>
 <JobDescription>nordugrid:xrsl</JobDescription>
 <JobDescription>emies:adl</JobDescription>
 <TotalJobs>0</TotalJobs>
 <RunningJobs>0</RunningJobs>
 <WaitingJobs>0</WaitingJobs>
 <StagingJobs>0</StagingJobs>
 <SuspendedJobs>0</SuspendedJobs>
 <PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
 <Associations>
 <ComputingShareID>urn:ogf:ComputingShare:host:fork</ComputingShareID>
 </Associations>
 </ComputingEndpoint>
 <ComputingEndpoint BaseType="Endpoint" CreationTime="2012-10-03T15:25:18Z"
Validity="60">
 <ID>urn:ogf:ComputingEndpoint:hsot:emies:https://host:443/id:ai</ID>
 <Name>ARC CE EMI-ES ActivtyInfo Port Type</Name>
 <URL>https://host:443/id</URL>
 <Capability>information.discovery.job</Capability>
 <Capability>information.lookup.job</Capability>
 <Technology>webservice</Technology>
 <InterfaceName>org.ogf.glue.emies.activityinfo</InterfaceName>
 <InterfaceVersion>1.15</InterfaceVersion>
 <WSDL>https://twiki.cern.ch/twiki/pub/EMI/EmiExecutionService/</WSDL>

<Semantics>https://twiki.cern.ch/twiki/pub/EMI/EmiExecutionService/</Semantics>
 <Implementor>NorduGrid</Implementor>
 <ImplementationName>ARC CE</ImplementationName>
 <ImplementationVersion>trunk</ImplementationVersion>
 <QualityLevel>development</QualityLevel>
 <HealthState>ok</HealthState>
 <ServingState>production</ServingState>
 <IssuerCA>/O=Grid/O=Test/CN=CA</IssuerCA>
 <TrustedCA>/O=Grid/O=Test/CN=CA</TrustedCA>
 <AccessPolicy BaseType="Policy">
 <ID>urn:ogf:AccessPolicy:host:basic</ID>
 <Scheme>basic</Scheme>
 <Rule>developer.nordugrid.org</Rule>
 </AccessPolicy>
 <Staging>staginginout</Staging>
 <JobDescription>emies:adl</JobDescription>
 <TotalJobs>0</TotalJobs>
 <RunningJobs>0</RunningJobs>

EMI Execution Service specification 53 / 59

 <WaitingJobs>0</WaitingJobs>
 <StagingJobs>0</StagingJobs>
 <SuspendedJobs>0</SuspendedJobs>
 <PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
 <Associations>
 <ComputingShareID>urn:ogf:ComputingShare:host:fork</ComputingShareID>
 </Associations>
 </ComputingEndpoint>
 <ComputingEndpoint BaseType="Endpoint" CreationTime="2012-10-03T15:25:18Z"
Validity="60">
 <ID>urn:ogf:ComputingEndpoint:host:emies:https://host:443/id:ri</ID>
 <Name>ARC CE EMI-ES ResourceInfo Port Type</Name>
 <URL>https://host:443/id</URL>
 <Capability>information.discovery.resource</Capability>
 <Capability>information.query.xpath1</Capability>
 <Technology>webservice</Technology>
 <InterfaceName>org.ogf.glue.emies.resourceinfo</InterfaceName>
 <InterfaceVersion>1.15</InterfaceVersion>
 <Implementor>NorduGrid</Implementor>
 <ImplementationName>ARC CE</ImplementationName>
 <ImplementationVersion>trunk</ImplementationVersion>
 <QualityLevel>development</QualityLevel>
 <HealthState>ok</HealthState>
 <ServingState>production</ServingState>
 <IssuerCA>/O=Grid/O=Test/CN=CA</IssuerCA>
 <TrustedCA>/O=Grid/O=Test/CN=CA</TrustedCA>
 <AccessPolicy BaseType="Policy">
 <ID>urn:ogf:AccessPolicy:host:basic</ID>
 <Scheme>basic</Scheme>
 <Rule>developer.nordugrid.org</Rule>
 </AccessPolicy>
 </ComputingEndpoint>
 <ComputingEndpoint BaseType="Endpoint" CreationTime="2012-10-03T15:25:18Z"
Validity="60">
 <ID>urn:ogf:ComputingEndpoint:host:emies:https://host:443/id:d</ID>
 <Name>ARC CE EMI-ES Delegation Port Type</Name>
 <URL>https://host:443/id</URL>
 <Capability>security.delegation</Capability>
 <Technology>webservice</Technology>
 <InterfaceName>org.ogf.glue.emies.delegation</InterfaceName>
 <InterfaceVersion>1.15</InterfaceVersion>
 <Implementor>NorduGrid</Implementor>
 <ImplementationName>ARC CE</ImplementationName>
 <ImplementationVersion>trunk</ImplementationVersion>
 <QualityLevel>development</QualityLevel>
 <HealthState>ok</HealthState>
 <ServingState>production</ServingState>
 <IssuerCA>/O=Grid/O=Test/CN=CA</IssuerCA>
 <TrustedCA>/O=Grid/O=Test/CN=CA</TrustedCA>
 <AccessPolicy BaseType="Policy">
 <ID>urn:ogf:AccessPolicy:host:basic</ID>
 <Scheme>basic</Scheme>
 <Rule>developer.nordugrid.org</Rule>
 </AccessPolicy>
 </ComputingEndpoint>
 <ComputingShare BaseType="Share" CreationTime="2012-10-03T15:25:18Z"
Validity="60">
 <ID>urn:ogf:ComputingShare:host:fork</ID>
 <Name>fork</Name>
 <Description>Local PBS queue</Description>
 <MappingPolicy BaseType="Policy">

EMI Execution Service specification 54 / 59

 <ID>urn:ogf:MappingPolicy:host:basic</ID>
 <Scheme>basic</Scheme>
 <Rule>developer.nordugrid.org</Rule>
 </MappingPolicy>
 <MappingQueue>fork</MappingQueue>
 <MaxTotalJobs>10000</MaxTotalJobs>
 <MaxRunningJobs>5</MaxRunningJobs>
 <MaxWaitingJobs>5</MaxWaitingJobs>
 <MaxPreLRMSWaitingJobs>9950</MaxPreLRMSWaitingJobs>
 <MaxUserRunningJobs>5</MaxUserRunningJobs>
 <MaxSlotsPerJob>1</MaxSlotsPerJob>
 <MaxStageOutStreams>8</MaxStageOutStreams>
 <MaxVirtualMemory>1000</MaxVirtualMemory>
 <ServingState>production</ServingState>
 <TotalJobs>0</TotalJobs>
 <RunningJobs>0</RunningJobs>
 <LocalRunningJobs>0</LocalRunningJobs>
 <WaitingJobs>0</WaitingJobs>
 <LocalWaitingJobs>0</LocalWaitingJobs>
 <SuspendedJobs>0</SuspendedJobs>
 <LocalSuspendedJobs>0</LocalSuspendedJobs>
 <StagingJobs>0</StagingJobs>
 <PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
 <FreeSlots>1</FreeSlots>
 <FreeSlotsWithDuration>1</FreeSlotsWithDuration>
 <UsedSlots>0</UsedSlots>
 <RequestedSlots>0</RequestedSlots>
 <Associations>

<ComputingEndpointID>urn:ogf:ComputingEndpoint:host:emies:https://host:443/id</C
omputingEndpointID>
 <ExecutionEnvironmentID>urn:ogf:ExecutionEnvironment:host:execenv0</Execut
ionEnvironmentID>
 </Associations>
 </ComputingShare>
 <ComputingManager BaseType="Manager" CreationTime="2012-10-03T15:25:18Z"
Validity="60">
 <ID>urn:ogf:ComputingManager:host:fork</ID>
 <ProductName>fork</ProductName>
 <ProductVersion>0.9</ProductVersion>
 <BulkSubmission>false</BulkSubmission>
 <TotalLogicalCPUs>1</TotalLogicalCPUs>
 <TotalSlots>1</TotalSlots>
 <SlotsUsedByLocalJobs>0</SlotsUsedByLocalJobs>
 <SlotsUsedByGridJobs>0</SlotsUsedByGridJobs>
 <Homogeneous>true</Homogeneous>
 <LogicalCPUDistribution>1:1</LogicalCPUDistribution>
 <WorkingAreaShared>true</WorkingAreaShared>
 <WorkingAreaGuaranteed>false</WorkingAreaGuaranteed>
 <WorkingAreaTotal>46</WorkingAreaTotal>
 <WorkingAreaFree>2</WorkingAreaFree>
 <WorkingAreaLifeTime>604800</WorkingAreaLifeTime>
 <CacheTotal>46</CacheTotal>
 <CacheFree>2</CacheFree>
 <ExecutionEnvironments>
 <ExecutionEnvironment BaseType="Resource" CreationTime="2012-10-
03T15:25:18Z" Validity ="60">
 <ID>urn:ogf:ExecutionEnvironment:host:execenv0</ID>
 <Name>execenv0</Name>
 <Platform>i686</Platform>
 <TotalInstances>1</TotalInstances>

EMI Execution Service specification 55 / 59

 <UsedInstances>0</UsedInstances>
 <UnavailableInstances>0</UnavailableInstances>
 <PhysicalCPUs>1</PhysicalCPUs>
 <LogicalCPUs>1</LogicalCPUs>
 <CPUMultiplicity>singlecpu-singlecore</CPUMultiplicity>
 <CPUVendor>GenuineIntel</CPUVendor>
 <CPUModel>Intel(R) Celeron(R) M CPU 420</CPUModel>
 <CPUClockSpeed>1600</CPUClockSpeed>
 <MainMemorySize>1507</MainMemorySize>
 <VirtualMemorySize>4432</VirtualMemorySize>
 <OSFamily>linux</OSFamily>
 <ConnectivityIn>true</ConnectivityIn>
 <ConnectivityOut>true</ConnectivityOut>
 <Associations>
 <ComputingShareID>urn:ogf:ComputingShare:host:fork</ComputingShareID>
 </Associations>
 </ExecutionEnvironment>
 </ExecutionEnvironments>
 <ApplicationEnvironments>
 </ApplicationEnvironments>
 </ComputingManager>
 <Associations>
 <ServiceID>urn:ogf:ComputingService:host:id</ServiceID>
 </Associations>
</ComputingService>

 13.5 Appendix E: GetActivityInfo examples

See the description of the “GetActivityInfo” operation in section 4.8 for a discussion.

Request:

<GetActivityInfo
xmlns="http://www.eu-emi.eu/es/2010/12/activity/types"
xmlns:es="http://www.eu-emi.eu/es/2010/12/types">

 <es:ActivityID>123456</es:ActivityID>
 <es:ActivityID>bogus</es:ActivityID>
</GetActivityInfo>

Response:
<GetActivityInfoResponse

xmlns="http://www.eu-emi.eu/es/2010/12/activity/types"
xmlns:es="http://www.eu-emi.eu/es/2010/12/types">

 <ActivityInfoItem>

<es:ActivityID>urn:ogf:ComputingActivity:ce01.niif.hu:443/path/123456</es:Activi
tyID>
 <ActivityInfoDocument
 xmlns:glue2="http://schemas.ogf.org/glue/2008/05/spec_2.0_d41_r01"
 BaseType="Activity" CreationTime="2012-10-03T14:21:03Z" Validity="60">
 <glue2:ID>urn:ogf:ComputingActivity:servicehost:123456</glue2:ID>
 <glue2:Type>single</glue2:Type>
 <glue2:IDFromEndpoint>123456</glue2:IDFromEndpoint>
 <glue2:JobDescription>emies:adl</glue2:JobDescription>
 <glue2:State>emiesattr:server-paused</glue2:State>
 <glue2:Owner>/O=Grid/OU=org/CN=user<glue2:Owner>
 <glue2:LocalOwner>user</glue2:LocalOwner>
 <glue2:RequestedSlots>1</glue2:RequestedSlots>
 <glue2:StdIn>/dev/null</glue2:StdIn>

EMI Execution Service specification 56 / 59

http://schemas.ogf.org/glue/2008/05/spec_2.0_d41_r01
http://www.eu-emi.eu/es/2010/12/activity/types
http://www.eu-emi.eu/es/2010/12/activity/types

 <glue2:StdOut>out.txt</glue2:StdOut>
 <glue2:StdErr>err.txt</glue2:StdErr>
 <glue2:Queue>fast</glue2pre:Queue>
 <glue2:SubmissionTime>2012-10-03T14:15:45Z</glue2:SubmissionTime>
 <glue2:ProxyExpirationTime>2012-10-04T02:04:34Z</glue2:ProxyExpirationTime>
 <glue2SubmissionHost>userhost</glue2:SubmissionHost>
 <glue2:Associations>

<glue2:ComputingShareID>urn:ogf:ComputingShare:t:fast</glue2:ComputingShareID>
 </glue2:Associations>
 <StageInDirectory>https://servicehost:443/path/123456</StageInDirectory>
 <StageOutDirectory>https:// servicehost:443 /path/123456</StageOutDirectory>
 <SessionDirectory>https://servicehost:443/path/123456</SessionDirectory>
 </ActivityInfoDocument>
 </ActivityInfoItem>
 <ActivityInfoItem>
 <es:ActivityID>bogus</es:ActivityID>
 <UnknownActivityIDFault>
 <es:Message>Unknown activity ID</es:Message>
 <es:Timestamp>2012-10-03T18:13:20+03:00</es:Timestamp>
 </UnknownActivityIDFault>
 </ActivityInfoItem>
</GetActivityInfoResponse>

EMI Execution Service specification 57 / 59

https://servicehost:60000/arex/123456
https://mobile2.vdnet.lt:60000/arex/123456
https://servicehost:60000/arex/123456
https://mobile2.vdnet.lt:60000/arex/123456
https://servicehost:60000/arex/123456

 13.6 Change log

Version Change Authors

1.01 Move QueueName element up one level M. Skou Andersen, B. Schuller

1.02 Remove AccessControlFault from operations where
it makes no sense

L.Zangrando, B. Schuller

1.03 Remove VectorLimitExceededFault and
InvalidActivityLimitFault from ListActivities.
Fixed multiplicity of Application element as “one”.
Clarified semantics (“OR”) of specifying multiple
OperatingSystem values in Resource element.
Small other editorial fixes in the text.

E. Frizziero, L. Zangrando, A.
Konstantinov, B. Schuller

1.04 Add missing BenchmarkType
Clarify “Slot”. Introduce ProcessesPerHost instead
of ProcessesPerSlot. Add “useSlotsPerHost” flag.
Correct section numbering and align with the activiy
description schema.

Input from MPI task force, M.
Skou Andersen, B. Schuller

1.05 Rename InvalidTimeIntervalFault to more generic
InvalidParameterFault, updated GetActivityInfo
result example to match updated xsd

Input from A. Konstantinov, Shiraz
Memon

1.06 Fixed subsection numbering in InputFile section Input from A. Dorigo

1.07 Added description of GLUE2 extensions and state
rendering for GLUE2. Fixed example of
GetActivityInfo according to schemas.

A. Konstantinov

1.08 QueryResourceInfo returns a list of results Input from Shiraz Memon, L.
Zangrando, B. Schuller

1.09 Better defined getActivityInfo and Activity
representation section, wrt GLUE2
Added comments on various issues

Balazs Konya, Florido Paganelli

1.10 Accepted all changes, start rewriting Architecture
section, changed CreateActivity operation response

Balazs Konya, Florido Paganelli

1.11 Changed Create port-type to ActivityCreation,
rewritten ResourceInfo port-Type section but not
changed API; added two sample resource
documents to section 8

Balazs Konya, Florido Paganelli

1.12 Added detailed description of GLUE2 attributes for
the resource document, defined EMI-ES specific
Capabilities

Balazs Konya, Florido Paganelli

1.13 Defined EMI-ES activity information document,
changed GetActivityInfo request, revised
QueryResourceInfo operation

Balazs Konya, Florido Paganelli

1.14 Changed IntefaceNames to org.ogf.glue prefix,
added comment on multiple endpoints per port-type,
clarified query language strings.

Florido Paganelli

1.14-1 Small update to add back AccessControlFault to
ActivityCreation, small fixes in examples

Florido Paganelli

1.15 Unified formating of document.
Added description of SOAP faults and error
elements. Removed ActivityNotInTerminalStateFault

Aleksandr Konstantinov

EMI Execution Service specification 58 / 59

because it overlaps with OperationNotAllowedFault.
Left only one fault to report unknown activity.
Cleaned usage of terms. Especially activity vs job.
Replaced own delegation interface with GridSite
version 2.1.
Changed state and attribute names to lowercase to
sync with schemas.
Removed requirement for activityID to be globally
unique because it has sense in context of
requirement that activityID need to be accompanied
with service endpoint.
Removed reference to UserDomain GLUE2
attribute because it has no direct relation to EMI ES.

1.16 Removed undefined UnknownQueryFault.
Fixed ResorceInfoDocument example.
Added description of how XPath query must be
processed.
Added description of activity history.
Text cleaning and unifying.

Aleksandr Konstantinov, Florido
Paganelli

EMI Execution Service specification 59 / 59

