
NorduGrid ARC 7 Documentation
Release ARC7

NorduGrid Collaboration

Apr 05, 2024

ARC OVERVIEW

1 ARC tutorial 3

2 ARC Overview 5
2.1 ARC CE components and the infrastructure ecosystem around 5

3 Obtaining the software 7

4 Support and Community 9

5 Documentation for Infrastructure Admins 11
5.1 ARC Configuration Reference Document . 11
5.2 ARC CE Deployment and Operation . 95
5.3 ARCHERY . 166
5.4 ARC Admin Tools Reference . 188
5.5 NorduGrid repository information for ARC 7 . 222
5.6 NorduGrid testing repository information for ARC 7 . 227

6 Technical Documents Describing ARC Components 231
6.1 ARC Data Services Technical Description . 231
6.2 ARC Accounting Technical Details . 271
6.3 ARC CE REST interface specification . 277
6.4 ARCHERY data model and DNS records rendering . 288
6.5 A-REX Technical Description . 292
6.6 ARC support for OIDC . 296
6.7 Old Relevant Technical Documents . 297
6.8 Legacy JURA Accounting Technical Details . 299
6.9 ARC Accounting Database Schema . 304

7 Documentation for Developers 305
7.1 Implementation Details for Developers . 305
7.2 Contributing to Documentation . 315

8 Documentation for Infrastructure Users 321
8.1 Installing ARC Client Tools . 321
8.2 Overview of ARC client tools . 325
8.3 How to submit the job? . 331
8.4 How to work with data? . 336
8.5 Job Description Language (xRSL) . 340
8.6 ARC Client Config Reference . 363
8.7 ARC SDK Documentation . 367

9 ARC Miscellaneous Pages 369
9.1 About the Nordugrid ARC Releases . 369
9.2 Security Operations . 371
9.3 ARC 7 Testing Area . 372

i

9.4 Release management . 372
9.5 Changelogs/list of bugs . 374
9.6 Using ARC packages from nightly builds . 377
9.7 Work-in-progress Docs . 379

Bibliography 381

ii

NorduGrid ARC 7 Documentation, Release ARC7

Note: ARC 7 is not yet released. This documentation is WIP.

The Advanced Resource Connector (ARC) middleware, developed by the NorduGrid Collaboration, is an open
source software solution enabling e-Science computing infrastructures with emphasis on processing of large data
volumes. ARC is being used to enable national and international e-infrastructures since its first release in 2002.

This document is dedicated to the ARC Version 7 collecting all relevant information in one place. You should be
able to find information regarding the code, documentation, testing activities, support channels, . . . and so on here.
The information is refreshed daily, a snapshot of the development version can be found here.

If you are new to ARC start reading the Try ARC or Try ARC quickstart guide to get an overview of main operations
in the simple test case.

For production Computing Element deployment follow the Installation and Configuration Guide that contains the
structure and pointers to precise configuration of every ARC subsystem.

In case you are migrating to ARC 7 from an ARC 6 installation read the Migration Guide. For an overview of the
main changes compared to ARC 6, please visit common/changelog/arc6_to_arc7_changes.

The ultimate description of the new ARC 7 configuration can be found in the ARC Configuration Reference Doc-
ument.

ARC OVERVIEW 1

http://www.nordugrid.org
http://nordugrid.pages.coderefinery.org/doc/index.html

NorduGrid ARC 7 Documentation, Release ARC7

2 ARC OVERVIEW

CHAPTER

ONE

ARC TUTORIAL

In addition to the excellent quick-start ARC you can find a new tutorial which will guide you through all necessary
steps to set up a production ready system. This tutorial aims at showing some basic but essential configuration
settings necessary for a common type of cluster configuration.

The tutorial was held first time at the EGI 2023 conference.

3

NorduGrid ARC 7 Documentation, Release ARC7

4 Chapter 1. ARC tutorial

CHAPTER

TWO

ARC OVERVIEW

Birds-eye overview of the ARC services, including the architecture figure of the ARC CE can be found in the
following documents:

2.1 ARC CE components and the infrastructure ecosystem around

Fig. 2.1: ARC7 CE: internals, interfaces and the infrastructure ecosystem services around

5

NorduGrid ARC 7 Documentation, Release ARC7

6 Chapter 2. ARC Overview

CHAPTER

THREE

OBTAINING THE SOFTWARE

ARC is available for variety of GNU/Linux flavors via stable Repositores or Nightly Builds if you want to test the
latest development release.

The source code is hosted in NeIC’s Coderefinery GitLab repository.

7

https://source.coderefinery.org/nordugrid/arc

NorduGrid ARC 7 Documentation, Release ARC7

8 Chapter 3. Obtaining the software

CHAPTER

FOUR

SUPPORT AND COMMUNITY

User support and site installation assistance is provided via the nordugrid-discuss mailing list, and the Nordugrid
Bugzilla.

9

https://mail.nordugrid.org/mailman/listinfo/nordugrid-discuss
https://bugzilla.nordugrid.org
https://bugzilla.nordugrid.org

NorduGrid ARC 7 Documentation, Release ARC7

10 Chapter 4. Support and Community

CHAPTER

FIVE

DOCUMENTATION FOR INFRASTRUCTURE ADMINS

This section contains a documentation about all ARC middleware services deployment, configuration and opera-
tions. If you are looking for ARC Computing Element setup instruction or performance tuning parameters you are
in the right place.

5.1 ARC Configuration Reference Document

5.1.1 General configuration structure

This is the arc.conf REFERENCE DOCUMENT defining the configuration blocks and configuration options for
the ARC services.

The arc.conf configuration file consists of the following blocks:

[common]
[authtokens]
[authgroup:groupname]
[mapping]
[lrms]
[arex]
[arex/cache]
[arex/cache/cleaner]
[arex/data-staging]
[arex/ws]
[arex/ws/jobs]
[arex/ws/publicinfo]
[arex/ws/cache]
[arex/ws/candypond]
[arex/jura]
[arex/jura/sgas:targetname]
[arex/jura/apel:targetname]
[arex/ganglia]
[infosys]
[infosys/ldap]
[infosys/nordugrid]
[infosys/glue2]
[infosys/glue2/ldap]
[infosys/cluster]
[queue:name]
[datadelivery-service]
[custom:blockname]

11

NorduGrid ARC 7 Documentation, Release ARC7

[block]

A block configures an ARC service, a service interface, a utility or a subsystem. Enabling (turning on) a function-
ality, a service or an interface requires the presence of the appropriate configuration block. To disable a service or
an interface, simply delete or comment out the related arc.conf block (you may need to rerun the corresponding
startup script).

The [common] block is mandatory even if not a single option is specified within. The presence of the block turns
on the default values for the configuration options within the block.

As an example, in order to set up a minimalistic ARC CE offering no external interfaces you need to configure at
least the [common], [mapping], [arex], [lrms], [infosys] and [queue:name] blocks.

As another example, an ARC-based data offloader would require the [common] and the
[datadelivery-service] blocks.

A block is identified by its block header. A block header may consist of keywords and optionally block identifiers.
Keywords may be separated by / and used to label subblocks (e.g. [arex/jura]), while block identifiers are
separated by : from keywords. For example, in the [queue:short] block header queue is a keyword while
short is an identifier, e.g. the name of the queue. Block headers must be UNIQUE.

A block starts with a unique [keyword:identifier] blockheader and ends where the next block starts, that is at
the next [blockheader] directive.

A block may have sub-blocks e.g. the various interfaces of the AREX service are configured via sub-blocks (e.g.
[arex/ws]). When a sub-block is enabled then the corresponding parent block must also appear in the arc.conf
file.

Configuration blocks contain (config option, config value) pairs following the syntax in single line:

config_option=value element [optional value element]

Note: quotes around the configuration value(s) must NOT be used.

Note: the arc.conf is CASE-SENSITIVE!

Space handling syntax in arc.conf for configuration lines:

(stripped space)option(stripped space)=(stripped space)value(saved␣
↪→space)(value)(stripped space)

and for block headers:

[keyword:(stripped space)space is NOT allowed within identifier(stripped space)]

Detailed textual definition:

a) All trailing and leading spaces on each confiuration line are stripped and ignored. This aplies both to block
headers and block content.

b) All spaces around the = sign in option=value kind of string (after ‘a’ is applied) are stripped and ignored.
For example line hostname = myhost.info is treated as identical to hostname=myhost.info.

c) In block headers of [keyword] kind (after ‘a’ is applied) no additional spaces are allowed around keyword
and inside keyword.

d) In block headers of [keyword:identifier] kind (after ‘a’ is applied) no additional spaces are allowed
around keyword and inside both keyword and identifier. The spaces ARE allowed around identifier
part and stripped and ignored.

12 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Mandatory configuration options are indicated by an asterix prefix to the option name e.g:
*mandatory_configoption. Mandatory options with undefined values will result in service stop during
the startup process.

Each of the configuration options have well-defined default that is specified in this reference file. The default
can take either a pre-set value, a special substitution or the keyword undefined. Configuration options within an
enabled block take their default values in case they are missing (or commented out). Configuration parameters with
undefined defaults takes no values. Furthermore, configuration options within disabled blocks takes no values
either.

Configuration blocks are ORDER-DEPENDENT. To be safe, please use the order as indicated in the list of blocks
in this reference. This is especially important for configuration blocks related to authorization and mapping. The
order dependency is also honoured within options inside a certain block.

This means for instance that configuration blocks related to authorization MUST appear before used in the blocks
such as [mapping], [arex/ws/jobs] or [gridftp/jobs]. Order dependency within a block is for instance
important when it comes to authorization decisions, as the first matching rule is used. For more details see the
specific block reference.

Below we give a detailed description of all the configuration options of the different configuration blocks. Every
configuration option is described in a dedicated paragraph with the following reference syntax notation. This file
is parsed at buildtime to assist in configuration default parsing and validation script and so it is important that it
follows the agreed syntax: For each block or option please add explanatory text with two ## followed by a space
at the beginning of the line and then an example with a single # and no spaces at the beginning of the line.

example_config_option

Synopsis: example_config_option = value [optional values]

Description: Here comes the explanation of the config option. Mandatory configuration options are indicated
by an asterix prefix to the option name e.g: *mandatory_configoption vs. optional_configoption. The
explanation can be followed by the special keywords in a separate line:

• multivalued - used to indicate that config option can be specified multiple times. This forms a set of values
for the same configuration option irrespective of lines order.

• sequenced - used to indicate that config option is a part of the sequence and its effect on configuration
depends on the lines order. Sequenced option can be specified several times in the configuration sequence
independently.

Missing such keywords means the config option can only occur once in the arc.conf. By default the arc.conf
config options are optional and single-valued. For some config options only a fix set of values are allowed. These
are listed in a separate line after the allowedvalues keyword. The default of every config option is explicitly
given in the default: line. Default can be a pre-set value, a substitution or the undefined keyword. The last
line of the paragraph is always a valid example preceded by a single #

This option in multivalued.

Allowed values: 12, 34, 56

Default: 34

Example:

example_config_option=56

5.1. ARC Configuration Reference Document 13

NorduGrid ARC 7 Documentation, Release ARC7

5.1.2 Configuration blocks and options

[common] block

Common configuration affecting all ARC components, usually related to networking or security or service be-
haviour. This block is mandatory. The common block options may be overridden by the specific sections of the
components later. The [common] always appears at the beginning of the config file. The config options set within
this block are available for all the other blocks thus shared by the different components of ARC.

hostname

[common]

Synopsis: hostname = string

Description: The FQDN of the frontend on which the ARC services are deployed.

Default: $EXEC{hostname -f}

Example:

hostname=myhost.org

http_proxy

[common]

Synopsis: http_proxy = url

Description: The http proxy server. This setting affects all client HTTP(s) requests that initiated by ARC core
services, including data staging, SAML communications, and pushing SGAS accounting records. This variable is
similar to setting the ARC_HTTP_PROXY environmental variable.

Default: undefined

Example:

http_proxy=proxy.mydomain.org:3128

x509_host_key

[common]

Synopsis: x509_host_key = path

Description: Server credential location. Sets the full path to the host private key. These variables are similar
to the GSI enviroment variable X509_USER_KEY If indicated, the variable can be set individually for each ser-
vice/component in the corresponding block.

Default: /etc/grid-security/hostkey.pem

Example:

x509_host_key=/etc/grid-security/hostkey.pem

14 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

x509_host_cert

[common]

Synopsis: x509_host_cert = path

Description: Server credential location. Sets the full path to the host public certificate. These variables are sim-
ilar to the GSI environment variable X509_USER_CERT If indicated, the variable can be set individually for each
service/component in the corresponding block.

Default: /etc/grid-security/hostcert.pem

Example:

x509_host_cert=/etc/grid-security/hostcert.pem

x509_cert_policy

[common]

Synopsis: x509_cert_policy = keyword

Description: layout of CA certificates. The following keywords are supported: globus, system. This varaible
defines either server is going to use Globus layout of CA certifiactes or just let OpenSSL handle that.

Default: globus

Example:

x509_cert_policy=globus

x509_cert_dir

[common]

Synopsis: x509_cert_dir = path

Description: Location of trusted CA certificates. This variable is similar to the GSI enviroment variable
X509_CERT_DIR If indicated, the variable can be set individually for each service/component in the corresponding
block. If x509_cert_policy is set to ‘system’ this variable is ignored.

Default: /etc/grid-security/certificates

Example:

x509_cert_dir=/etc/grid-security/certificates

x509_voms_dir

[common]

Synopsis: x509_voms_dir = path

Description: the path to the directory containing *.lsc files needed for verification of VOMS service signature in
the proxy-certificate.

Default: /etc/grid-security/vomsdir

Example:

x509_voms_dir=/etc/grid-security/vomsdir

5.1. ARC Configuration Reference Document 15

NorduGrid ARC 7 Documentation, Release ARC7

voms_processing

[common]

Synopsis: voms_processing = keyword

Description: Defines how to behave if errors in VOMS AC processing detected. The following keywords are
supported:

relaxed
use everything that passed validation.

standard
same as relaxed but fail if parsing errors took place and VOMS extension is marked as critical.
This is a default.

strict
fail if any parsing error was discovered

noerrors
fail if any parsing or validation error happened.

Allowed values: relaxed, standard, strict, noerrors

Default: standard

Example:

voms_processing=strict

[authtokens] block

This block activates processing of OIDC tokens as defined in WLCG profile.

Warning: TODO: remove when it is actually always enabled in the code

[authgroup:groupname] block

These configuration blocks contain authorization rules. An [authrgroup:groupname] block always defines a
group of users where members of the group are those who satisfy the authorization rules. The rules within the block
determine which user belong to the authgroup. Then, access control and identity mapping of ARC services are
implemented via associating a authgroup with an interface, queue or a mapping rule using one of the allowaccess,
denyaccess or [mapping] block parameters. The authgroup should not be mistaken for a virtual organisation
(VO). An authgroup may match a single VO if only a single check (rule) on VO membership is perfomed.

IMPORTANT: Rules in an authgroup are processed in their order of appearance. The first matching rule decides
the membership of the user to the authgroup being evaluated and the processing STOPS within that authgroup.
This does not mean that the same user is not processed for the next authgroup: all [authgroup:groupname]
blocks are evaluated, even if a user already has a match with one of the earlier groups.

All the objects used in the rules MUST be defined before it may be used. For example, to create group of authgroups
you must first defined the child groups.

There are positively and negatively matching rules. If a rule is matched positively then the user tested is accepted
into the respective group and further processing is stopped. Upon a negative match the user would be rejected for
that group - processing stops too. The sign of rule is determined by prepending the rule with + (for positive) or -
(for negative) signs. + is default and can be omitted. A rule may also be prepended with ! to invert result of rule,
which will let the rule match the complement of users. That complement operator (!) may be combined with the
operator for positive or negative matching.

16 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

subject

[authgroup:groupname]

Synopsis: subject = certificate_subject

Description: Rule to match specific subject of user’s X.509 certificate. No masks, patterns and regular expressions
are allowed.

This is sequenced option.

Default: undefined

Example:

subject=/O=Grid/O=Big VO/CN=Main Boss
subject=/O=Grid/O=Big VO/CN=Deputy Boss

file

[authgroup:groupname]

Synopsis: file = path

Description: Processes a list of DNs stored in an external file one per line in grid-mapfile format (see map_with_file
from [mapping] block, unixname is ignored) and adds those to the authgroup.

This is sequenced option.

Default: undefined

Example:

file=/etc/grid-security/local_users
file=/etc/grid-security/atlas_users

voms

[authgroup:groupname]

Synopsis: voms = vo group role capabilities

Description: Match VOMS attribute in user’s credential. Use * to match any value.

This is sequenced option.

Default: undefined

Example:

voms=nordugrid Guests * *
voms=atlas students prodman *

5.1. ARC Configuration Reference Document 17

NorduGrid ARC 7 Documentation, Release ARC7

authgroup

[authgroup:groupname]

Synopsis: authgroup = group_name [group_name ...]

Description: Match user already belonging to one of specified authgroups. The authgroup referred here must be
defined earlier in arc.conf configuration file. Multiple authgroup names may be specified for this rule. That
allows creating hierarchical structure of authorization groups like all-atlas are those which are atlas-users
and atlas-admins.

This is sequenced option.

Default: undefined

Example:

authgroup=local_admins
authgroup=local_admins remote_users

plugin

[authgroup:groupname]

Synopsis: plugin = timeout path [arg1 [arg2 [arg3...]]]

Description: Run external executable or function from shared library. Rule is matched if plugin returns 0. Any
other return code or timeout are treated as rule not matched. In arguments following substitutions are supported:

• %D - subject of certicate

• %P - path to proxy

The environment variables passed to plugin contain basic information about user authentication. Following vari-
ables are set if corresponding information is available:

• X509_SUBJECT_NAME - common name of user’s certificate.

• BEARER_TOKEN_#_SUBJECT - user’s subject (identifier) extracted from JWT token (here # is tokens index,
typically 0)

• BEARER_TOKEN_#_ISSUER - issuer of the token extracted from JWT token

• BEARER_TOKEN_#_AUDIENCE - designated audience extracted from JWT token

• BEARER_TOKEN_#_SCOPE_# - assigned scope extracted from JWT token (here second # is scope’s index
starting from 0)

• BEARER_TOKEN_#_GROUP_# - assigned WLCG group extracted from JWT token

• BEARER_TOKEN_#_CLAIM_<name>_# - raw claim values of the token of claim <name>

ARC ships with LCAS plugin that can be enabled with following plugin configuration. For more information about
configuring LCAS refer to ‘Using LCAS/LCMAPS’ document.

This is sequenced option.

Default: undefined

Example:

plugin=10 /usr/libexec/arc/arc-lcas %D %P liblcas.so /usr/lib64 /etc/lcas/lcas.db

Warning: CHANGE: NEW environment variables in 7.0.0.

18 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

authtokens

[authgroup:groupname]

Synopsis: authtokens = subject issuer audience scope group

Description: Match OIDC token claims. Use * to match any value.

This is sequenced option.

Default: undefined

Example:

authtokens=e83eec5a-e2e3-43c6-bb67-df8f5ec3e8d0 https://wlcg.cloud.cnaf.infn.it/ * * *

authtokensgen

[authgroup:groupname]

Synopsis: authtokensgen = logical expression

Description: Match OIDC token claims. Expression to match. Following operators are available:

• = - match token claim value (left part represents claim name) to specified string (right part), produces boolean
result

• ~ - match token claim value (left part represents claim name) to regex expression (right part), produces
boolean result

• ! - boolean negation

• & - boolean AND

• | - boolean OR

• ^ - boolean XOR

• () - brackets are used to control priority of evaluation, without brackets all operators have same priority

• ‘’ or `` - strings can be enclosd in quotes to allow special symbols in strings

All empty spaces are optional. This functionality is experimental.

Default: undefined

Warning: CHANGE: NEW in 7.0.0.

all

[authgroup:groupname]

Synopsis: all = yes|no

Description: Matches any or none user identity. For yes argument this rule always returns positive match. For no
it is always no match.

This is sequenced option.

Default: undefined

Example:

all=yes

5.1. ARC Configuration Reference Document 19

NorduGrid ARC 7 Documentation, Release ARC7

[mapping] block

This block defines the grid-identity to local UNIX identity mapping rules used by various ARC components.

Rules in the [mapping] block are processed IN A SEQUENCE in line order of the configuration file (from top to
bottom).

There are two kind of rules:

• mapping rules that defines how the particular authgroup members are mapped

• policy rules that modifies the mapping rules sequence processing

Default policy for mapping rules processing is:

• processing CONTINUES to the next rule if identity of user DO NOT match authgroup specified in the rule
(can be redefined with policy_on_nogroup option)

• processing STOPS if identity of user match authgroup specified in the mapping rule. Depend on whether
this mapping rule returns valid UNIX identity the processing can be redefined with policy_on_map and
policy_on_nomap options.

Policy can be redefined at the any point of configuration sequence and affects all mapping rules defined after the
polcy rule.

Note: if mapping process STOPS and there is still no local UNIX identity identified, the user running A-REX
will be used.

Note: when grid-identity is mapped to root account - request processing fails implicitely.

map_to_user

[mapping]

Synopsis: map_to_user = authgroup_name unixname[:unixgroup]

Description: the users that belongs to specified authgroup are mapped to unixname local UNIX account that may
be optionally followed by a unixgroup UNIX group. In case of non-existing unixname account the mapping rule
treated as a rule that did not returned mapped identity (nomap).

This is sequenced option.

Default: undefined

Example:

map_to_user=authgroupA nobody:nobody

map_to_pool

[mapping]

Synopsis: map_to_pool = authgroup_name directory

Description: the user that belong to specified authgroup is assigned one of the local UNIX accounts in the pool. Ac-
count names that are part of this pool are stored line-by-line in the pool file inside the directory. The directory
also contains information about used accont names stored in another files. If there are no more available accounts
in the defined pool for mapping then accounts not used for a configurable time period may be reassigned. The pool
behaviour, including account reuse, is configureable with the opional directory/config file that has INI syntax
(line-by-line key=value). Possible keys of the config file are:

20 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

timeout
Define the timeout in days (default is 10) after which the UNIX account can be reassigned to
another user if not used. The 0 value means no lease expiration.

This is sequenced option.

Default: undefined

Example:

map_to_pool=atlas /etc/grid-security/pool/atlas

map_with_file

[mapping]

Synopsis: map_with_file = authgroup_name file

Description: for users that belongs to specified authgroup the DN of certificate is matched against a list of DNs
stored in the specified file, one per line followed by a local UNIX account name. The DN must be quoted if it
contains blank spaces. This rule can be used to implement legacy grid-mapfile aproach.

This is sequenced option.

Default: undefined

Example:

map_with_file=authgroupB /etc/grid-security/grid-mapfile

map_with_plugin

[mapping]

Synopsis: map_with_plugin = authgroup_name timeout plugin [arg1 [arg2 [...]]]

Description: run external plugin executable with specified arguments to find the UNIX account name to which
users that belogns to specified authgroup will be mapped to. A rule matches if the exit code is 0 and there is
a UNIX account name printed on stdout (optionally followed by a UNIX group name separated by colon). The
exit code 1 designates failed mapping. Any other code or timeout means fatal failure and will abort any further
mapping processing. That will also cause rejection of corresponding connection. Plugin execution time is limited to
timeout seconds. The environment variables passed to plugin contain basic information about user authentication.
For description of those variables see ‘plugin’ command from [authgroup] section.

In the arguments the following substitutions are applied before the plugin is started:

• %D - subject of user’s certificate,

• %P - path to credentials’ proxy file.

ARC ships with LCMAPS plugin that can be enabled with the corresponfing configuration. For more information
about configuring LCMAPS refer to ‘Using LCAS/LCMAPS’ document.

This is sequenced option.

Default: undefined

Example:

map_with_plugin=authgroupC 30 /usr/libexec/arc/arc-lcmaps %D %P liblcmaps.so /usr/
↪→lib64 /etc/lcmaps/lcmaps.db arc

5.1. ARC Configuration Reference Document 21

NorduGrid ARC 7 Documentation, Release ARC7

policy_on_nomap

[mapping]

Synopsis: policy_on_nomap = continue/stop

Description: redefines mapping rules sequence processing policy in case identity of user match authgroup speci-
fied in the mapping rule and mapping rule DO NOT return valid UNIX identity. Default policy is stop processing
the furhter rules. For example this policy will be triggered if pool is depleted, certificate subject is missing in the
map file used for defined authgroup or plugin execution failed.

This is sequenced option.

Default: undefined

Allowed values: continue, stop

Example:

policy_on_nomap=continue

policy_on_map

[mapping]

Synopsis: policy_on_map = continue/stop

Description: redefines mapping rules sequence processing policy in case identity of user match authgroup speci-
fied in the mapping rule and mapping rule return valid UNIX identity. Default policy is stop processing the furhter
rules. This policy will be triggered if rule successfully returns the result (allocated in pool, matched in map file,
plugin call was successful).

This is sequenced option.

Default: undefined

Allowed values: continue, stop

Example:

policy_on_map=stop

policy_on_nogroup

[mapping]

Synopsis: policy_on_nogroup = continue/stop

Description: redefines mapping rules sequence processing policy in case identity of user DO NOT match
authgroup specified in the mapping rule. Default policy is continue processing the furhter rules.

This is sequenced option.

Default: undefined

Allowed values: continue, stop

Example:

policy_on_nogroup=stop

22 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

[lrms] block

This block specifies the characteristics of the Local Resource Manager System (batch system) underneath the ARC
CE. This block contains all the lrms-specific parameters and information. Configuration values in this block are
available for A-REX, the backends, accounting and infosys ARC subsystems.

ARC support the most common LRMS flavours.

lrms

[lrms]

Synopsis: *lrms = lrmstype [defaultqueue]

Description: Sets the type of the LRMS (queue system) and optionally the default queue name. ONLY ONE LRMS
IS ALLOWED. MULTIPLE LRMS ENTRIES WILL TRIGGER UNEXPECTED BEHAVIOUR.

Warning: TODO: mark deprecated backends

For lrmstype, the following values can be chosen:

• fork - simple forking of jobs to the same node as the server

• sge - (Sun/Oracle) Grid Engine

• condor - Condor

• pbs - PBS (covers Torque and other old PBS flavours e.g. OpenPBS, older PBSPro, etc)

• pbspro - Altair PBS Professional

• lsf - LSF

• ll - LoadLeveler

• slurm - SLURM

• boinc - Boinc

The optional defaultqueue parameter specifies the name of an existing LRMS queue in the cluster that will be
used by AREX as the default queue to submit grid jobs in case the client does not specify a queue name during the
job submission procees. This queue name must match one of the [queue:queue_name] blocks.

Allowed values: fork, sge, condor, pbs, pbspro, lsf, ll, slurm, boinc

Default: undefined

mandatory

Example:

lrms=pbspro gridlong
lrms=slurm

5.1. ARC Configuration Reference Document 23

NorduGrid ARC 7 Documentation, Release ARC7

lrmsconfig

[lrms]

Synopsis: lrmsconfig = text

Description: An optional free text field to describe the configuration of your Local Resource Management System
(batch system). The value is published in the infosys, and is not used otherwise.

Default: undefined

Example:

lrmsconfig=single job per processor

benchmark

[lrms]

Synopsis: benchmark = string

Description: Defines the default benchmark specification to store in the accounting AAR records if per-job data is
missing. It is advised to set it to cluster-wide defaults in case of reporting to APEL to aviod records diversity for
failed jobs or buggy backends.

Default: HEPSPEC 1.0

Example:

benchmark=HEPSPEC 12.26

Warning: CHANGE: MODIFIED in 7.0.0

defaultmemory

[lrms]

Synopsis: defaultmemory = number

Description: The LRMS memory request of job to be set by the LRMS backend scripts, if a user submits a job with-
out specifying how much memory should be used. The order of precedence is: job description -> defaultmemory.
This is the amount of memory (specified in MB) that a job will request.

Default: undefined

Example:

defaultmemory=512

24 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

nodename

[lrms]

Synopsis: nodename = path

Description: Redefine the command to obtain hostname of LRMS worker node. By default the value is defined on
buildtime and depend on the OS. In most cases /bin/hostname -f will be used.

Note: this way of getting WN hostname will be used only in case of particular LRMS backend had no native
LRMS-defined way.

Default: undefined

Example:

nodename=/bin/hostname -s

gnu_time

[lrms]

Synopsis: gnu_time = path

Description: Path to the GNU time command on the LRMS worker nodes. If time command exists on the node,
jobscript will write additional diagnostic information.

Default: /usr/bin/time

Example:

gnu_time=/usr/bin/time

movetool

[lrms]

Synopsis: movetool = comand

Description: Redefine the command used to move files during jobscript execution on LRMS worker node (the
command should be available on WNs). This in particular applies to files movement from sessiondir to scratchdir
in the shared sessiondir case.

Default: mv

Example:

movetool=rsync -av

5.1. ARC Configuration Reference Document 25

NorduGrid ARC 7 Documentation, Release ARC7

pbs_bin_path

[lrms]

Synopsis: pbs_bin_path = path

Description: The path to the qstat,pbsnodes,qmgr etc PBS binaries, no need to set if PBS is not used

Default: /usr/bin

Example:

pbs_bin_path=/usr/bin

pbs_log_path

[lrms]

Synopsis: pbs_log_path = path

Description: The path of the PBS server logfiles which are used by A-REX to determine whether a PBS job is
completed. If not specified, A-REX will use qstat for that.

Default: /var/spool/pbs/server_logs

Example:

pbs_log_path=/var/spool/pbs/server_logs

pbs_dedicated_node_string

[lrms]

Synopsis: pbs_dedicated_node_string = string

Description: The string which is used in the PBS node config to distinguish the grid nodes from the rest. Suppose
only a subset of nodes are available for grid jobs, and these nodes have a common node property string, this
case the string should be set to this value and only the nodes with the corresponding pbs node property are
counted as grid enabled nodes. Setting the dedicated_node_string to the value of the pbs node property of the
grid-enabled nodes will influence how the totalcpus, user freecpus is calculated. You don’t need to set this attribute
if your cluster is fully available for the grid and your cluster’s PBS config does not use the node property method
to assign certain nodes to grid queues. You shouldn’t use this config option unless you make sure your PBS config
makes use of the above described setup.

Default: undefined

Example:

pbs_dedicated_node_string=gridnode

26 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

condor_bin_path

[lrms]

Synopsis: condor_bin_path = path

Description: Path to Condor binaries. Must be set if Condor is used.

Default: /usr/bin

Example:

condor_bin_path=/opt/condor/bin

condor_config

[lrms]

Synopsis: condor_config = path

Description: Full path to Condor config file. Must be set if Condor is used and the config file is not in its default
location (/etc/condor/condor_config or ~/condor/condor_config). The full path to the file should be given.

Default: /etc/condor/condor_config

Example:

condor_config=/opt/condor/etc/condor_config

condor_rank

[lrms]

Synopsis: condor_rank = ClassAd_float_expression

Description: If you are not happy with the way Condor picks nodes when running jobs, you can define your own
ranking algorithm by optionally setting the condor_rank attribute. condor_rank should be set to a ClassAd float
expression that you could use in the Rank attribute in a Condor job description.

Default: undefined

Example:

condor_rank=(1-LoadAvg/2)*(1-LoadAvg/2)*Memory/1000*KFlops/1000000

condor_requirements

[lrms]

Synopsis: condor_requirements = string

Description: Specify additional constraints for Condor resources. The value of condor_requirementsmust be a
valid constraints string which is recognized by a condor_status -constraint ... command. It can reference
pre-defined ClassAd attributes (like Memory, Opsys, Arch, HasJava, etc) but also custom ClassAd attributes. To
define a custom attribute on a condor node, just add two lines like the ones below in the $(hostname).local
config file on the node:

NORDUGRID_RESOURCE=TRUE
STARTD_EXPRS = NORDUGRID_RESOURCE, $(STARTD_EXPRS)

5.1. ARC Configuration Reference Document 27

NorduGrid ARC 7 Documentation, Release ARC7

A job submitted to this resource is allowed to run on any node which satisfies the condor_requirements con-
straint. If condor_requirements is not set, jobs will be allowed to run on any of the nodes in the pool. When
configuring multiple queues, you can differentiate them based on memory size or disk space, for example.

Default: undefined

Example:

condor_requirements=(OpSys == "linux" && NORDUGRID_RESOURCE && Memory >= 1000 &&␣
↪→Memory < 2000)

sge_bin_path

[lrms]

Synopsis: sge_bin_path = path

Description: Path to Sun Grid Engine (SGE) binaries, Default is search for qsub command in the shell PATH

Default: undefined

Example:

sge_bin_path=/opt/n1ge6/bin/lx24-x86

sge_root

[lrms]

Synopsis: sge_root = path

Description: Path to SGE installation directory. MUST be set if SGE is used.

Default: /gridware/sge

Example:

sge_root=/opt/n1ge6

sge_cell

[lrms]

Synopsis: sge_cell = name

Description: The name of the SGE cell to use. This option is only necessary in case SGE is set up with a cell name
different from ‘default’

Default: default

Example:

sge_cell=default

28 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

sge_qmaster_port

[lrms]

Synopsis: sge_qmaster_port = port

Description: The SGE port options should be used in case SGE command line clients require
SGE_QMASTER_PORT and SGE_EXECD_PORT environment variables to be set. Usually they are not nec-
essary.

Default: undefined

Example:

sge_qmaster_port=536

sge_execd_port

[lrms]

Synopsis: sge_execd_port = port

Description: The SGE port options should be used in case SGE command line clients requre
SGE_QMASTER_PORT and SGE_EXECD_PORT environment variables to be set. Usually they are not
necessary.

Default: undefined

Example:

sge_execd_port=537

sge_jobopts

[lrms]

Synopsis: sge_jobopts = string

Description: Additional SGE options to be used when submitting jobs to SGE

Default: undefined

Example:

sge_jobopts=-P atlas -r yes

slurm_bin_path

[lrms]

Synopsis: slurm_bin_path = path

Description: Path to SLURM binaries, must be set if installed outside of normal PATH

Default: /usr/bin

Example:

slurm_bin_path=/usr/bin

5.1. ARC Configuration Reference Document 29

NorduGrid ARC 7 Documentation, Release ARC7

slurm_wakeupperiod

[lrms]

Synopsis: slurm_wakeupperiod = numsec

Description: How long should infosys wait before querying SLURM for new data (seconds)

Default: 30

Example:

slurm_wakeupperiod=15

slurm_use_sacct

[lrms]

Synopsis: slurm_use_sacct = yes/no

Description: Indicates whether ARC should use sacct instead of scontrol to obtain information about finished jobs

Allowed values: yes, no

Default: yes

Example:

slurm_use_sacct=yes

slurm_requirements

[lrms]

Synopsis: slurm_requirements = string

Description: Use this option to specify extra SLURM-specific parameters.

Default: undefined

Example:

slurm_requirements=memory on node >> 200

slurm_query_retries

[lrms]

Synopsis: slurm_query_retries = number

Description: Number of sacct/scontrol retries performed in scan-SLURM-job If slurm is overloaded the
sacct/scontrol command call may fail. If retries > 1 sacct/scontrol is retried after some seconds for that(those)
particular job(s). If all retry attempts fail, the next scan-SLURM-job institiation will pick up the job(s) from last
time.

Default: 1

Example:

slurm_query_retries=3

30 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

lsf_bin_path

[lrms]

Synopsis: lsf_bin_path = path

Description: The PATH to LSF bin folder

Default: /usr/bin

Example:

lsf_bin_path=/usr/local/lsf/bin/

lsf_profile_path

[lrms]

Synopsis: lsf_profile_path = path

Description: Path to the profile.lsf file. Infoprovider scripts will source profile.lsf to setup LSF utilites environment.

Default: /usr/share/lsf/conf/profile.lsf

Example:

lsf_profile_path=/usr/local/share/lsf/conf/profile.lsf

lsf_architecture

[lrms]

Synopsis: lsf_architecture = string

Description: CPU architecture to request when submitting jobs to LSF. Use only if you know what you are doing.

Default: undefined

Example:

lsf_architecture=PowerPC

ll_bin_path

[lrms]

Synopsis: ll_bin_path = path

Description: The PATH to the LoadLeveler bin folder

Default: /usr/bin

Example:

ll_bin_path=/opt/ibmll/LoadL/full/bin

5.1. ARC Configuration Reference Document 31

NorduGrid ARC 7 Documentation, Release ARC7

ll_consumable_resources

[lrms]

Synopsis: ll_consumable_resources = yes/no

Description: Indicates whether the LoadLeveler setup is using Consumable Resources.

Allowed values: yes, no

Default: no

Example:

ll_consumable_resources=yes

boinc_db_host

[lrms]

Synopsis: boinc_db_host = hostname

Description: Connection strings for the boinc database: host

Default: localhost

Example:

boinc_db_host=localhost

boinc_db_port

[lrms]

Synopsis: boinc_db_port = port

Description: Connection strings for the boinc database: port

Default: 3306

Example:

boinc_db_port=3306

boinc_db_name

[lrms]

Synopsis: boinc_db_name = db_name

Description: Connection strings for the boinc database: db_name

Default: undefined

Example:

boinc_db_name=myproject

32 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

boinc_db_user

[lrms]

Synopsis: boinc_db_user = user

Description: Connection strings for the boinc database: db_user

Default: undefined

Example:

boinc_db_user=boinc

boinc_db_pass

[lrms]

Synopsis: boinc_db_pass = pwd

Description: Connection strings for the boinc database: pwd

Default: undefined

Example:

boinc_db_pass=password

boinc_app_id - ID of the app handled by this CE. Setting this option makes database queries much faster in large
projects with many apps.

Default: undefined

Example:

boinc_app_id=1

boinc_project_dir - Base directory of the BOINC project

Default: undefined

Example:

boinc_project_dir=/home/boinc

[arex] block

The [arex] block, together with its various subblocks, configures the A-REX service hosted in arched. A-REX
takes care of various middleware tasks on the frontend such as job creation and management, stagein/stageout,
LRMS job submission, data caching, etc. . .

5.1. ARC Configuration Reference Document 33

NorduGrid ARC 7 Documentation, Release ARC7

user

[arex]

Synopsis: user = user[:group]

Description: Switch to a non root user/group after startup. Use with caution because of limited functionality when
arex is not run under root.

Default: root

Example:

user=grid:grid

norootpower

[arex]

Synopsis: norootpower = yes|no

Description: If set to yes, all job management processes will switch to mapped user’s identity while accessing
session directory. This is useful if session directory is on NFS with root squashing turned on.

Allowed values: yes, no

Default: no

Example:

norootpower=yes

delegationdb

[arex]

Synopsis: delegationdb = db_name

Description: specify which DB to use to store delegations. Currently supported db_names are bdb and sqlite

Default: sqlite

Example:

delegationdb=sqlite

watchdog

[arex]

Synopsis: watchdog = yes/no

Description: Specifies if additional watchdog processes is spawned to restart main process if it is stuck or dies.

Allowed values: yes, no

Default: no

Example:

watchdog=no

34 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

loglevel

[arex]

Synopsis: loglevel = level

Description: Set loglevel of the arched daemon hosting A-REX service between 0 (FATAL) and 5 (DEBUG).
Defaults to 3 (INFO).

Allowed values: 0, 1, 2, 3, 4, 5, FATAL, ERROR, WARNING, INFO, VERBOSE, DEBUG

Default: 3

Example:

loglevel=3

logfile

[arex]

Synopsis: logfile = path

Description: Specify A-REX log file location. If using an external log rotation tool be careful to make sure it
matches the path specified here.

Default: /var/log/arc/arex.log

Example:

logfile=/var/log/arc/arex.log

joblog

[arex]

Synopsis: joblog = path

Description: Specifies where to store specialized log about started and finished jobs. If path is empty log is NOT
written. Controlled by logrotate if deafult name is kept. This log is not used by any other part of ARC so can be
safely disabled if you are not interested in storing jobs log.

Default: /var/log/arc/arex-jobs.log

Example:

joblog=

fixdirectories

[arex]

Synopsis: fixdirectories = yes/missing/no

Description: Specifies during startup A-REX should create all directories needed for it operation and set suitable
default permissions. If no is specified then A-REX does nothing to prepare its operational environment. In case of
missingA-REX only creates and sets permissions for directories which are not present yet. For yes all directories
are created and permissions for all used directories are set to default safe values.

Allowed values: yes, missing, no

Default: yes

5.1. ARC Configuration Reference Document 35

NorduGrid ARC 7 Documentation, Release ARC7

Example:

fixdirectories=yes

controldir

[arex]

Synopsis: controldir = path

Description: The directory of the A-REX’s internal job metadata files. For a heavy loaded computing elements
you can consider to locate controldir on a dedicated partition optimized for small random reads and writes. The
directory is not needed on the nodes.

Default: /var/spool/arc/jobstatus

Example:

controldir=/var/spool/arc/jobstatus

sessiondir

[arex]

Synopsis: sessiondir = path [drain]

Description: the directory which holds the sessiondirs of the grid jobs. Multiple session directories may be speci-
fied. In this case jobs are spread evenly over the session directories. If sessiondir=* is set, the session directory
will be spread over the ${HOME}/.jobs directories of every locally mapped unix user. It is preferred to use com-
mon session directories. The path may be followed by drain, in which case no new jobs will be assigned to that
sessiondir, but current jobs will still be processed and accessible.

This option in multivalued.

Default: /var/spool/arc/sessiondir

Example:

sessiondir=/scratch/arcsessions drain
sessiondir=*

defaultttl

[arex]

Synopsis: defaultttl = [ttl [ttr]]

Description: The ttl parameter sets the time in seconds for how long a job session directory will survive after job
execution has finished. If not specified the default is 1 week. The ttr parameter sets how long information about a
job will be kept after the session directory is deleted. If not specified, the ttr default is one month.

Default: 604800 2592000

Example:

defaultttl=2592000

36 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

shared_filesystem

[arex]

Synopsis: shared_filesystem = yes/no

Description: Specifies if computing nodes can access folders mounted with protocols like NFS with the same
pathnames as the frontend.

Note: the default ‘yes’ assumes that the paths to the session directories are the same on both frontend and nodes.
If these paths are not the same, then one should set the scratchdir option.

The option changes the RUNTIME_NODE_SEES_FRONTEND variable in the submission scripts.

Allowed values: yes, no

Default: yes

Example:

shared_filesystem=yes

scratchdir

[arex]

Synopsis: scratchdir = path

Description: The path on computing node to move session directory to before execution. If defined should contain
the path to the directory on the computing node which can be used to store a jobs’ files during execution. Sets the
environment variable RUNTIME_LOCAL_SCRATCH_DIR. If the variable is not set, then the session dir is not
moved before execution. Don’t set this parameter unless you want to move the sessiondir to scratchdir on the node.

Default: undefined

Example:

scratchdir=/local/scratch/

shared_scratch

[arex]

Synopsis: shared_scratch = path

Description: The path on frontend where scratchdir can be found. If defined should contain the path cor-
responding to that set in scratchdir as seen on the frontend machine. Sets the environment variable RUN-
TIME_FRONTEND_SEES_NODE.

Default: undefined

Example:

shared_scratch=/mnt/scratch

5.1. ARC Configuration Reference Document 37

NorduGrid ARC 7 Documentation, Release ARC7

tmpdir

[arex]

Synopsis: tmpdir = path

Description: A temporary directory used by A-REX.

Default: /tmp

Example:

tmpdir=/tmp

runtimedir

[arex]

Synopsis: runtimedir = path

Description: The directory which holds the additional runtimeenvironment scripts, added by system administrator.
Several directories can be specified. To enable RTEs to be advertised in the information system and used during
submission the arcctl tool should be used.

This option in multivalued.

Default: undefined

Example:

runtimedir=/var/spool/arc/extraruntimes
runtimedir=/cvmfs/vo/arcruntime

maxjobs

[arex]

Synopsis: maxjobs = number1 number2 number3 number4 number5

Description: specifies maximum allowed number of jobs:

• number1 - jobs which are not in FINISHED state (jobs tracked in RAM)

• number2 - jobs being run (SUBMITTING, INLRMS states)

• number3 - jobs being processed per DN

• number4 - jobs in whole system

• number5 - LRMS scripts limit (jobs in SUBMITTING and CANCELING)

A parameter set to -1 means no limit.

Default: -1 -1 -1 -1 -1

Example:

maxjobs=10000 10 2000 -1 -1

38 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

maxrerun

[arex]

Synopsis: maxrerun = number

Description: Specifies how many times job can be rerun if it failed in LRMS. This is only an upper limit, the actual
rerun value is set by the user in his xrsl.

Default: 5

Example:

maxrerun=5

statecallout

[arex]

Synopsis: statecallout = state options plugin_path [plugin_arguments]

Description: Enables a callout feature of A-REX: every time job goes to state A-REX will run plugin_path
executable. The following states are allowed: ACCEPTED, PREPARING, SUBMIT, FINISHING, FINISHED and
DELETED. Options consist of key=value pairs separated by comma. Possible keys are:

timeout
defines the timeout in seconds to wait for plugin execution (timeout= can be omitted).

onsuccess, onfailure, ontimeout
defines the action that A-REX should take on succesfull execution (exit code 0), failed execution
(exit code is not 0) or execution timeout respectively.

Possible actions are:

• pass - continue executing job,

• fail - cancel job,

• log - write to log about the failure and continue executing job.

It is possible to use following sugstitutions to construct plugin command line:

• %R - session root (value of sessiondir in [arex] block)

• %C - controldir path

• %U - username of mapped UNIX account

• %u - numeric UID of mapped UNIX account

• %g - numeric GID of mapped UNIX account

• %H - home directory of mapped UNIX account as specified in /etc/passwd

• %Q - default queue (see lrms configuration option in [lrms] block)

• %L - LRMS name (see lrms configuration option in [lrms] block)

• %W - ARC installation path (corresponds to the ARC_LOCATION environmental variable)

• %F - path to configuration file for this instance

• %I - job ID (substituted in runtime)

• %S - job state (substituted in runtime)

Plugins included into ARC distribution:

• arc-blahp-logger - write accounting log for every finished job in BLAH format

5.1. ARC Configuration Reference Document 39

NorduGrid ARC 7 Documentation, Release ARC7

This option in multivalued.

Default: undefined

Example:

statecallout=FINISHED timeout=10,onfailure=pass /usr/libexec/arc/arc-blahp-logger -I
↪→%I -U %u -L %C/job.%I.local -P %C/job.%I.proxy

wakeupperiod

[arex]

Synopsis: wakeupperiod = time

Description: Specifies how often A-REX checks for new jobs arrived, job state change requests, etc. That is
responsiveness of A-REX. time is time period in seconds. Default is 3 minutes. Usually no need to change this
parameter because important state changes are also triggering out-of-schedule checks.

Note: this parameter does not affect responsiveness of backend scripts - especially scan-<LRMS>-job. That
means that upper estimation of time for

detecting job finished executing is sum of responsiveness of backend script + wakeupperiod.

Default: 180

Example:

wakeupperiod=180

infoproviders_timelimit

[arex]

Synopsis: infoproviders_timelimit = seconds

Description: Sets the execution time limit of the infoprovider scripts started by the A-REX. Infoprovider scripts
running longer than the specified timelimit are gracefully handled by the A-REX (the behaviour depends on the
state of the system) Increase this value if you have many jobs in the controldir and infoproviders need more time
to process.

Default: 10800

Example:

infoproviders_timelimit=10800

pidfile

[arex]

Synopsis: pidfile = path

Description: Specify location of file containing PID of daemon process.

Default: /run/arched-arex.pid

Example:

40 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

pidfile=/run/arched-arex.pid

mail

[arex]

Synopsis: mail = email_address

Description: Specifies the email address from where the notification mails are sent

Default: $VAR{user}@$VAR{[common]hostname}

Example:

mail=grid.support@somewhere.org

helper

[arex]

Synopsis: helper = user executable arguments

Description: By enabling this parameter A-REX will run an external helper program under the user useraccount.
The program will be kept running, every time the executable finishes it will be started again. As a limitation,
currently only ‘.’ is supported as username, which corresponds to the user running A-REX.

Default: undefined

Example:

helper=. /usr/local/bin/myutility

helperlog

[arex]

Synopsis: helperlog = path

Description: Configuration option to specify the location of log for helpers.

Default: /var/log/arc/job.helper.errors

Example:

helperlog=/var/log/arc/job.helper.errors

forcedefaultvoms

[arex]

Synopsis: forcedefaultvoms = VOMS_FQAN

Description: specify VOMS FQAN which user will be assigned if his/her credentials contain no VOMS attributes.
To assign different values to different queues put this command into [queue] block.

Default: undefined

Example:

5.1. ARC Configuration Reference Document 41

NorduGrid ARC 7 Documentation, Release ARC7

forcedefaultvoms=/vo/group/subgroup

tokenscopes

[arex]

Synopsis: tokenscopes = action=scope[,action=scope[...]]

Description: assigns JWT token scopes required to perform specific actions. Multiple tokenscopes entries are
allowed. Following actions are supported:

• info - information about server

• jobinfo - information about jobs

• jobcreate - create new job or restart existing

• jobcancel - cancel active jobs

• jobdelete - remove jobs from server

• datainfo - information about files in session directory

• datawrite - create new or modify files in session directory

• dataread - read files in session directory

The action=scope pairs can be replaced with identifier which works as shortcut for multiple actions and scopes.
Only currently supported shortcut identifier is wlcg (see below)

Default: undefined

Following example assigns scopes according to WLCG profile and alternatively can be defined by
tokenscopes=wlcg.

Example:

tokenscopes=jobinfo=compute.read,jobcreate=compute.create,jobcancel=compute.cancel,
↪→jobdelete=compute.cancel
tokenscopes=datainfo=compute.read,datawrite=compute.modify,dataread=compute.read

Warning: CHANGE: NEW in 7.0.0.

[arex/cache] block

This subblock enables and configures the cache functionality of A-REX. A-REX can cache input files downloaded
as part of the stage-in process of grid jobs so that subsequent jobs requiring the same file don’t have to download
it again. The cached file will be symlinked (or copied) into the session directory of the job. To disable to cache
functionality simply comment out the [arex/cache] config block. It is a good idea to have the cache on its own
separate file system that is shared with the nodes. For more information about the cache functionality of A-REX
consult the Data Cache technical description in the online documentation.

42 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

cachedir

[arex/cache]

Synopsis: *cachedir = cache_path [link_path]

Description: Specifies a directory to store cached data. Multiple cache directories may be specified. Cached data
will be distributed evenly over the caches. Optional link_path specifies the path at which the cache_path is
accessible on computing nodes, if it is different from the path on the A-REX host. If link_path is set to . files are
not soft-linked, but copied to session directory. If a cache directory needs to be drained, then link_path should
specify drain, in which case no new files will be added to the cache and files in the cache will no longer be used.
Setting link_path to readonly ensures that no new files are written to this cache, but existing files can still be
used. Draining and read-only caches are not cleaned by the A-REX cache cleaner. A restart of A-REX is required
when changing cache options.

This option in multivalued.

Default: undefined

Example:

cachedir=/scratch/cache
cachedir=/shared/cache /frontend/jobcache
cachedir=/fs1/cache drain

[arex/cache/cleaner] block

This subblock enables the cleaning functionality of the cache. If this block is not enabled then the cache will not
be cleaned by A-REX. Either cachesize or cachelifetime should also be set to enable cleaning.

logfile

[arex/cache/cleaner]

Synopsis: logfile = path

Description: sets the filename where output of the cache-clean tool should be logged. Defaults to
/var/log/arc/cache-clean.log.

Default: /var/log/arc/cache-cleaner.log

Example:

logfile=/tmp/cache-clean.log

loglevel

[arex/cache/cleaner]

Synopsis: loglevel = level

Description: specifies the level of logging by the cache-clean tool, between 0 (FATAL) and 5 (DEBUG). Defaults
to 3 (INFO).

Allowed values: 0, 1, 2, 3, 4, 5, FATAL, ERROR, WARNING, INFO, VERBOSE, DEBUG

Default: 3

Example:

loglevel=4

5.1. ARC Configuration Reference Document 43

NorduGrid ARC 7 Documentation, Release ARC7

cachesize

[arex/cache/cleaner]

Synopsis: cachesize = max min

Description: Specifies high and low watermarks for space used by cache, as a percentage of the space on the file
system on which the cache directory is located. When the max is exceeded, files will be deleted to bring the used
space down to the min level. It is a good idea to have the cache on its own separate file system.

Default: 100 100

Example:

cachesize=50 20

calculatesize

[arex/cache/cleaner]

Synopsis: calculatesize = filesystem/cachedir

Description: specifies the way the space occupied by the cache will be calculated. If set to cachedir then cache-
clean calculates the size of the cache instead of using filesystem used space.

Allowed values: filesystem, cachedir

Default: filesystem

Example:

calculatesize=cachedir

cachelifetime

[arex/cache/cleaner]

Synopsis: cachelifetime = time

Description: Turns on time-based file cleaning. Files accessed less recently than the given time period will be
deleted. Example values of this option are 1800, 90s, 24h, 30d. When no suffix is given the unit is seconds.

Default: undefined

Example:

cachelifetime=30d

cachespacetool

[arex/cache/cleaner]

Synopsis: cachespacetool = path [options]

Description: specifies an alternative tool to df that cache-clean should use to obtain space information on the cache
file system. The output of this command must be total_bytes used_bytes. The cache directory is passed as
the last argument to this command.

Default: undefined

Example:

44 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

cachespacetool=/etc/getspace.sh

cachecleantimeout

[arex/cache/cleaner]

Synopsis: cachecleantimeout = time

Description: the timeout in seconds for running the cache-clean tool. If using a large cache or slow file system this
value can be increased to allow the cleaning to complete. Defaults to 3600 (1 hour).

Default: 3600

Example:

cachecleantimeout=10000

[arex/data-staging] block

This subblock enables and configures the data staging capabilities of A-REX. A subsystem called DTR (Data
Transfer Reloaded) is responsible for collecting input data for a job before submission to the LRMS, and for staging
out data after the job has finished. Automagic data staging of A-REX is a very powerful feature, disabling this
functionality (by commenting out the subblock) is not recommended.

loglevel

[arex/data-staging]

Synopsis: loglevel = number

Description: Sets the log level for transfer logging in job.id.errors files, between 0 (FATAL) and 5 (DEBUG).
Default is to use value set by loglevel option in [arex] section.

Allowed values: 0, 1, 2, 3, 4, 5, FATAL, ERROR, WARNING, INFO, VERBOSE, DEBUG

Default: $VAR{[arex]loglevel}

Example:

loglevel=4

logfile

[arex/data-staging]

Synopsis: logfile = path

Description: A central file in which all data staging messages from every job will be collected and logged in
addition to their job.id.errors files. If this option is not present or the path is empty the log file is not created. This
file is not automatically controlled by logrotate unless you name it as /var/log/arc/datastaging.log.

Default: undefined

Example:

logfile=/var/log/arc/datastaging.log

5.1. ARC Configuration Reference Document 45

NorduGrid ARC 7 Documentation, Release ARC7

statefile

[arex/data-staging]

Synopsis: statefile = path

Description: A file in which data staging state information (for monitoring and recovery purposes) is periodically
dumped.

Default: $VAR{[arex]controldir}/dtr.state

Example:

statefile=/tmp/dtr.state

usehostcert

[arex/data-staging]

Synopsis: usehostcert = yes/no

Description: Whether the A-REX host certificate should be used for communication with remote hosts instead of
the users’ proxies.

Allowed values: yes, no

Default: no

Example:

usehostcert=yes

maxtransfertries

[arex/data-staging]

Synopsis: maxtransfertries = number

Description: the maximum number of times download and upload will be attempted per job (retries are only
performed if an error is judged to be temporary)

Default: 10

Example:

maxtransfertries=20

passivetransfer

[arex/data-staging]

Synopsis: passivetransfer = yes/no

Description: If yes, gridftp transfers are passive. Setting this option to yes can solve transfer problems caused by
firewalls.

Allowed values: yes, no

Default: yes

Example:

46 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

passivetransfer=yes

globus_tcp_port_range

[arex/data-staging]

Synopsis: globus_tcp_port_range = port_range

Description: In a firewalled environment the software which uses GSI needs to know what ports are available. This
parameter is only needed if passivetransfer=no was set. These variable are similar to the Globus enviroment
variables GLOBUS_TCP_PORT_RANGE and GLOBUS_UDP_PORT_RANGE.

Default: 9000,9300

Example:

globus_tcp_port_range=9000,12000

globus_udp_port_range

[arex/data-staging]

Synopsis: globus_udp_port_range = port_range

Description: In a firewalled environment the software which uses GSI needs to know what ports are available. This
parameter is only needed if passivetransfer=no was set. These variable are similar to the Globus enviroment
variables GLOBUS_TCP_PORT_RANGE and GLOBUS_UDP_PORT_RANGE.

Default: 9000,9300

Example:

globus_udp_port_range=9000,12000

httpgetpartial

[arex/data-staging]

Synopsis: httpgetpartial = yes/no

Description: If yes, HTTP GET transfers may transfer data in chunks/parts. If no - data is always transfered in one
piece.

Allowed values: yes, no

Default: no

Example:

httpgetpartial=no

5.1. ARC Configuration Reference Document 47

NorduGrid ARC 7 Documentation, Release ARC7

speedcontrol

[arex/data-staging]

Synopsis: speedcontrol = min_speed min_time min_average_speed max_inactivity

Description: specifies how slow data transfer must be to trigger error. Transfer is cancelled if speed is below
min_speed bytes per second for at least min_time seconds, or if average rate is below min_average_speed bytes per
second, or no data was transferred for longer than max_inactivity seconds. Value of zero turns feature off.

Default: 0 300 0 300

Example:

speedcontrol=0 300 100 300
speedcontrol=

maxdelivery

[arex/data-staging]

Synopsis: maxdelivery = number

Description: Maximum number of concurrent file transfers, i.e. active transfers using network bandwidth. This is
the total number for the whole system including any remote staging hosts.

Default: 10

Example:

maxdelivery=40

maxprocessor

[arex/data-staging]

Synopsis: maxprocessor = number

Description: Maximum number of concurrent files in each of the DTR internal pre- and post-processing states, eg
cache check or replica resolution.

Default: 10

Example:

maxprocessor=20

maxemergency

[arex/data-staging]

Synopsis: maxemergency = number

Description: Maximum emergency slots which can be assigned to transfer shares when all slots up to the limits
configured by the above two options are used by other shares. This ensures shares cannot be blocked by others.

Default: 1

Example:

maxemergency=5

48 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

maxprepared

[arex/data-staging]

Synopsis: maxprepared = number

Description: Maximum number of files in a prepared state, i.e. pinned on a remote storage such as SRM for
transfer. A good value is a small multiple of maxdelivery.

Default: 200

Example:

maxprepared=250

sharepolicy

[arex/data-staging]

Synopsis: sharepolicy = grouping

Description: Defines the mechanism to be used for the grouping of the job transfers. DTR assigns the transfers to
shares, so that those shares can be assigned to different priorities. Possible values for grouping are dn, voms:vo,
voms:role and voms:group:

dn
each job is assigned to a share based on the DN of the user sumbitting the job.

voms:vo
each job is assigned to a share based on the VO specified in the proxy.

voms:role
each job is assigned to a share based on the role specified in the first attribute found in the proxy.

voms:group
each job is assigned to a share based on the group specified in the first attribute found in the
proxy.

In case of the voms schemes, if the proxy is not a VOMS proxy, then a default share is used. If sharepolicy is not
set then the client-defined priority is applied.

Default: undefined

Example:

sharepolicy=voms:role

sharepriority

[arex/data-staging]

Synopsis: sharepriority = share priority

Description: Defines a share with a fixed priority, different from the default (50). Priority is an integer between 1
(lowest) and 100 (highest).

This option in multivalued.

Default: undefined

Example:

sharepriority=myvo:students 20
sharepriority=myvo:production 80

5.1. ARC Configuration Reference Document 49

NorduGrid ARC 7 Documentation, Release ARC7

copyurl

[arex/data-staging]

Synopsis: copyurl = url_head local_path

Description: Configures a mapping of URLs to locally- accessible paths. If a URL starts with url_head, the
local_path will be substituted for the actual transfer. Applies to both input and output files.

Note: local_path can also be of URL type.

This option in multivalued.

Default: undefined

Example:

copyurl=gsiftp://example.org:2811/data/ /data/
copyurl=gsiftp://example2.org:2811/data/ /data/

Warning: CHANGE: MODIFIED in 7.0.0 - applies also to output files

linkurl

[arex/data-staging]

Synopsis: linkurl = url_head local_path [node_path]

Description: Identical to copyurl, configures DTR so that for certain URLs files won’t be downloaded or copied
(in case of copyurl), but soft-link will be created. The local_path specifies the way to access the file from the
frontend, and is used to check permissions. The node_path specifies how the file can be accessed from computing
nodes, and will be used for soft-link creation. If node_path is missing - local_path will be used. This option
applies only to input files.

This option in multivalued.

Default: undefined

Example:

linkurl=gsiftp://somewhere.org/data /data
linkurl=gsiftp://example.org:2811/data/ /scratch/data/

preferredpattern

[arex/data-staging]

Synopsis: preferredpattern = pattern

Description: specifies a preferred pattern on which to sort multiple replicas of an input file. It consists of one or
more patterns separated by a pipe character (|) listed in order of preference. Replicas will be ordered by the earliest
match. If the dollar character ($) is used at the end of a pattern, the pattern will be matched to the end of the
hostname of the replica. If an exclamation mark (!) is used at the beginning of a pattern, any replicas matching the
pattern will be excluded from the sorted replicas.

Default: undefined

Example:

50 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

preferredpattern=srm://myhost.ac.uk|.uk$|ndgf.org$|badhost.org$

The following options are used to configure multi-host data staging deployment scenario. In that setup a couple of
additional data staging boxes are enabled to off-load data transfers.

deliveryservice

[arex/data-staging]

Synopsis: deliveryservice = URL

Description: The URL to a remote data delivery service which can perform remote data staging.

Default: undefined

Example:

deliveryservice=https://myhost.org:443/datadeliveryservice

localdelivery

[arex/data-staging]

Synopsis: localdelivery = yes/no

Description: If any deliveryservice is defined, this option determines whether local data transfer is also performed.

Allowed values: yes, no

Default: no

Example:

localdelivery=yes

remotesizelimit

[arex/data-staging]

Synopsis: remotesizelimit = size

Description: Lower limit on file size (in bytes) of files that remote hosts should transfer. Can be used to increase
performance by transferring small files using local processes.

Default: undefined

Example:

remotesizelimit=100000

5.1. ARC Configuration Reference Document 51

NorduGrid ARC 7 Documentation, Release ARC7

[arex/ws] block

A-REX exposes a set of Web Service interfaces that can be used to create and manage jobs, obtain information
about the CE and the jobs, handle delegations, access cache information, so on. Comment out this block if you
don’t want to provide WS-interfaces for various A-REX functionalities.

wsurl

[arex/ws]

Synopsis: wsurl = url

Description: Specifies the base URL under which the web service intrefaces will be available. The URL argument
must be a full URL consisting of protocol+host+port+path: e.g. https://<hostname>:<port>/<path> Make
sure the chosen port is not blocked by firewall or other security rules.

Default: https://$VAR{[common]hostname}:443/arex

Example:

wsurl=https://piff.hep.lu.se:443/arex

logfile

[arex/ws]

Synopsis: logfile = path

Description: Specify log file location for WS-interface operations.

Default: /var/log/arc/ws-interface.log

Example:

logfile=/var/log/arc/ws-interface.log

pidfile

[arex/ws]

Synopsis: pidfile = path

Description: Specify location of file containing PID of daemon process.

Default: /run/arched-arex-ws.pid

Example:

pidfile=/run/arched-arex-ws.pid

52 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

max_job_control_requests

[arex/ws]

Synopsis: max_job_control_requests = number

Description: The max number of simultaneously processed job management requests over WS interface - like job
submission, cancel, status check etc.

Default: 100

Example:

max_job_control_requests=100

max_infosys_requests

[arex/ws]

Synopsis: max_infosys_requests = number

Description: The max number of simultaneously processed info requests over WS interface.

Default: 1

Example:

max_infosys_requests=1

max_data_transfer_requests

[arex/ws]

Synopsis: max_data_transfer_requests = number

Description: The max number of simultaneously processed data transfer requests over WS interface - like data
staging.

Default: 100

Example:

max_data_transfer_requests=100

tlsciphers

[arex/ws]

Synopsis: tlsciphers = ciphers_list

Description: Override OpenSSL ciphers list enabled on server

Default: HIGH:!eNULL:!aNULL

Example:

tlsciphers=HIGH:!eNULL:!aNULL

5.1. ARC Configuration Reference Document 53

NorduGrid ARC 7 Documentation, Release ARC7

tlsserverorder

[arex/ws]

Synopsis: tlsserverorder = yes

Description: Force priority order of ciphers for TLS connection to be decided on server sid

Default: no

Example:

tlsserverorder=yes

Warning: CHANGE: NEW in 7.0.0.

tlsprotocols

[arex/ws]

Synopsis: tlsprotocols = SSL/TLS protocols

Description: Specify which protocols to enable This is space separated list of values - SSLv2 SSLv3 TLSv1.0
TLSv1.1 TLSv1.2 TLSv1.3

Default: TLSv1.2 TLSv1.3

Example:

tlsprotocols=TLSv1.2 TLSv1.3

tlscurve

[arex/ws]

Synopsis: tlscurve = curve

Description: Specify SSL/TLS ECDH curve name (SN)

Default: secp521r1

Example:

tlscurve=secp521r1

[arex/ws/jobs] block

This block enables the job management, info query, delegation protocols through REST interface. Read http:
//www.nordugrid.org/arc/arc7/tech/rest/rest.html for the REST interface specification.

54 Chapter 5. Documentation for Infrastructure Admins

http://www.nordugrid.org/arc/arc7/tech/rest/rest.html
http://www.nordugrid.org/arc/arc7/tech/rest/rest.html

NorduGrid ARC 7 Documentation, Release ARC7

allownew

[arex/ws/jobs]

Synopsis: allownew = yes/no

Description: The ‘allownew’ config parameter sets if the Computing Element accepts submission of new jobs via
the WS-interface. This parameter can be used to close down the CE.

Allowed values: yes, no

Default: yes

Example:

allownew=yes

allownew_override

[arex/ws/jobs]

Synopsis: allownew_override = [authgroup ...]

Description: Defines which authorization groups are allowed to submit new jobs via the WS-interfaces when the
CE is closed with allownew=no

Note: it requires the allownew=no to be set.

This option in multivalued.

Default: undefined

Example:

allownew_override=biousers atlasusers
allownew_override=yourauthgroup

allowaccess

[arex/ws/jobs]

Synopsis: allowaccess = authgroup

Description: Defines that the specified authgroup members are authorized to access the ARC-CE via this inter-
face. A related config option the denyaccess (see below) can be used to reject access. Multiple allowaccess
and denyaccess authorization statements are allowed within a configuration block. These statements are pro-
cessed sequentially in the order they are specified in the config block. The processing stops on first allowaccess
or denyaccess statement matching the authgroup membership. If there are no authorization statements speci-
fied, then no additional restrictions are applied for authorizing user access and the interface is open to everybody
authenticated.

Default: undefined

This option in multivalued.

Example:

allowaccess=biousers
allowaccess=atlasusers

5.1. ARC Configuration Reference Document 55

NorduGrid ARC 7 Documentation, Release ARC7

denyaccess

[arex/ws/jobs]

Synopsis: denyaccess = authgroup

Description: Defines that the specified authgroup members are REJECTED, not authorized to access the ARC-CE
via this interface.

Note: a related config option the allowaccess (see above) can be used to grant access.

Multiple denyaccess and allowaccess authorization statements are allowed within a configuration block. These
statements are processed sequentially in the order they are specified in the config block. The processing stops on
first allowaccess or denyaccess statement matching the authgroup membership. If there are no authorization
statements specified, then no additional restrictions are applied for authorizing user access and the interface is open
to everybody authenticated.

Default: undefined

This option in multivalued.

Example:

denyaccess=blacklisted-users

maxjobdesc

[arex/ws/jobs]

Synopsis: maxjobdesc = size

Description: specifies maximal allowed size of job description in bytes. Default value is 5MB. Use 0 to set unlim-
ited size.

Default: 5242880

Example:

maxjobdesc=0

[arex/ws/publicinfo] block

AREX allows access to public informaton for non-authorized users. Presence of this block enables such feature.

Warning: TODO: remove when implicitly enabled in code

allowaccess

[arex/ws/publicinfo]

Synopsis: allowaccess = authgroup

Description: Defines that the specified authgroup members are authorized to access public information. For more
information see similar configuration option in [arex/ws/jobs] block.

Default: undefined

This option in multivalued.

56 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Example:

allowaccess=monitors

denyaccess

[arex/ws/publicinfo]

Synopsis: denyaccess = authgroup

Description: Defines that the specified authgroup members are REJECTED, not authorized to access public infor-
mation. For more information see similar configuration option in [arex/ws/jobs] block.

Default: undefined

This option in multivalued.

Example:

denyaccess=badactors

[arex/ws/cache] block

The content of the A-REX cache can be accessed via a WS-interface. Configuring this block will allow reading
cache files through a special URL. For example, if the remote file gsiftp://remotehost/file1 is stored in the cache and
the WS interfaces (configured above) are available via wsurl of https://hostname:443/arex/, then the cached copy
of the file can be access via the following special URL: https://hostname:443/arex/cache/gsiftp://remotehost/file1
Comment out this block if you don’t want to expose the cache content via WS-interface.

cacheaccess

[arex/ws/cache]

Synopsis: cacheaccess = rule

Description: This parameter defines the access control rules for the cache wsinterface, the rules for allowing access
to files in the cache remotely through the A-REX web interface. If not set, then noone can access anything. The
default is not set that means complete denial. A rule has three parts:

1. Regular expression defining a URL pattern

2. Credential attribute to match against a client’s credential

3. Regular expression defining a credential value to match against a client’s credential

A client is allowed to access the cached file if a URL pattern matches the cached file URL and the client’s credential
has the attribute and matches the value required for that pattern. Possible values for credential attribute are dn,
voms:vo, voms:role and voms:group.

This option in multivalued.

Default: undefined

Example:

cacheaccess=gsiftp://host.org/private/data/.* voms:vo myvo:production
cacheaccess=gsiftp://host.org/private/data/bob/.* dn /O=Grid/O=NorduGrid/.*

5.1. ARC Configuration Reference Document 57

NorduGrid ARC 7 Documentation, Release ARC7

[arex/ws/candypond] block

The CandyPond (Cache and deliver your pilot on-demand data) A-REX Web Service exposes various useful data-
staging related operations for the pilot job model where input data for jobs is not known until the job is running on
the worker node. This service is intended to be used by A-REX managed jobs. This service requires the [arex/
data-staging] functionality. To use service from the job context enable EVN/CANDYPOND RTE.

The CandyPond service is available via the wsurl/candypond URL (e.g. https://hostname:443/arex/candypond)

[arex/jura] block

A-REX is responsible for collecting accounting measurements from various ARC subsystems, including batch
system backends and DTR data staging.

A-REX writes all accounting data into the local accounting database that can be queried with arcctl
accounting.

JURA is the accounting record generating and reporting ARC CE module. A-REX periodically executes JURA to
create usage records based on the accounting target configuration and accounting database data.

Enable and configure this block if you want to send accounting records to accounting services.

Note: a dedicated accounting target subblock is needed for every accounting destination. The tar-
get subblocks are either of a type apel or sgas: [arex/jura/apel:targetname] or [arex/jura/
sgas:targetname].

logfile

[arex/jura]

Synopsis: logfile = path

Description: The name of the jura logfile.

Default: /var/log/arc/jura.log

Example:

logfile=/var/log/arc/jura.log

loglevel

[arex/jura]

Synopsis: loglevel = number

Description: Log level for the JURA accounting module.

Allowed values: 0, 1, 2, 3, 4, 5, FATAL, ERROR, WARNING, INFO, VERBOSE, DEBUG

Default: 3

Example:

loglevel=3

58 Chapter 5. Documentation for Infrastructure Admins

https://hostname:443/arex/candypond

NorduGrid ARC 7 Documentation, Release ARC7

vomsless_vo

[arex/jura]

Synopsis: vomsless_vo = voname[#voissuer]

Description: This parameter allows the sysadmin to manually assign VOs during pubishing to jobs that were
submitted with VOMS-less grid proxies. voname is the VO name to be used in the generated records (the
same as expected in voms-proxy) optional voissuer (relevant to SGAS only) value is the VOMS server identity
(certificate DN).

Default: undefined

Example:

vomsless_vo=atlas
vomsless_vo=atlas#/DC=ch/DC=cern/OU=computers/CN=lcg-voms.cern.ch

vo_group

[arex/jura]

Synopsis: vo_group = group

Description: Adds an additional VO group attribute(s) to the usage records.

This option in multivalued.

Default: undefined

Example:

vo_group=/atlas/production

urdelivery_frequency

[arex/jura]

Synopsis: urdelivery_frequency = seconds

Description: Specifies the frequency of JURA process regular execution by the A-REX. The actual treshold of
records reporting frequency can be defined on per-target basis.

Default: 3600

Example:

urdelivery_frequency=3600

x509_host_key

[arex/jura]

Synopsis: x509_host_key = path

Description: Optional parameter to overwrite [common] block values.

Default: $VAR{[common]x509_host_key}

Example:

x509_host_key=/etc/grid-security/hostkey.pem

5.1. ARC Configuration Reference Document 59

NorduGrid ARC 7 Documentation, Release ARC7

x509_host_cert

[arex/jura]

Synopsis: x509_host_cert = path

Description: Optional parameter to overwrite [common] block values.

Default: $VAR{[common]x509_host_cert}

Example:

x509_host_cert=/etc/grid-security/hostcert.pem

x509_cert_dir

[arex/jura]

Synopsis: x509_cert_dir = path

Description: Optional parameter to overwrite [common] block values.

Default: $VAR{[common]x509_cert_dir}

Example:

x509_cert_dir=/etc/grid-security/certificates

[arex/jura/sgas:targetname] block

An SGAS sub-block of [arex/jura] enables and configures an SGAS accounting server as a target destination
to which JURA will send properly formatted usage records. You need to define a separate block with a unique
targetname for every SGAS target server.

Note that the block name will be used by JURA to track that latest records sent to this targed. Be aware that if you
rename the block, target will be handled as a new one. However targeturl change will not trigger a new target
handling.

targeturl

[arex/jura/sgas:targetname]

Synopsis: *targeturl = url

Description: The service endpoint URL of SGAS server.

Default: undefined

Example:

targeturl=https://grid.uio.no:8001/logger

60 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

localid_prefix

[arex/jura/sgas:targetname]

Synopsis: localid_prefix = prefix_string

Description: Sets a prefix value for the LocalJobID ur parameter for the SGAS usage records.

Default: undefined

Example:

localid_prefix=some_text_for_SGAS

vofilter

[arex/jura/sgas:targetname]

Synopsis: vofilter = vo

Description: Configures a job record filtering mechanism based on the VO attribute of the jobs. Only the matching
job records, which was one of VO that you set here, will be sent to the target accounting service.

This option in multivalued.

Default: undefined

Example:

vofilter=atlas
vofilter=fgi.csc.fi

urbatchsize

[arex/jura/sgas:targetname]

Synopsis: urbatchsize = number

Description: JURA sends usage records not one-by-one, but in batches. This options sets the size of a batch. Zero
value means unlimited batch size.

Default: 50

Example:

urbatchsize=80

urdelivery_frequency

[arex/jura/sgas:targetname]

Synopsis: urdelivery_frequency = seconds

Description: Add optional minimal treshold of the interval between subsequent records publishing to this target.

Note: the actual delivery interval is the value divisible by urdelivery_frequency defined in [arex/jura]
block that define the entire JURA process invocation frequency.

Default: undefined

Example:

5.1. ARC Configuration Reference Document 61

NorduGrid ARC 7 Documentation, Release ARC7

urdelivery_frequency=3600

[arex/jura/apel:targetname] block

An APEL sub-block of [arex/jura] enables and configures an APEL accounting server as a target destination
to which JURA will send properly formatted usage records. You need to define a separate block with a unique
targetname for every APEL target server.

Note that the block name will be used by JURA to track that latest records sent to this targed. Be aware that if you
rename the block, target will be handled as a new one. However targeturl change will not trigger a new target
handling.

targeturl

[arex/jura/apel:targetname]

Synopsis: *targeturl = url

Description: The service endpoint URL of the APEL accounting server.

Default: undefined

Example:

targeturl=https://msg.argo.grnet.gr

topic

[arex/jura/apel:targetname]

Synopsis: topic = topic_name

Description: Sets the name of the APEL topic to which JURA will publish the accounting records. AMS destina-
tion topic for compute element is ‘gLite-APEL’

Default: gLite-APEL

Example:

topic=/queue/global.accounting.test.cpu.central

gocdb_name

[arex/jura/apel:targetname]

Synopsis: *gocdb_name = name

Description: Can be used to specify the GOCDB name of the resource. This value would be seen as Site attribute
in the generated APEL records.

Default: undefined

Example:

gocdb_name=GRID_UIO_NO

62 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

apel_messages

[arex/jura/apel:targetname]

Synopsis: apel_messages = type

Description: Define what kind of records JURA will send to APEL services during regular publishing process.
Possible cases are: per-job EMI CAR records (urs), APEL summary records (summaries). APEL Sync messages
are always generated.

Allowed values: urs, summaries

Default: summaries

Example:

apel_messages=urs

vofilter

[arex/jura/apel:targetname]

Synopsis: vofilter = vo

Description: Configures a job record filtering mechanism based on the VO attribute of the jobs. Only the matching
job records, which was one of VO that you set here, will be sent to the target accounting service.

This option in multivalued.

Default: undefined

Example:

vofilter=atlas
vofilter=fgi.csc.fi

urbatchsize

[arex/jura/apel:targetname]

Synopsis: urbatchsize = number

Description: JURA sends usage records not one-by-one, but in batches. This options sets the size of a batch. Zero
value means unlimited batch size. 500 is recommended to avoid too large messages using AMS

Default: 500

Example:

urbatchsize=500

5.1. ARC Configuration Reference Document 63

NorduGrid ARC 7 Documentation, Release ARC7

urdelivery_frequency

[arex/jura/apel:targetname]

Synopsis: urdelivery_frequency = seconds

Description: Add optional minimal treshold of the interval between subsequent records publishing to this target.

Note: the actual delivery interval is the value divisible by urdelivery_frequency defined in [arex/jura]
block that define the entire JURA process invocation frequency.

APEL recommended value is once per day for summaries. Use smaller values for urs.

Default: 86000

Example:

urdelivery_frequency=14000

[arex/ganglia] block

This block enables the monitoring of ARC-specific metrics. Earlier versions (ARC < 6.0) relied only on the stan-
dalone tool gangliarc, ganglia is now instead integrated into ARC, and gangliarc is obsolete.

Note: AREX ganglia (as gangliarc did) depends on an existing ganglia installation, as it sends its metrics to a
running gmond process.

gmetric_bin_path

[arex/ganglia]

Synopsis: gmetric_bin_path = path

Description: The path to gmetric executable.

Default: /usr/bin/gmetric

Example:

gmetric_bin_path=/usr/local/bin/gmetric

metrics

[arex/ganglia]

Synopsis: metrics = name_of_the_metrics

Description: the metrics to be monitored. metrics takes a comma-separated list of one or more of the following
metrics:

• staging – number of tasks in different data staging states - not yet implemented

• cache – free cache space

• session – free session directory space

• heartbeat – last modification time of A-REX heartbeat

• failedjobs – the number of failed jobs per last 100 finished

64 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

• jobstates – number of jobs in different A-REX stages

• all – all of the above metrics

Default: all

Allowed values: staging, cache, session, heartbeat, failedjobs, jobstates, all

Example:

metrics=all

frequency

[arex/ganglia]

Synopsis: frequency = seconds

Description: The period between each information gathering cycle, in seconds.

Default: 60

Example:

frequency=300

[infosys] block

This block enables and configures the core part of the information system. Enables the information collection to be
used by other ARC components, including interfaces. Parameters in this block applies to all the infosys subsystems.

logfile

[infosys]

Synopsis: logfile = path

Description: Specifies log file location for the information provider scripts.

Default: /var/log/arc/infoprovider.log

Example:

logfile=/var/log/arc/infoprovider.log

loglevel

[infosys]

Synopsis: loglevel = number

Description: The loglevel for the infoprovider scripts (0-5). Each value corresponds to the following verbosity
levels: FATAL => 0, ERROR => 1 , WARNING => 2, INFO => 3, VERBOSE => 4, DEBUG => 5

Allowed values: 0, 1, 2, 3, 4, 5, FATAL, ERROR, WARNING, INFO, VERBOSE, DEBUG

Default: 3

Example:

loglevel=3

5.1. ARC Configuration Reference Document 65

NorduGrid ARC 7 Documentation, Release ARC7

validity_ttl

[infosys]

Synopsis: validity_ttl = seconds

Description: The published infosys records advertise their validity e.g. how long the info should be considered
up-to-date by the clients. Use this parameter to set the published validity value.

Note: different schemas may render this information differently.

Default: 10800

Example:

validity_ttl=10800

[infosys/ldap] block

This infosys subblock enables and configures the ldap hosting service for the infosys functionality. Using an LDAP
server with some schema is one way to publish information about your Computing Element. Comment out this
block if you don’t want to run an LDAP-based information system.

hostname

[infosys/ldap]

Synopsis: hostname = FQDN

Description: the hostname of the machine running the slapd service will be the bind for slapd. If not present, will
be taken from the [common]

Default: $VAR{[common]hostname}

Example:

hostname=my.testbox

slapd_hostnamebind

[infosys/ldap]

Synopsis: slapd_hostnamebind = string

Description: May be used to set the hostname part of the network interface to which the slapd process will bind.
Most of the cases no need to set since the hostname parameter is already sufficient. The example below will bind
the slapd process to all the network interfaces available on the server.

Default: undefined

Example:

slapd_hostnamebind=*

66 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

port

[infosys/ldap]

Synopsis: port = port_number

Description: The port on which the slapd service runs. The default infosys port is assumed to be 2135 by many
clients, therefore think twice before you change it because 3rd party clients assume 2135 to be the ldap infosys
port.

Default: 2135

Example:

port=2135

user

[infosys/ldap]

Synopsis: user = unix_user

Description: overwrites the unix user running the slapd. By default the startup scripts search for well-known
ldap-users like ldap or openldap than fall-back to root if not found.

Default: undefined

Example:

user=slapd

slapd

[infosys/ldap]

Synopsis: slapd = path

Description: explicitly define the path to slapd command. By default the startup scripts search for slapd binary
in the system PATH.

Default: undefined

Example:

slapd=/usr/sbin/slapd

slapd_loglevel

[infosys/ldap]

Synopsis: slapd_loglevel = number

Description: Sets the native slapd loglevel (see man slapd). Slapd logs via syslog. The default is set to no-logging
(0) and it is RECOMMENDED not to be changed in a production environment. Non-zero slap_loglevel value
causes serious performance decrease.

Default: 0

Example:

slapd_loglevel=0

5.1. ARC Configuration Reference Document 67

NorduGrid ARC 7 Documentation, Release ARC7

threads

[infosys/ldap]

Synopsis: threads = number

Description: The native slapd threads parameter, default is 32.

Default: 32

Example:

threads=128

timelimit

[infosys/ldap]

Synopsis: timelimit = seconds

Description: The native slapd timelimit parameter. Maximum number of seconds the slapd server will spend
answering a search request. Default is 3600. You probably want a much lower value.

Default: 3600

Example:

timelimit=1800

idletimeout

[infosys/ldap]

Synopsis: idletimeout = seconds

Description: The native slapd idletimeout parameter. Maximum number of seconds the slapd server will wait
before forcibly closing idle client connections. It’s value must be larger than the value of timelimit option. If
not set, it defaults to timelimit + 1.

Default: $EVAL{$VAR{timelimit} + 1}

Example:

idletimeout=1801

infosys_ldap_run_dir

[infosys/ldap]

Synopsis: infosys_ldap_run_dir = path

Description: The location where NorduGrid/GLUE2 LDAP ldif file will be generated, and where the fifo to sync
between infoproviders and BDII will be generated.

Default: /run/arc/infosys

Example:

infosys_ldap_run_dir=/run/arc/infosys

68 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

ldap_schema_dir

[infosys/ldap]

Synopsis: ldap_schema_dir = path

Description: Allows to explicitly specify an additional path to the schema files. Note that this doesn’t override
standard location, but adds the specified path to the standard locations /etc/ldap and /etc/openldap. Normally it is
sufficient to use only standard schema file locations, therefore not to set this parameter.

Default: undefined

Example:

ldap_schema_dir=/nfs/ldap/schema/

Note: the following options configure the third-party bdii ldap parameters. In 99% of cases no need to change
anything and use the defaults. These variables are usually automatically set by ARC, and are here mostly for debug
purposes and to tweak exotic BDII installations.

bdii_debug_level

[infosys/ldap]

Synopsis: bdii_debug_level = level

Description: Set this parameter to DEBUG to check bdii errors in bdii-update.log At the same time don’t enable
slapd logs this way reducing performance issues.

Default: WARNING

Example:

bdii_debug_level=ERROR

bdii_provider_timeout

[infosys/ldap]

Synopsis: bdii_provider_timeout = seconds

Description: This variable allows a system administrator to modify the behaviour of bdii-update. This is the time
BDII waits for the bdii provider scripts generated by A-REX infosys to produce their output.

Default: 10800

Example:

bdii_provider_timeout=10800

Note: BDII5 uses these variables. These might change depending on BDII version. ARC sets them by inspecting
distributed bdii configuration files. DO NOT change unless YOU KNOW WHAT YOU’RE DOING

5.1. ARC Configuration Reference Document 69

NorduGrid ARC 7 Documentation, Release ARC7

bdii_location

[infosys/ldap]

Synopsis: bdii_location = path

Description: The installation directory for the BDII.

Default: /usr

Example:

bdii_location=/usr

bdii_run_dir

[infosys/ldap]

Synopsis: bdii_run_dir = path

Description: Contains BDII pid files and slapd pid files

Default: /run/arc/bdii

Example:

bdii_run_dir=/run/arc/bdii

bdii_log_dir

[infosys/ldap]

Synopsis: bdii_log_dir = path

Description: Contains infosys logs

Default: /var/log/arc/bdii

Example:

bdii_log_dir=/var/log/arc/bdii

bdii_tmp_dir

[infosys/ldap]

Synopsis: bdii_tmp_dir = path

Description: Contains provider scripts

Default: /var/tmp/arc/bdii

Example:

bdii_tmp_dir=/var/tmp/arc/bdii

70 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

bdii_var_dir

[infosys/ldap]

Synopsis: bdii_var_dir = path

Description: Contains slapd databases

Default: /var/lib/arc/bdii

Example:

bdii_var_dir=/var/lib/arc/bdii

bdii_update_pid_file

[infosys/ldap]

Synopsis: bdii_update_pid_file = path

Description: Allows to change bdii-update pidfiles filename and location

Default: $VAR{bdii_run_dir}/bdii-update.pid

Example:

bdii_update_pid_file=/run/arc/bdii/bdii-update.pid

bdii_database

[infosys/ldap]

Synopsis: bdii_database = backend_type

Description: Configure what ldap database backend should be used. If left undefined it will default to hdb for
openldap versions up to 2.4 and to mdb for openldap versions 2.5 and later.

Default: undefined

Example:

bdii_database=hdb

bdii_conf

[infosys/ldap]

Synopsis: bdii_conf = path

Description: Location of the bdii config file generated by ARC.

Default: $VAR{[infosys/ldap]infosys_ldap_run_dir}/bdii.conf

Example:

bdii_conf=/run/arc/infosys/bdii.conf

5.1. ARC Configuration Reference Document 71

NorduGrid ARC 7 Documentation, Release ARC7

bdii_update_cmd

[infosys/ldap]

Synopsis: bdii_update_cmd = path

Description: path to bdii-update script

Default: $VAR{bdii_location}/sbin/bdii-update

Example:

bdii_update_cmd=/usr/sbin/bdii-update

bdii_db_config

[infosys/ldap]

Synopsis: bdii_db_config = path

Description: path to slapd database configuration file

Default: /etc/bdii/DB_CONFIG

Example:

bdii_db_config=/etc/bdii/DB_CONFIG

bdii_archive_size

[infosys/ldap]

Synopsis: bdii_archive_size = number

Description: Sets BDII_ARCHIVE_SIZE in bdii configuration file

Default: 0

Example:

bdii_archive_size=0

bdii_breathe_time

[infosys/ldap]

Synopsis: bdii_breathe_time = number

Description: Sets BDII_BREATHE_TIME in bdii configuration file

Default: 10

Example:

bdii_breathe_time=10

72 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

bdii_delete_delay

[infosys/ldap]

Synopsis: bdii_delete_delay = number

Description: Sets BDII_DELETE_DELAY in bdii configuration file

Default: 0

Example:

bdii_delete_delay=0

bdii_read_timeout

[infosys/ldap]

Synopsis: bdii_read_timeout = number

Description: Sets BDII_READ_TIMEOUT in bdii configuration file

Default: $EVAL{$VAR{bdii_provider_timeout} + $VAR{[arex]infoproviders_timelimit} +
$VAR{[arex]wakeupperiod}}

Example:

bdii_read_timeout=300

Infosys Schema sub-blocks: The following infosys sub-blocks enable information publishing according to various
information schema. In order to publish information in a certain schema, the corresponding sub-block must be
defined in addition to the schema-neutral [infosys/cluster] and [queue:name] blocks! Comment out a spe-
cific schema block if you don’t want to publish a specific information schema representation. Currently available
information model (schema) sub-blocks:

• [infosys/nordugrid] - The native ARC info representation of a cluster and its queues

• [infosys/glue2] - The GLUE2 information model, both LDAP and XML (the latter is for WS-interface)

• [infosys/glue2/ldap] - The LDAP rendering of the GLUE2 model

[infosys/nordugrid] block

Enables the publication of the NorduGrid information model in the LDAP-based infosys. See the NORDUGRID-
TECH-4 for schema definition. The configuration block does not contain any parameter. The information tree is
populated based on the contents of the schema-neutral [infosys/cluster] and [queue:name] blocks.

[infosys/glue2] block

Enables the publication of the GLUE2 information model both in the LDAP and XML rendering. The information
tree is populated based on the contents of the schema-neutral [infosys/cluster] and [queue:name] blocks
and the GLUE2 specific schema sub-blocks.

5.1. ARC Configuration Reference Document 73

NorduGrid ARC 7 Documentation, Release ARC7

admindomain_name

[infosys/glue2]

Synopsis: admindomain_name = string

Description: The Name attribute for the admindomain. This will show in top-BDII to group the resources belong-
ing to this cluster. To group a bunch of clusters under the same AdminDomain, just use the same name. If not
specified, will default to UNDEFINEDVALUE.

Default: UNDEFINEDVALUE

Example:

admindomain_name=ARC-TESTDOMAIN

admindomain_description

[infosys/glue2]

Synopsis: admindomain_description = text

Description: The free-form description of this domain.

Default: undefined

Example:

admindomain_description=ARC test Domain

admindomain_www

[infosys/glue2]

Synopsis: admindomain_www = url

Description: The URL pointing at a site holding information about the AdminDomain.

Default: undefined

Example:

admindomain_www=http://www.nordugrid.org/

admindomain_distributed

[infosys/glue2]

Synopsis: admindomain_distributed = yes/no

Description: Set this to yes if the domain is distributed that means, if the resources belonging to the domain are
considered geographically distributed.

Allowed values: yes, no

Default: no

Example:

admindomain_distributed=yes

74 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

admindomain_owner

[infosys/glue2]

Synopsis: admindomain_owner = email

Description: The contact email of a responsible person for the domain

Default: undefined

Example:

admindomain_owner=admin@nordugrid.org

admindomain_otherinfo

[infosys/glue2]

Synopsis: admindomain_otherinfo = text

Description: Free-form text that fills the OtherInfo GLUE2 field. no need to set, used only for future development.

Default: undefined

Example:

admindomain_otherinfo=Test Other info

computingservice_qualitylevel

[infosys/glue2]

Synopsis: computingservice_qualitylevel = qlevel

Description: Allows a sysadmin to define different GLUE2 QualityLevel values for A-REX. Refer to GLUE2
documentation for the qualitylevel definitions.

Allowed values: production, pre-production, testing, development

Default: production

Example:

computingservice_qualitylevel=production

[infosys/glue2/ldap] block

Enables the publication of the LDAP-rendering of the GLUE2 infomodel.

showactivities

[infosys/glue2/ldap]

Synopsis: showactivities = yes/no

Description: Enables GLUE2 ComputingActivities in the LDAP rendering

Allowed values: yes, no

Default: no

Example:

5.1. ARC Configuration Reference Document 75

NorduGrid ARC 7 Documentation, Release ARC7

showactivities=no

[infosys/cluster] block

Information schema-neutral blocks [infosys/cluster] and [queue:NAME] contain attributes that describe the
computing cluster together with its queues. The parameters are available for every information model/schema
representation.

This block describes the cluster characteristics of a Computing Element. The information specified here is mostly
used by the Infosys ARC component.

alias

[infosys/cluster]

Synopsis: alias = text

Description: An arbitrary alias name of the cluster, optional.

Default: undefined

Example:

alias=Big Blue Cluster in Nowhere

hostname

[infosys/cluster]

Synopsis: hostname = fqdn

Description: Set the FQDN of the frontend.

Default: $VAR{[common]hostname}

Example:

hostname=myhost.org

interactive_contactstring

[infosys/cluster]

Synopsis: interactive_contactstring = url

Description: the contact URL for interactive logins, set this if the cluster supports some sort of grid-enabled
interactive login (gsi-ssh),

This option in multivalued.

Default: undefined

Example:

interactive_contactstring=gsissh://frontend.cluster:2200

76 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

comment

[infosys/cluster]

Synopsis: comment = text

Description: Free text field for additional comments on the cluster in a single line, no newline character is allowed!

Default: undefined

Example:

comment=This cluster is specially designed for XYZ applications: www.xyz.org

cluster_location

[infosys/cluster]

Synopsis: cluster_location = formatted_string

Description: The geographical location of the cluster, preferably specified as a postal code with a two letter country
prefix

Default: undefined

Example:

cluster_location=DK-2100

cluster_owner

[infosys/cluster]

Synopsis: cluster_owner = text

Description: It can be used to indicate the owner of a resource, multiple entries can be used

This option in multivalued.

Default: undefined

Example:

cluster_owner=World Grid Project
cluster_owner=University of NeverLand

advertisedvo

[infosys/cluster]

Synopsis: advertisedvo = vo_name

Description: This attribute is used to advertise which VOs are authorized on the cluster. Add only one VO for
each advertisedvo entry. Multiple VOs in the same line will cause errors. These entries will be shown in all
GLUE2 AccessPolicy and MappingPolicy objects, that is, they will apply for all Endpoints(Interfaces) and all
Shares(currently queues). You can override the advertisedvos per queue. The information is also published in the
NorduGrid schema.

Note: it is IMPORTANT to understand that this parameter is NOT enforcing any access control, it is just for
information publishing!

5.1. ARC Configuration Reference Document 77

NorduGrid ARC 7 Documentation, Release ARC7

This option in multivalued.

Default: undefined

Example:

advertisedvo=atlas
advertisedvo=community.nordugrid.org

clustersupport

[infosys/cluster]

Synopsis: clustersupport = email

Description: This is the support email address of the resource.

This option in multivalued.

Default: undefined

Example:

clustersupport=arc.support@mysite.org
clustersupport=arc.support@myproject.org

homogeneity

[infosys/cluster]

Synopsis: homogeneity = True/False

Description: Determines whether the cluster consists of identical NODES with respect to cputype, memory, in-
stalled software (opsys). The frontend is NOT needed to be homogeneous with the nodes. In case of inhomoge-
neous nodes, try to arrange the nodes into homogeneous groups assigned to a queue and use queue-level attributes.
False may trigger multiple GLUE2 ExecutionEnvironments to be published if applicable.

Allowed values: True, False

Default: True

Example:

homogeneity=True

architecture

[infosys/cluster]

Synopsis: architecture = string

Description: Sets the hardware architecture of the NODES. The architecture is defined as the output of the
uname -m (e.g. i686). Use this cluster attribute if only the NODES are homogeneous with respect to the archi-
tecture. Otherwise the queue-level attribute may be used for inhomogeneous nodes. If the frontend’s architecture
agrees to the nodes, the adotf (Automatically Determine On The Frontend) can be used to request automatic
determination.

Default: adotf

Example:

78 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

architecture=adotf

opsys

[infosys/cluster]

Synopsis: opsys = formatted_string

Description: This multivalued attribute is meant to describe the operating system of the computing NODES. Set
it to the opsys distribution of the NODES and not the frontend! opsys can also be used to describe the kernel
or libc version in case those differ from the originally shipped ones. The distribution name should be given as
distroname-version.number, where spaces are not allowed. Kernel version should come in the form kernelname-
version.number. If the NODES are inhomogeneous with respect to this attribute do NOT set it on cluster level,
arrange your nodes into homogeneous groups assigned to a queue and use queue-level attributes. If opsys=adotf,
will result in Automatic Determination of the Operating System On The Frontend, which should only be used if
the frontend has the same OS as the nodes. The adotf discovered values will be used to fill GLUE2 OSName,
OSVersion and OSFamily unless these values are explicitly defined for each queue. See the [queue:queuename]
block for their usage.

Note: any custom value other than adotf does NOT affect values in the GLUE2 schema.

This option in multivalued.

Default: adotf

Example:

opsys=Linux-2.6.18
opsys=glibc-2.5.58
opsys=CentOS-5.6

nodecpu

[infosys/cluster]

Synopsis: nodecpu = formatted_string

Description: This is the cputype of the homogeneous nodes. The string is constructed from the /proc/cpuinfo as
the value of model name and @ and value of cpu MHz. Do NOT set this attribute on cluster level if the NODES
are inhomogeneous with respect to cputype, instead arrange the nodes into homogeneous groups assigned to a
queue and use queue-level attributes. Setting the nodecpu=adotf will result in Automatic Determination On The
Frontend, which should only be used if the frontend has the same cputype as the homogeneous nodes.

Default: adotf

Example:

nodecpu=AMD Duron(tm) Processor @ 700 MHz

5.1. ARC Configuration Reference Document 79

NorduGrid ARC 7 Documentation, Release ARC7

nodememory

[infosys/cluster]

Synopsis: nodememory = number

Description: This is the amount of memory (specified in MB) on the node which can be guaranteed to be available
for the application. Please note in most cases it is less than the physical memory installed in the nodes. Do NOT
set this attribute on cluster level if the NODES are inhomogeneous with respect to their memories, instead arrange
the nodes into homogeneous groups assigned to a queue and use queue-level attributes.

Default: undefined

Example:

nodememory=64000

middleware

[infosys/cluster]

Synopsis: middleware = string

Description: The multivalued attribute shows the installed grid software on the cluster. Nordugrid-ARC is auto-
matically set, no need to specify

This option in multivalued.

Default: undefined

Example:

middleware=my software

nodeaccess

[infosys/cluster]

Synopsis: nodeaccess = inbound/outbound

Description: Determines how the nodes can connect to the internet. Not setting anything means the nodes are
sitting on a private isolated network. outbound access means the nodes can connect to the outside world while
inbound access means the nodes can be connected from outside. inbound & outbound access together means the
nodes are sitting on a fully open network.

This option in multivalued.

Default: undefined

Allowed values: inbound, outbound

Example:

nodeaccess=inbound
nodeaccess=outbound

80 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

localse

[infosys/cluster]

Synopsis: localse = url

Description: This multivalued parameter tells the BROKER that certain URLs (and locations below that) should
be considered locally available to the cluster.

This option in multivalued.

Default: undefined

Example:

localse=gsiftp://my.storage/data1/
localse=gsiftp://my.storage/data2/

cpudistribution

[infosys/cluster]

Synopsis: cpudistribution = formatted_string

Description: This is the CPU distribution over nodes given in the form ncpu:m where:

n is the number of CPUs per machine m is the number of such machines

Example: 1cpu:3,2cpu:4,4cpu:1 represents a cluster with 3 single CPU machines, 4 dual CPU machines and
one machine with 4 CPUs.

Default: undefined

Example:

cpudistribution=1cpu:3,2cpu:4,4cpu:1

maxcputime

[infosys/cluster]

Synopsis: maxcputime = number

Description: This is the maximum CPU time specified in seconds that the LRMS can allocate for the job. The
default if not defined is that infoproviders get this value automatically from the LRMS. The purpose of this option
is to tweak and override discovered value, or publish this value in case the LRMS module do not support automatic
detection.

Default: undefined

Example:

maxcputime=300000

5.1. ARC Configuration Reference Document 81

NorduGrid ARC 7 Documentation, Release ARC7

mincputime

[infosys/cluster]

Synopsis: mincputime = number

Description: This is the minimum CPU time specified in seconds that the LRMS can allocate for the job. The
default if not defined is that infoproviders get this value automatically from the LRMS. The purpose of this option
is to tweak and override discovered value, or publish this value in case the LRMS module do not support automatic
detection.

Default: undefined

Example:

mincputime=1200

maxwalltime

[infosys/cluster]

Synopsis: maxwalltime = number

Description: This is the maximum Wall time specified in seconds that the LRMS can allocate for the job. The
default if not defined is that infoproviders get this value automatically from the LRMS. The purpose of this option
is to tweak and override discovered value, or publish this value in case the LRMS module do not support automatic
detection.

Default: undefined

Example:

maxwalltime=600000

minwalltime

[infosys/cluster]

Synopsis: minwalltime = number

Description: This is the minimum Wall time specified in seconds that the LRMS can allocate for the job. The
default if not defined is that infoproviders get this value automatically from the LRMS. The purpose of this option
is to tweak and override discovered value, or publish this value in case the LRMS module do not support automatic
detection.

Default: undefined

Example:

maxwalltime=1800

82 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

[queue:name] block

Each grid-enabled queue on the cluster should be represented and described by a separate queue block. The
queue_name should be used as a label in the block name. In case of fork, or other LRMSes with no queue names,
just use any unique string. A queue can represent a PBS/LSF/SGE/SLURM/LL queue, a SGE pool, a Condor pool
or a single machine in case ‘fork’ type of LRMS. This block describes the queue characteristics.

homogeneity

[queue:name]

Synopsis: homogeneity = True/False

Description: determines whether the queue consists of identical NODES with respect to cputype, memory, installed
software (opsys). In case of inhomogeneous nodes, try to arrange the nodes into homogeneous groups and assigned
them to a queue. Possible values: True,False, the default is True.

Allowed values: True, False

Default: $VAR{[infosys/cluster]homogeneity}

Example:

homogeneity=True

comment

[queue:name]

Synopsis: comment = text

Description: A free-form text field for additional comments on the queue in a single line, no newline character is
allowed!

Default: undefined

Example:

comment=This queue is nothing more than a condor pool

pbs_queue_node

[queue:name]

Synopsis: pbs_queue_node = string

Description: In PBS you can assign nodes to a queue (or a queue to nodes) by using the node property mark in
PBS config.

Essentially, pbs_queue_node value is used to construct nodes= string in PBS script, such as
nodes=count:pbs_queue_node where count is taken from the job description (1 if not specified).

This corresponds to setting the following parameter in PBS for this queue:

resources_default.neednodes = cpu_topology[:pbs_queue_node]

Setting the pbs_queue_node changes how the queue-totalcpus, user freecpus are determined for this queue.

You shouldn’t use this option unless you are sure that your PBS configuration makes use of the above configuration.
Read NorduGrid PBS instructions for more information: http://www.nordugrid.org/documents/pbs-config.html

Default: undefined

5.1. ARC Configuration Reference Document 83

http://www.nordugrid.org/documents/pbs-config.html

NorduGrid ARC 7 Documentation, Release ARC7

Example:

pbs_queue_node=gridlong_nodes
pbs_queue_node=ppn=4:ib

sge_jobopts

[queue:name]

Synopsis: sge_jobopts = string

Description: Per-queue override of additional SGE options to be used when submitting jobs to SGE to this queue

Default: undefined

Example:

sge_jobopts=-P atlas -r yes

condor_requirements

[queue:name]

Synopsis: condor_requirements = string

Description: It may be defined for each Condor queue. Use this option to determine which nodes belong to the
current queue. The value of condor_requirements must be a valid constraints string which is recognized by
a condor_status -constraint ... command. It can reference pre-defined ClassAd attributes (like Memory,
Opsys, Arch, HasJava, etc) but also custom ClassAd attributes. To define a custom attribute on a condor node, just
add two lines like the ones below in the $(hostname).local config file on the node:

NORDUGRID_RESOURCE=TRUE
STARTD_EXPRS = NORDUGRID_RESOURCE, $(STARTD_EXPRS)

A job submitted to this queue is allowed to run on any node which satisfies the condor_requirements constraint.
If condor_requirements is not set, jobs will be allowed to run on any of the nodes in the pool. When configuring
multiple queues, you can differentiate them based on memory size or disk space, for example.

Default: $VAR{[lrms]condor_requirements}

Example:

condor_requirements=(OpSys == "linux" && NORDUGRID_RESOURCE && Memory >= 1000 &&␣
↪→Memory < 2000)

slurm_requirements

[queue:name]

Synopsis: slurm_requirements = string

Description: Use this option to specify extra SLURM-specific parameters.

Default: undefined

Example:

slurm_requirements=memory on node >> 200

84 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

totalcpus

[queue:name]

Synopsis: totalcpus = number

Description: Manually sets the number of cpus assigned to the queue. No need to specify the parameter in case the
queue_node_string method was used to assign nodes to the queue (this case it is dynamically calculated and the
static value is overwritten) or when the queue have access to the entire cluster (this case the cluster level totalcpus
is the relevant parameter).

Default: undefined

Example:

totalcpus=32

queue-level configuration parameters: nodecpu, nodememory, architecture, opsys should be set if they are homo-
geneous over the nodes assigned to the queue AND they are different from the cluster-level value. Their meanings
are described in the [infosys/cluster] block. Usage: this queue collects nodes with nodememory=512 while
another queue has nodes with nodememory=256 -> don’t set the cluster attributes but use the queue-level attributes.
When the frontend’s architecture or cputype agrees with the queue nodes, the adotf (Automatically Determine
On The Frontend) can be used to request automatic determination of architecture or nodecpu. For GLUE2, fine
tune configuration of ExecutionEnvironments’ OSName, OSVersion, OSFamily is allowed with dedicated options
osname,osversion,osfamily.

nodecpu

[queue:name]

Synopsis: nodecpu = formatted_string

Description: see description at [infosys/cluster] block

Default: $VAR{[infosys/cluster]nodecpu}

Example:

nodecpu=AMD Duron(tm) Processor @ 700 MHz

nodememory

[queue:name]

Synopsis: nodememory = number

Description: see description at [infosys/cluster] block

Default: $VAR{[infosys/cluster]nodememory}

Example:

nodememory=512

5.1. ARC Configuration Reference Document 85

NorduGrid ARC 7 Documentation, Release ARC7

defaultmemory

[queue:name]

Synopsis: defaultmemory = number

Description: The LRMS memory request of job to be set by the LRMS backend scripts, if a user submits a
job without specifying how much memory should be used. The order of precedence is: job description ->
[lrms-defaultmemory] -> [queue-defaultmemory]. This is the amount of memory (specified in MB) that a
job will request.

Default: undefined

Example:

defaultmemory=512

architecture

[queue:name]

Synopsis: architecture = string

Description: see description at [infosys/cluster] block

Default: $VAR{[infosys/cluster]architecture}

Example:

architecture=adotf

opsys

[queue:name]

Synopsis: opsys = formatted_string

Description: see description at [infosys/cluster] block If osname, osversion are present, the values in opsys
are ignored.

This option in multivalued.

Default: $VAR{[infosys/cluster]opsys}

Example:

opsys=Linux-2.6.18
opsys=glibc-2.5.58

osname

[queue:name]

Synopsis: osname = string

Description: Only for GLUE2 overrides values defined in opsys for a single ExecutionEnvironment. Configuration
of multiple ExecutionEnvironment for the same queue is not supported. Create a different queue for that.

Default: undefined

Example:

86 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

osname=Ubuntu

osversion

[queue:name]

Synopsis: osversion = string

Description: Only for GLUE2 overrides values defined in opsys for a single ExecutionEnvironment. Configuration
of multiple ExecutionEnvironment for the same queue is not supported. Create a different queue for that.

Default: undefined

Example:

osversion=12.04

osfamily

[queue:name]

Synopsis: osfamily = string

Description: Only for GLUE2 overrides values defined in opsys for a single ExecutionEnvironment. Configuration
of multiple ExecutionEnvironment for the same queue is not supported. Create a different queue for that.

Default: undefined

Example:

osfamily=linux

benchmark

[queue:name]

Synopsis: benchmark = name value

Description: Defines resource benchmark results for accounting and information publishing. The nodes in the
same queue are assumed to be homogeneous with respect to the benchmark performance. In case of multiple
benchmarks are specified:

• Accounting subsystem will use ONLY THE FIRST defined benchmark.

• Infosys will publish all defined benchmark values.

The values represent per-core CPU performance.

Note: APEL accounting services supports HEPscore23, HEPSPEC or Si2k benchmark types only.

This option in multivalued.

Default: HEPSPEC 1.0

Example:

benchmark=HEPscore23 16.5
benchmark=HEPSPEC 12.26
benchmark=Si2k 3065

5.1. ARC Configuration Reference Document 87

NorduGrid ARC 7 Documentation, Release ARC7

allowaccess

[queue:name]

Synopsis: allowaccess = authgroup

Description: Defines that the specified authgroup members are authorized to submit jobs to this queue of ARC-CE
after the user already granted access to the CE via one of the interfaces. A related config option the denyaccess
(see below) can be used to deny submission to the queue. Multiple allowaccess and denyaccess authorization
statements are allowed within a configuration block. These statements are processed sequentially in the order they
are specified in the config block. The processing stops on first allowaccess or denyaccess statement matching
the authgroup membership. If there are no authorization statements specified, then the queue is accessible by
everyone already authorized.

Default: undefined

This option in multivalued.

Example:

allowaccess=biousers
allowaccess=atlasusers

denyaccess

[queue:name]

Synopsis: denyaccess = authgroup

Description: Defines that the specified authgroup members are NOT allowed to submit jobs to this queue of ARC-
CE after despite the user is already granted access to the CE via one of the interfaces. A related config option
the allowaccess (see below) can be used to grant job submission to the queue. Multiple allowaccess and
denyaccess authorization statements are allowed within a configuration block. These statements are processed
sequentially in the order they are specified in the config block. The processing stops on first allowaccess or
denyaccess statement matching the authgroup membership. If there are no authorization statements specified,
then the queue is accessible by everyone already authorized.

Default: undefined

This option in multivalued.

Example:

denyaccess=blacklisted-for-the-queue

advertisedvo

[queue:name]

Synopsis: advertisedvo = vo_name

Description: This attribute is used to advertise which VOs are authorized on the [queue:name] of the cluster.
Add only one VO for each advertiseddvo entry. Multiple VOs in the same line will cause errors. These entries will
be shown in the MappingPolicy objects, that is, they will apply for the Shares that corresponds to the queue. The
information is also published in the NorduGrid schema.

Note: if you have also configured advertisedvo in the [infosys/cluster] block, the result advertised VOs
per queue will override whatever is defined in [infosys/cluster] block!

88 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Note: it is IMPORTANT to understand that this parameter is NOT enforcing any access control, it is just for
information publishing!

This option in multivalued.

Default: $VAR{[infosys/cluster]advertisedvo}

Example:

advertisedvo=atlas
advertisedvo=community.nordugrid.org

maxslotsperjob

[queue:name]

Synopsis: maxslotsperjob = number

Description: This GLUE2 specific parameter configures the MaxSlotsPerJob value on a particular queue. This
value is usually generated by LRMS infocollectors, but there are cases in which a system administrator might
like to tweak it. Default is to publish what is returned by the LRMS, and if nothing is returned, NOT to publish
the MaxSlotsPerJob attribute. If a system administrator sets the value here, that value will be published instead,
regardless of what the LRMS returns. Each LRMS might have a different meaning for this value.

Default: undefined

Example:

maxslotsperjob=5

forcedefaultvoms

[queue:name]

Synopsis: forcedefaultvoms = VOMS_FQAN

Description: specify VOMS FQAN which user will be assigned if his/her credentials contain no VOMS attributes.

Default: $VAR{[arex]forcedefaultvoms}

Example:

forcedefaultvoms=/vo/group/subgroup

maxcputime

[queue:name]

Synopsis: maxcputime = number

Description: This value overrides the one defined in the [infosys/cluster] block. See description in that block.

Default: undefined

Example:

maxcputime=300000

5.1. ARC Configuration Reference Document 89

NorduGrid ARC 7 Documentation, Release ARC7

mincputime

[queue:name]

Synopsis: mincputime = number

Description: This value overrides the one defined in the [infosys/cluster] block. See description in that block.

Default: undefined

Example:

mincputime=1200

maxwalltime

[queue:name]

Synopsis: maxwalltime = number

Description: This value overrides the one defined in the [infosys/cluster] block. See description in that block.

Default: undefined

Example:

maxwalltime=600000

minwalltime

[queue:name]

Synopsis: minwalltime = number

Description: This value overrides the one defined in the [infosys/cluster] block. See description in that block.

Default: undefined

Example:

minwalltime=1800

[datadelivery-service] block

This block configures and enables the data delivery service. This service is intended to off-load data-staging from
A-REX and usually deployed on one or more separate machines.

This service can also act as an independent data transfers service that case it would require an inteligent data
manager that could replace A-REX’s intelligence.

90 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

transfer_dir

[datadelivery-service]

Synopsis: *transfer_dir = path

Description: The directori(es) on the DDS host in which the service is allowed to read and write. When DDS is
used as a remote transfer service assisting A-REX then this is usually one or more cache and/or session directories
shared as a common mount with A-REX.

This option in multivalued.

Default: undefined

Example:

transfer_dir=/shared/arc/cache
transfer_dir=/shared/arc/session

hostname

[datadelivery-service]

Synopsis: hostname = FQDN

Description: The hostname of the machine on which DDS service runs.

Default: $EXEC{hostname -f}

Example:

hostname=localhost

port

[datadelivery-service]

Synopsis: port = port

Description: Port on which service listens

Default: 443

Example:

port=8443

pidfile

[datadelivery-service]

Synopsis: pidfile = path

Description: pid file of the daemon

Default: /run/arched-datadelivery-service.pid

Example:

pidfile=/run/arched-datadelivery-service.pid

5.1. ARC Configuration Reference Document 91

NorduGrid ARC 7 Documentation, Release ARC7

logfile

[datadelivery-service]

Synopsis: logfile = path

Description: log file of the daemon

Default: /var/log/arc/datadelivery-service.log

Example:

logfile=/tmp/delivery.log

loglevel

[datadelivery-service]

Synopsis: loglevel = level

Description: set loglevel of the data delivery service between 0 (FATAL) and 5 (DEBUG). Defaults to 3 (INFO).

Allowed values: 0, 1, 2, 3, 4, 5

Default: 3

Example:

loglevel=4

user

[datadelivery-service]

Synopsis: user = username

Description: Overwrites the user under which the service runs. The default is the user starting the service. DDS
is very limited if not run as root.

Default: undefined

Example:

user=ddsuser

secure

[datadelivery-service]

Synopsis: secure = yes/no

Description: Set to no if the service should run without a host certificate. In this case the corresponding deliv-
eryservice option in the [arex/data-staging] A-REX configuration block should use http rather than https
URLs.

Allowed values: yes, no

Default: yes

Example:

secure=no

92 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

allowed_ip

[datadelivery-service]

Synopsis: *allowed_ip = ip

Description: IP address authorized to access service. Normally this is the A-REX host IP. By default the deliv-
ery service listens on all available interfaces, so if both IPv4 and IPv6 are enabled on this and the A-REX host,
remember to add both A-REX host IPs here.

This option in multivalued.

Default: undefined

Example:

allowed_ip=192.0.2.1
allowed_ip=2001:db8:85a3::8a2e:370:7334

allowed_dn

[datadelivery-service]

Synopsis: allowed_dn = DN

Description: DN authorized to access service. This option restricts access to specified DNs (of the users who
submit jobs to A-REX). It is only effective if secure=yes.

This option in multivalued.

Default: undefined

Example:

allowed_dn=/O=Grid/O=Big VO/CN=Main Boss

x509_host_key

[datadelivery-service]

Synopsis: x509_host_key = path

Description: Optional parameter to overwrite [common] block values.

Default: $VAR{[common]x509_host_key}

Example:

x509_host_key=/etc/grid-security/hostkey.pem

x509_host_cert

[datadelivery-service]

Synopsis: x509_host_cert = path

Description: Optional parameter to overwrite [common] block values.

Default: $VAR{[common]x509_host_cert}

Example:

5.1. ARC Configuration Reference Document 93

NorduGrid ARC 7 Documentation, Release ARC7

x509_host_cert=/etc/grid-security/hostcert.pem

x509_cert_dir

[datadelivery-service]

Synopsis: x509_cert_dir = path

Description: Optional parameter to overwrite [common] block values.

Default: $VAR{[common]x509_cert_dir}

Example:

x509_cert_dir=/etc/grid-security/certificates

[custom:name] block

This optional block is for those who wish to include non-ARC configuration in arc.conf. Custom blocks will be
ignored by ARC components including the configuration validator. Any non-ARC configuration which is not in a
custom block will be flagged as an error by the validator and A-REX will not start.

5.1.3 Removed blocks and options

This is the arc.conf DELETED file that contains all the configuration blocks and options that have been
DELETED in ARC version 7.0.0 and later

[deleted:blocks] block

Following blocks and corresponding functionality are removed complemete from ARC7 release and should be
cleaned up from previous ARC6 configuration:

[authtokens] (always enabled in ARC7)
[lrms/ssh]
[arex/ws/publicinfo] (always enabled in ARC7)
[arex/ws/argus]
[gridftpd]
[gridftpd/jobs]
[gridftpd/filedir]
[infosys/glue1]
[infosys/glue1/site-bdii]
[acix-scanner]
[acix-index]
[userlist:name]
[nordugridmap]

Note: Options marked DELETED without stating a version were deleted in version 7.0.0 compared to the latest
ARC6 supported configuration.

94 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

[authgroup:groupname] block

userlist

[authgroup:groupname]

Synopsis: userlist = ulist_name [ulist_name ...]

Description: Match user belonging to ulist_name defined in an earlier [userlist:ulist_name] block. Multiple
userlist names are allowed for this rule.

This is sequenced option.

Default: undefined

Example:

userlist=biousers

Warning: CHANGE: DELETED

[arex/data-staging] block

use_remote_acix

[arex/data-staging]

Synopsis: use_remote_acix = URL

Description: If configured then the ARC Cache Index, available at the URL, will be queried for every input file
specified in a job description and any replicas found in sites with accessible caches will be added to the replica list
of the input file. The replicas will be tried in the order specified by preferredpattern variable.

Default: undefined

Example:

use_remote_acix=https://cacheindex.ndgf.org:6443/data/index

Warning: CHANGE: DELETED

5.2 ARC CE Deployment and Operation

5.2.1 Quickstart ARC: towards distributed computing in a few minutes - x509
edition

Scared of distributed computing complexities?

With ARC7 you can setup a Computing Element and try common distributed computing workflows in just a few
minutes!

ARC7 comes with so-called zero configuration included and works out of the box without any configuration at all.

You can try ARC by using the legacy x509 user certificate, or with the newer Jason Web Token capability. The
procedure below splits into x509 versus token at Step 4. The two require slightly different configuration options
on the ARC server, and different procedures to aquire the authentication document (certificate or token).

5.2. ARC CE Deployment and Operation 95

NorduGrid ARC 7 Documentation, Release ARC7

The ARC server can be set up to accept both user x509 certificates and user tokens in paralell, or just one of the
two. This is up to you.

Note: The zero configured A-REX comes with the REST interface enabled. It runs on port 443, so make sure it
is not firewalled if you want to submit jobs from a remote client host.

https://www.youtu.be/wrE36NQM67c

Step 1. Enable NorduGrid ARC7 repos

Prepare your system to install via the NorduGrid Repositories.

Note: Alpha and release-candidate packages are in testing repository, so please make sure it is enabled, e.g. on
RHEL-based systems you can use dnf --enablerepo=nordugrid-testing to enable it for one transaction or
dnf config-manager --enable nordugrid-testing to enable permanently.

If you want to test ARC7 including all latest developments, set up your repository to include the nightly builds
following Using ARC packages from nightly builds instructions.

Step 2. Install A-REX

ARC Resource-coupled EXecution service (A-REX) is a core component that manages authentication, authoriza-
tion and job life cycle. It is enough to have A-REX installed to have a minimal computing element:

[root ~]# dnf -y install nordugrid-arc-arex

Step 3. Run A-REX

To start ARC services just run:

[root ~]# arcctl service start --as-configured

You can check if A-REX is running with:

[root ~]# arcctl service list
arc-arex (Installed, Disabled, Running)
arc-arex-ws (Installed, Disabled, Running)
arc-datadelivery-service (Not installed, Disabled, Stopped)
arc-infosys-ldap (Not installed, Disabled, Stopped)

Note:

arcctl tool automates many ARC CE operations and is designed with bash-completion in mind. If
you would like to use ARC in production it is advised to have completion enabled:

[root ~]# dnf install -y bash-completion python-argcomplete
[root ~]# activate-global-python-argcomplete

96 Chapter 5. Documentation for Infrastructure Admins

https://www.youtu.be/wrE36NQM67c

NorduGrid ARC 7 Documentation, Release ARC7

Step 4. Generate user x509 certificate and key for testing

Grid services and users authentication heavily relies on cryptography and uses certificates/keys for each entity.
ARC7 comes with Test Certificate Authority on board that can issue the test user certificates easily.

The ARC7 zero configuration implements a default closed approach defining the special authorization object called
authgroup.

During the test-user certificate generation, arcctl test-ca will automatically add the issued certificate subject
to the testCA.allowed-subjects file, opening the job submission possiblity to the test-user transparently. the
testCA.allowed-subjects can be found in your /etc/grid-security folder.

No other subject will be able to submit to your system before you change the authgroup settings in arc.conf.

You can test submission from the host running A-REX or from any other host in the network.

Testing from the host running A-REX

It is technically possible to submit jobs from the root account, however it is advised to use a dedicated regular
user. Here we assume that you use a dedicated regular user. In the example below we use our regular user user01.
You should replace this username with the username of your own regular user.

To generate test certificate/key and install it to standard location inside local user’s home directory run:

[root ~]# arcctl test-ca usercert --install-user user01
User certificate and key are installed to default /home/user01/.globus location for␣
↪→user user01.

Testing from any other host

In order to submit jobs from any other host (not the one running A-REX) you need to transfer the (test) user
certificate and the CA-files to this other host.

On the A-REX host generate a user certificate/key:

[root ~]# arcctl test-ca usercert --export-tar
User certificate and key are exported to testcert-09160712.tar.gz.
To use it with arc* tools on the other machine, copy the tarball and run the␣
↪→following commands:
tar xzf testcert-09160712.tar.gz
source arc-test-certs/setenv.sh

Transfer the tarball to the client host and on the client host execute the commands suggested in the arcctl output:

[user ~]$ tar xzf /tmp/testcert-09160712.tar.gz
[user ~]$ source arc-test-certs/setenv.sh

Note: The zero configured A-REX comes with the REST interface enabled. It runs on port 443, so make sure it
is not firewalled to be able to be used from another client host.

5.2. ARC CE Deployment and Operation 97

NorduGrid ARC 7 Documentation, Release ARC7

Step 5. Install the nordugrid-arc-client

Install ARC client tools on the client host:

[root ~]# dnf -y install nordugrid-arc-client

It is technically possible to submit jobs from the root account, however it is advised to use a dedicated regular
user. Here we assume that you use a dedicated regular user.

Note: The zero configured A-REX comes with the REST interface enabled. It runs on port 443, so make sure it
is not firewalled if you want to submit jobs from a remote client host.

You can start with the information query about your newly installed ARC computing element1:

[user ~]$ arcinfo -c https://arc.example.org/arex
Computing service:
Information endpoint: https://arc.example.org:443/arex
Submission endpoint: https://arc.example.org:443/arex (status: ok, interface: org.

↪→nordugrid.arcrest)

Step 6. Submit a job and check it is running

To submit a job, or perform any other action towards the ARC server you need a so-called proxy-certificate which
is a Single Sign-On token for distributed grid-infrastructure. It is generated in the following way:

[user ~]$ arcproxy
Your identity: /DC=org/DC=nordugrid/DC=ARC/O=TestCA/CN=Test User 50350053
Proxy generation succeeded
Your proxy is valid until: 2023-06-03 01:10:38

A simple job can be submitted with the arctest tool:

[user ~]$ arctest -J 2 -C https://arc.example.org/arex
Submitting test-job 2:
Job submitted with jobid: https://arc.example.org:443/arex/rest/1.0/jobs/d16c6c2858ec

The job status can be checked with the arcstat tool:

[user ~]$ arcstat https://arc.example.org:443/arex/rest/1.0/jobs/d16c6c2858ec
Job: https://arc.example.org:443/arex/d16c6c2858ec
Name: arctest2
State: Running

Status of 1 jobs was queried, 1 jobs returned information

To fetch the job’s stdout run arccat tool:

[user ~]$ arccat https://arc.example.org:443/arex//arex/rest/1.0/jobs/d16c6c2858ec
HOSTNAME=arc.example.org
GRID_GLOBAL_JOBURL=https://arc.example.org:443/arex/d16c6c2858ec
MALLOC_ARENA_MAX=2
PWD=/var/spool/arc/sessiondir/d16c6c2858ec
SYSTEMD_EXEC_PID=374003
<output_omitted>

1 Examples uses arc.example.org as a domain name for A-REX host

98 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Step 7. Play more with the ARC Computing Element

As an admin you might frequently need to extract information from the logs and directories that ARC computing
element uses. The brief list of the relevant paths can be obtained from:

[root ~]# arcctl config brief
ARC Storage Areas:

Control directory:
/var/spool/arc/jobstatus

Session directories:
/var/spool/arc/sessiondir

Scratch directory on Worker Node:
Not configured

Additional user-defined RTE directories:
Not configured

ARC Log Files:
A-REX Service log:

/var/log/arc/arex.log
A-REX Jobs log:

/var/log/arc/arex-jobs.log
A-REX Helpers log:

/var/log/arc/job.helper.errors
A-REX WS Interface log:

/var/log/arc/ws-interface.log
Infosys Infoproviders log:

/var/log/arc/infoprovider.log

To get information and manage jobs on A-REX server, the arcctl job is useful. Operations include but is not
limited to:

• Listing jobs:

[root ~]# arcctl job list
d1475fb1dc51
d16c6c2858ec
<output omitted>

[root ~]# arcctl job list --long
d1475fb1dc51 FINISHED arctest2 /DC=org/
↪→DC=nordugrid/DC=ARC/O=TestCA/CN=Test User 50350053
d16c6c2858ec FINISHED arctest2 /DC=org/
↪→DC=nordugrid/DC=ARC/O=TestCA/CN=Test User 50350053
<output omitted>

• Job general information:

[root ~]# arcctl job info d16c6c2858ec
Name : arctest2
Owner : /DC=org/DC=nordugrid/DC=ARC/O=TestCA/CN=Test User 50350053
State : FINISHED
LRMS ID : 9
Modified : 2023-06-02 13:24:45

• Job log:

[root ~]# arcctl job log d16c6c2858ec
2023-06-02T11:24:28Z Job state change UNDEFINED -> ACCEPTED Reason: (Re)Accepting␣
↪→new job
2023-06-02T11:24:28Z Job state change ACCEPTED -> PREPARING Reason: Starting job␣

(continues on next page)

5.2. ARC CE Deployment and Operation 99

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

↪→processing
2023-06-02T11:24:28Z Job state change PREPARING -> SUBMIT Reason: Pre-staging␣
↪→finished, passing job to LRMS
----- exiting submit_fork job -----

2023-06-02T11:24:28Z Job state change SUBMIT -> INLRMS Reason: Job is passed to LRMS
---------- Output of the job wrapper script -----------
Detecting resource accounting method available for the job.
Looking for /usr/bin/time tool for accounting measurements
GNU time found and will be used for job accounting.
------------------------- End of output -------------------------
2023-06-02T11:24:45Z Job state change INLRMS -> FINISHING Reason: Job finished␣
↪→executing in LRMS
2023-06-02T11:24:45Z Job state change FINISHING -> FINISHED Reason: Stage-out␣
↪→finished.

• A-REX logs that mentions the job:

[root ~]# arcctl job log d16c6c2858ec --service
/var/log/arc/arex.log:
[2023-06-02 13:24:28] [Arc] [INFO] [357383/3] d16c6c2858ec: State: ACCEPTED: parsing␣

↪→job description
[2023-06-02 13:24:28] [Arc] [INFO] [357383/3] d16c6c2858ec: State: ACCEPTED: moving␣

↪→to PREPARING
[2023-06-02 13:24:28] [Arc] [INFO] [357383/3] d16c6c2858ec: State: PREPARING from␣

↪→ACCEPTED
[2023-06-02 13:24:28] [Arc] [INFO] [357383/3] d16c6c2858ec: State: SUBMIT from␣

↪→PREPARING
[2023-06-02 13:24:28] [Arc] [INFO] [357383/3] d16c6c2858ec: state SUBMIT: starting␣

↪→child: /usr/share/arc/submit-SLURM-job
[2023-06-02 13:24:28] [Arc] [INFO] [357383/3] d16c6c2858ec: state SUBMIT: child␣

↪→exited with code 0
[2023-06-02 13:24:28] [Arc] [INFO] [357383/3] d16c6c2858ec: State: INLRMS from SUBMIT
[2023-06-02 13:24:45] [Arc] [INFO] [357383/3] d16c6c2858ec: Job finished
[2023-06-02 13:24:45] [Arc] [INFO] [357383/3] d16c6c2858ec: State: FINISHING from␣

↪→INLRMS
[2023-06-02 13:24:45] [Arc] [INFO] [357383/3] d16c6c2858ec: State: FINISHED from␣

↪→FINISHING
/var/log/arc/ws-interface.log:

• Getting job attributes:

[root ~]# arcctl job attr d16c6c2858ec jobname
arctest2

Get production ready

Now you are ready to Install production ARC7 Computing Element!

100 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

5.2.2 Quickstart ARC: towards distributed computing in a few minutes - token
edition

Scared of distributed computing complexities?

With ARC7 you can setup a Computing Element and try common distributed computing workflows in just a few
minutes!

ARC7 comes with so-called zero configuration included and works out of the box without any configuration at all.

You can try ARC by using the legacy x509 user certificate, or with the newer Jason Web Token capability. The
procedure below splits into x509 versus token at Step 4. The two require slightly different configuration options
on the ARC server, and different procedures to aquire the authentication document (certificate or token).

The ARC server can be set up to accept both user x509 certificates and user tokens in paralell, or just one of the
two. This is up to you.

Note: The zero configured A-REX comes with the REST interface enabled. It runs on port 443, so make sure it
is not firewalled if you want to submit jobs from a remote client host.

https://www.youtu.be/wrE36NQM67c

Step 1. Enable NorduGrid ARC7 repos

Prepare your system to install via the NorduGrid Repositories.

Note: Alpha and release-candidate packages are in testing repository, so please make sure it is enabled, e.g. on
RHEL-based systems you can use dnf --enablerepo=nordugrid-testing to enable it for one transaction or
dnf config-manager --enable nordugrid-testing to enable permanently.

If you want to test ARC7 including all latest developments, set up your repository to include the nightly builds
following Using ARC packages from nightly builds instructions.

Step 2. Install A-REX

ARC Resource-coupled EXecution service (A-REX) is a core component that manages authentication, authoriza-
tion and job life cycle. It is enough to have A-REX installed to have a minimal computing element:

[root ~]# dnf -y install nordugrid-arc-arex

Step 3. Run A-REX

To start ARC services just run:

[root ~]# arcctl service start --as-configured

You can check if A-REX is running with:

[root ~]# arcctl service list
arc-arex (Installed, Disabled, Running)
arc-arex-ws (Installed, Disabled, Running)
arc-datadelivery-service (Not installed, Disabled, Stopped)
arc-infosys-ldap (Not installed, Disabled, Stopped)

Note:

5.2. ARC CE Deployment and Operation 101

https://www.youtu.be/wrE36NQM67c

NorduGrid ARC 7 Documentation, Release ARC7

arcctl tool automates many ARC CE operations and is designed with bash-completion in mind. If
you would like to use ARC in production it is advised to have completion enabled:

[root ~]# dnf install -y bash-completion python-argcomplete
[root ~]# activate-global-python-argcomplete

Step 4. Get a submission token

We suggest you follow this guide to set up a oidc client in order to fetch a token: ARC support for OIDC and set
the BEARER_TOKEN env var.

Note: The token is valid for 20 minutes only. After that you must again issue the oidc-token command and
export the new token.

Take note of your tokens subject. This will be used in the configuration below.

Step 5. Configure A-REX to handle token authentication

Add the [authokens] block right after the [common] block to enable the token authentication functionality.

[authtokens]

Note: This block will become default in the final ARC 7 release, and it will therefore not be necessary to manually
add it.

To tell A-REX that jobs submitted with a particular token should be accepted you must configure the [authgroup]
block in your arc.conf. Place it just after the [authtokens] block.

Note: We will manually remove the x509 subjects for now as a temporary hack - this will be sorted out automat-
ically for the final release of ARC 7.

An example using the INDIGO IAM for WLCG with a token subject
b9f1e5e2-a8f0-4332-bd9d-58bd63898cc6

[authgroup:zero]
authtokens = b9f1e5e2-a8f0-4332-bd9d-58bd63898cc6 https://wlcg.cloud.cnaf.infn.it/ *␣
↪→compute.* *

You can be more specific with the audience, scope and group parameters, again see details in the [authgroup]
authokens section.

Next, enable access to public information for non-authorized users through the REST interface by adding the
[arex/ws/publicinfo] block. Place it just below the [arex/ws/jobs] block.

[arex/ws/publicinfo]

In addition, you will need to install some basic igtf CA certificates to authenticate token issuer on the A-REX host.

[root ~]# arcctl deploy igtf-ca classic --installrepo igtf

Finally, restart A-REX services:

102 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

[root ~]# arcctl service restart -a

Step 5. Install nordugrid-arc-client

You can test submission from the host running A-REX or from any other host in the network. In any case you must
install the ARC client.

Install ARC client tools on the client host:

[root ~]# dnf -y install nordugrid-arc-client

It is technically possible to submit jobs from the root account, however it is advised to use a dedicated regular
user. Here we assume that you use a dedicated regular user.

Note: The zero configured A-REX comes with the REST interface enabled. It runs on port 443, so make sure it
is not firewalled if you want to submit jobs from a remote client host.

You can start with the information query about your newly installed ARC computing element1:

[user ~]$ arcinfo -c https://arc.example.org/arex
Computing service:
Information endpoint: https://arc.example.org:443/arex
Submission endpoint: https://arc.example.org:443/arex (status: ok, interface: org.

↪→nordugrid.arcrest)

Step 7. Submit a job and check that it is running

A simple job can be submitted with the arctest tool:

[user ~]$ arctest -J 2 -C https://arc.example.org/arex
Job submitted with jobid: https://arc.example.org:443/arex/rest/1.0/jobs/f77b3d1b1efb

The job status can be checked with the arcstat tool:

[user ~]$ arcstat https://arc.example.org:443/arex/rest/1.0/jobs/f77b3d1b1efb
Job: https://arc.example.org:443/arex/rest/1.0/jobs/f77b3d1b1efb
Name: arctest2
State: Running

Status of 1 jobs was queried, 1 jobs returned information

To fetch the job’s stdout run arccat tool:

[user ~]$ arccat https://arc.example.org:443/arex/rest/1.0/jobs/f77b3d1b1efb
HOSTNAME=arc.example.org
GRID_GLOBAL_JOBURL=https://arc.example.org:443/arex/f77b3d1b1efb
MALLOC_ARENA_MAX=2
PWD=/var/spool/arc/sessiondir/f77b3d1b1efb
SYSTEMD_EXEC_PID=374194
<output_omitted>

1 Examples uses arc.example.org as a domain name for A-REX host

5.2. ARC CE Deployment and Operation 103

NorduGrid ARC 7 Documentation, Release ARC7

Step 8. Play more with the ARC Computing Element

As an admin you might frequently need to extract information from the logs and directories that ARC computing
element uses. The brief list of the relevant paths can be obtained from:

[root ~]# arcctl config brief
ARC Storage Areas:

Control directory:
/var/spool/arc/jobstatus

Session directories:
/var/spool/arc/sessiondir

Scratch directory on Worker Node:
Not configured

Additional user-defined RTE directories:
Not configured

ARC Log Files:
A-REX Service log:

/var/log/arc/arex.log
A-REX Jobs log:

/var/log/arc/arex-jobs.log
A-REX Helpers log:

/var/log/arc/job.helper.errors
A-REX WS Interface log:

/var/log/arc/ws-interface.log
Infosys Infoproviders log:

/var/log/arc/infoprovider.log

To get information and manage jobs on A-REX server, the arcctl job is useful. Operations include but is not
limited to:

• Listing jobs:

[root ~]# arcctl job list
f5ab040cdc51
f617259d58ec
<output omitted>

[root ~]# arcctl job list --long
f5ab040cdc51 FINISHED arctest2 https://wlcg.
↪→cloud.cnaf.infn.it//b9f1e5e2-a8f0-4332-bd9d-58bd63898cc6
f617259d58ec FINISHED arctest2 https://wlcg.
↪→cloud.cnaf.infn.it//b9f1e5e2-a8f0-4332-bd9d-58bd63898cc6
<output omitted>

• Job general information:

[root ~]# arcctl job info f77b3d1b1efb
Name : arctest2
Owner : https://wlcg.cloud.cnaf.infn.it//b9f1e5e2-a8f0-4332-bd9d-58bd63898cc6
State : FINISHED
LRMS ID : 376176
Modified : 2023-06-02 16:07:05

• Job log:

[root ~]# arcctl job log f77b3d1b1efb
2023-06-02T14:06:51Z Job state change UNDEFINED -> ACCEPTED Reason: (Re)Accepting␣
↪→new job
2023-06-02T14:06:51Z Job state change ACCEPTED -> PREPARING Reason: Starting job␣

(continues on next page)

104 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

↪→processing
2023-06-02T14:06:51Z Job state change PREPARING -> SUBMIT Reason: Pre-staging␣
↪→finished, passing job to LRMS
----- exiting submit_fork_job -----

2023-06-02T14:06:53Z Job state change SUBMIT -> INLRMS Reason: Job is passed to LRMS
---------- Output of the job wrapper script -----------
Detecting resource accounting method available for the job.
Looking for /usr/bin/time tool for accounting measurements
GNU time found and will be used for job accounting.
------------------------- End of output -------------------------
2023-06-02T14:07:05Z Job state change INLRMS -> FINISHING Reason: Job finished␣
↪→executing in LRMS
2023-06-02T14:07:05Z Job state change FINISHING -> FINISHED Reason: Stage-out␣
↪→finished.

• A-REX logs that mentions the job:

[root ~]# arcctl job log f77b3d1b1efb --service
/var/log/arc/arex.log:
[2023-06-02 16:06:51] [Arc] [INFO] [374270/3] f77b3d1b1efb: State: ACCEPTED: parsing␣
↪→job description
[2023-06-02 16:06:51] [Arc] [INFO] [374270/3] f77b3d1b1efb: State: ACCEPTED: moving␣
↪→to PREPARING
[2023-06-02 16:06:51] [Arc] [INFO] [374270/3] f77b3d1b1efb: State: PREPARING from␣
↪→ACCEPTED
[2023-06-02 16:06:51] [Arc] [INFO] [374270/3] f77b3d1b1efb: State: SUBMIT from␣
↪→PREPARING
[2023-06-02 16:06:51] [Arc] [INFO] [374270/3] f77b3d1b1efb: state SUBMIT: starting␣
↪→child: /usr/share/arc/submit-fork-job
[2023-06-02 16:06:53] [Arc] [INFO] [374270/3] f77b3d1b1efb: state SUBMIT: child␣
↪→exited with code 0
[2023-06-02 16:06:53] [Arc] [INFO] [374270/3] f77b3d1b1efb: State: INLRMS from SUBMIT
[2023-06-02 16:07:05] [Arc] [INFO] [374270/3] f77b3d1b1efb: Job finished
[2023-06-02 16:07:05] [Arc] [INFO] [374270/3] f77b3d1b1efb: State: FINISHING from␣
↪→INLRMS
[2023-06-02 16:07:05] [Arc] [INFO] [374270/3] f77b3d1b1efb: State: FINISHED from␣
↪→FINISHING
/var/log/arc/ws-interface.log:

• Getting job attributes:

[root ~]# arcctl job attr f77b3d1b1efb jobname
arctest2

5.2. ARC CE Deployment and Operation 105

NorduGrid ARC 7 Documentation, Release ARC7

Get production ready

Now you are ready to Install production ARC7 Computing Element!

5.2.3 ARC Computing Element Installation and Configuration Guide

Prerequisites

Choosing the host

It is assumed that ARC CE is installed on top of an existing Linux computing cluster. Many Linux distributions
are supported. ARC works well also on a complete virtual computing cluster environment in a cloud.

ARC is non-intrusive towards existing systems. We suggest to deploy ARC CE on a dedicated (virtual) machine
connected to the cluster network and filesystem.

ARC software is very lightweight and does not require powerful machines to run, however if ARC CE will perform
data transfers the requirements are higher. As a minimum, a production CE with 4 cores and 8GB of RAM should
be capable of handling up to 10,000 concurrent jobs without problems. One CE can easily handle the load of a
single cluster, however multiple CEs may be deployed in parallel for redundancy.

Plan for storage areas

Several storage areas are necessary for job submission, execution and data storing. You should mount/export
following directories:

• session directory

• data staging cache directory (if planned)

• decide to what extent to use NOT cross-mounted scratch directory on the worker nodes

Session directory (and the cache directory if used) is typically cross-mounted NFS share. Please note, that in the
typical setup when A-REX is running as root NFS share need to be exported with no_root_squash.

Local resource management system (LRMS)

Install and configure your LRMS (batch system). ARC supports a variety of LRMS back-ends:

• fork - fork jobs on the ARC CE host node, not a cluster. Targeted for testing and development but not for real
production workloads.

• condor - uses HTCondor-powered HTC resource

• slurm - for SLURM clusters

• pbs - any flavor of PBS batch system, including Torque and PBSPro

• pbspro - dedicated Altair PBS Professional backend (from 6.1 release)

• ll - Load Leveler batch system

• lsf - Load Sharing Facility batch system

• sge - Oragle Grid Engine (formely Sun Grid Engine)

• boinc - works as a gateway to BOINC volunteer computing resources

Start by checking if you are able to submit jobs to the chosen LRMS from the ARC CE host.

You may consider setting up dedicated queues to use with ARC CE (e.g. per-VO queues).

Please also NOTICE that in some cases (depending on LRMS) you need to share the batch system log directories
with ARC CE.

106 Chapter 5. Documentation for Infrastructure Admins

http://download.nordugrid.org/repos-6.html

NorduGrid ARC 7 Documentation, Release ARC7

Configure OS accounts

Plan for local account(s) (or account pools) that will be used to execute jobs on the worker nodes.

These accounts should be also available on the ARC CE node.

Please note that ARC services are ran as root on the ARC CE node and switch to an appropriate local account when
processing job data staging and job execution. This process is called mapping.

Installation

This section assumes you have already enabled the NorduGrid repositories for your package utility (yum/dnf/apt).

Note: If you are using RHEL-based operating systems, ARC can be directly installed from the EPEL repository.

Please note that in EPEL-7 nordugrid-arc-* packages delivers ARC 5. Use nordugrid-arc6-* to install ARC
6 from EPEL-7.

Warning: If you are on an EL9 type server (CentOS-Stream 9, AlmaLinux 9, Rocky 9, Fedora 9) you need to
allow legacy crypto policies to be compatible with IGTF. On the command line of the ARC-CE server, issue:

update-crypto-policies --set LEGACY

Install ARC CE core packages from repositories:

[root ~]# yum -y install nordugrid-arc-arex
or
[root ~]# apt-get install nordugrid-arc-arex

Any extra packages will be installed based on the ARC configuration file with ARC Control Tool as described
below. Full list of packages to install manually (especially additional plugins) can be found here.

Grid security heavily relies on PKI and all actions requires certificates/keys for ARC CE as a service and users:

• for testing purposes, the ARC Test-CA and host certificate signed by the Test-CA are generated during A-
REX installation.

• for production use please obtain a certificate signed by one of the IGTF accredited CAs and remove Test-CA
files with arcctl test-ca cleanup.

In production ARC CE needs IGTF CA certificates deployed to authenticate users and other services, such as
storage elements. To deploy IGTF CA certificates to ARC CE host, run1:

[root ~]# arcctl deploy igtf-ca classic

Configuration

Configuration of ARC CE can be done by means of modifying the pre-shipped zero configuration available at
/etc/arc.conf.

The purpose of this zero configuration is to offer a minimalistic working computing element out-of-the box right
after package installation with zero additional configuration needed.

For production deployment you will need to customize the configuration in accordance to your actual setup and
operations mode.

1 Use --installrepo argument to enable repositories with IGTF CA certificates if ARC is not installed from the NorduGrid repos.

5.2. ARC CE Deployment and Operation 107

https://fedoraproject.org/wiki/EPEL
https://www.igtf.net/

NorduGrid ARC 7 Documentation, Release ARC7

Note: ARC services must be restarted when changes have been made to arc.conf.

The ultimate information about available configuration options can be found in the ARC Configuration Reference
Document which is also available locally as /usr/share/doc/nordugrid-arc-*/arc.conf.reference.

The most common configuration steps are explained below.

Configure authorization and mapping rules

Authorization rules define who can access the computing element (execute jobs, query info, etc). Mapping rules
define which grid-users are mapped to which system accounts.

Both authorization and mapping rules in ARC6 rely on the concept of authgroups. Each authgroup represents a
set of users, whose identities are matched to configured rules.

Once defined, authgroups can be applied to filter access to the CE per interface ([arex/ws/jobs], [gridftpd/jobs])
and/or per-queue.

The allowaccess and/or denyaccess options in the corresponding block define which authgroups are allowed
to access the interface or submit to the queue.

The [mapping] block used to configure the rules that defines how the particular authgroup members are mapped
to OS accounts.

In the shipped zero configuration the [authgroup: zero] is defined and applied to A-REX WS interface, the
effect of which is to deny any access unless user is listed in the testCA.allowed-subjects file. The mapping
is configured with map_to_user rule that assign the same nobody account to everyone in zero authgroup.

The typical configuration looks like this:

[authgroup: atlas]
voms = atlas * * *

[mapping]
map_to_pool = atlas /etc/grid-security/pool/atlas

[gridftpd/jobs]
allowaccess = atlas

[queue: qatlas]
allowacces = atlas

Please read the Authorization, Mapping and Queue selection rules document to get familiar with all aspects of this
important configuration step.

Provide LRMS-specific information

One more critical configuration step is to supply ARC CE with relevant information regarding you LRMS specifics.

108 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Specify you LRMS type

In the arc.conf there is a dedicated [lrms] block that defines the type of your LRMS, as well as several options
related to the LRMS behaviour. For example, to instruct ARC to use SLURM, use the following configuration:

[lrms]
lrms = slurm
slurm_use_sacct = yes

Specify queues

In addition to specifying LRMS itself, it is necesssary to list all the queues that will be exposed via the ARC CE,
by using [queue: name] blocks.

[queue: atlas]
comment = Queue for ATLAS jobs

More information about configuring particular LRMS to work with ARC can be found in Batch systems support
document.

Configure A-REX Subsystems

The ARC Resource-coupled EXecution service (A-REX) is a core service handling execution and entire life cycle
of compute jobs.

Enable job management interfaces

A-REX has several job management interfaces avaliable. One can control which of them are enabled and exposed
by configuring the corresponding blocks

WS Interfaces (EMI-ES and ARC REST)
[arex/ws/jobs]

Gridftp
[gridftpd/jobs]

Internal
Install nordugrid-arc-plugins-internal package to use this interface.

Enable data services

ARC has a built-in data transfer framework called DTR. It was designed to be used in environments in which data
transfer was not possible or not desirable on the worker nodes such as HPC centres or sites without local storage.

DTR relies on users submitting jobs with pre-defined input and output files. When A-REX receives a job, it takes
care of downloading the specified input files to the job’s session directory, then submits the job to the batch system.
After the batch job finishes, A-REX takes care of uploading any output files to grid storage.

Define the [arex/data-staging] block to enable data-staging capabilities. Data transfers can be scaled out using
multi-host data-staging.

DTR also includes a cacheing capability. If cacheing is enabled then A-REX will download all input files to the
cache, and create symlinks from the session directory for each file. If a job requests a file that is already cached,
A-REX will not download it again, but simply link from the existing cache file. Define the [arex/cache] block to
enable cacheing.

More detailed technical documentation on ARC data features and advanced features such as CandyPond can be
found in the data overview pages.

5.2. ARC CE Deployment and Operation 109

NorduGrid ARC 7 Documentation, Release ARC7

RunTime Environments

RunTime Environments can modify the job execution cycle and are used for advertising software or features offered
by the computing facility.

ARC ships several RTEs that are ready to be used and classified as system-defined.

One can add ones own directories with so-called user-defined RTEs using the runtimedir configuration option in
the [arex] block.

In ARC6, both system- and user-defined directories are local to the ARC CE node and SHOULD NOT be shared
to worker nodes (unlike in ARC 5).

To use an installed RTE, one should additionally enable this RTE with ARC Control Tool. For example, to enable
the system-defined ENV/PROXY RTE, run:

[root ~]# arcctl rte enable ENV/PROXY

More details on operating RunTime Environments can be found in RunTime Environments in ARC.

Information system

ARC CE information system aims to collect and publish informaion to be used by special clients for matchmaking
and/or monitoring the state and stats of the resource.

It is mandatory to configure the information system for production cases, like those of the WLCG computing
infrastructure.

Defining general information

There are many information schemas and renderings of data available to comply to existing standards. There are
several blocks that are used to define published information depending on schemas:

[infosys]
The most common block that enables internal information collection from ARC CE host and LRMS.

[infosys/cluster]
The common information about the whole cluster, including e.g. its capacity.

[queue: name]
For heterogeneous clusters, most of the information in the [infosys/cluster] block can be re-defined on
per-queue basis.

[infosys/glue2]
Configures the GLUE2-specific values and enables internal glue2 rendering.

[infosys/ldap]
Enables LDAP/BDII dedicated services to publish information via LDAP protocol.

[infosys/glue2/ldap]
Enables GLUE2-schema LDAP rendering of the information.

[infosys/nordugrid]
Enables LDAP rendering of the information according to the NorduGrid schema.

[infosys/glue1]
Configures the GLUE1.x-schema specific values and enables LDAP rendering of GLUE1.x.

[infosys/glue1/site-bdii]
Enables and configures GLUE1.x site-bdii functionality.

110 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Accounting

ARC CE has built-in functionality to measure job’s resource usage metrics that can be used for analyses and
publishing to the SGAS and APEL centralized accounting services.

New in version 6.4: ARC 6.4 introduced the next generation accounting subsystem: A-REX store a complete
job accounting data permanently in the local SQLite accounting database. Local accounting database is used as a
powerful analyses instrument as a part of ARC Control Tool functionality and to generate standard-complient usage
records to publish data to SGAS and APEL.

Deprecated since version 6.4: In 6.0-6.3 releases the Job Usage Reporter of ARC (JURA) tool creates standard-
complient usage records from job usage information provided by the A-REX Job Log files, send the records to
remote accounting services and optionally archive the records for future analyses and republishing.

If you need to configure accounting follow the accounting guide.

Configure Firewall

Different ARC CE services open a set of ports that should be allowed in the firewall configuration.

To generate iptables configuration based on arc.conf, run:

[root ~]# arcctl deploy iptables-config

Enable and Run Services

To enable and run all services as configured in arc.conf, run:

[root ~]# arcctl service enable --as-configured --now

Instead of using ARC Control Tool to manage ARC services, you can always use your OS native tools.

Test Basic Functionality

To test some basic job submission to the configured ARC CE, follow the instructions provided in the try_arc6.

5.2.4 ARC6 to ARC7 Migration Guide

Note: WIP document

5.2.5 ARC CE Deployment Scenarios

To be written/WIP deployment guides:

5.2. ARC CE Deployment and Operation 111

NorduGrid ARC 7 Documentation, Release ARC7

WLCG Deployment with Data Capabilities

Note: WIP document!

Prerequisites

First follow the installation and configuration guide: ARC 6 installation guide.

Install necessary packages

CA certifcates

Install necessary CA certificates needed for WLCG (you have already installed the igtf-ca classic from the prereq-
uisite step)

[root ~]# arcctl deploy igtf-ca mics slcs

Install and set up fetch-crl

To keep your CA’s revocation lists up-to-date you need to install and set up fetch-crl tool. Required for a WLCG
site.

Install the package:

[root ~]# yum install fetch-crl

Enable and start fetch-crl:

[root ~]# systemctl enable fetch-crl-boot
[root ~]# systemctl enable fetch-crl-cron --now
[root ~]# systemctl start fetch-crl-boot
[root ~]# systemctl start fetch-crl-cron

For older pre-systemd distributions (e.g. RHEL 6) use:

[root ~]# chkconfig fetch-crl-boot on
[root ~]# chkconfig fetch-crl-cron on
[root ~]# service fetch-crl-cron start

If you want to edit the times that fetc-crl-cron runs, have a look in the CRON configuration file: /etc/
cron.d/fetch-crl The default settings should be good to get you going. For more advanced options, please see
fetch-crl man pages.

112 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Prepare for voms service signature authentication

If your arc.conf contains authgroups using voms like

[authgroup:atlas-jobs]
voms = atlas * * * *

Then you must install the corresponding voms directory in the following way:

arcctl deploy voms-lsc -e atlas

arcctl will search in the EGI database for the VO in question, and install the necessary files in the vomsdir, where
the default is /etc/grid-security/vomsdir, and the vo folder will be /etc/grid-security/vomsdir/atlas in this example.

Configure ARC datastaging and cache

The datastaging service is enabled by adding the [arex/data-staging] block to arc.conf

A minimal configuration with logfile enabled could look like:

[arex/data-staging]
logfile=/var/log/arc/datastaging.log

See [arex/data-staging] for other options. Especially the preferredpattern and deliveryservice in case you
have one or more remote delivery service machine(s) set up.

Example configuration:

[arex/cache]
cachedir=/grid/cache01
cachedir=/grid/cache02

[arex/cache/cleaner]
cachesize=90 80
cachelifetime=50d
calculatesize=filesystem

Runtime environments

ENV/PROXY

[root ~]# arcctl rte enable ENV/PROXY

ATLAS RTE

ATLAS requires a dummy ATLAS-SITE RTE, create one and enable it like this:

[root ~]# arcctl rte enable --dummy APPS/HEP/ATLAS-SITE

5.2. ARC CE Deployment and Operation 113

NorduGrid ARC 7 Documentation, Release ARC7

Singularity from cvmfs on compute nodes

For singularity to work from cvmfs on the compute nodes (which it must) you need to run the following on all
compute nodes

echo "user.max_user_namespaces = 15000" > /etc/sysctl.d/90-max_user_namespaces.conf;␣
↪→sysctl -p /etc/sysctl.d/90-max_user_namespaces.conf

Configure the site to work with ARC Control Tower (aCT)

For the ARC data-staging mode to work, the site needs to receive jobs from aCT instead of receiving pilot jobs
directly from the job-provider (e.g. PanDA).

WLCG Deployment for pilot sites

ARC Deployment beyond the WLCG scope

5.2.6 Tuning tips for ARC and FAQ

Note: Work-in-progress!

CA certificates

The ENV/PROXY RTE by default makes a copy of CA certificates in each job’s session directory. Copying many
small files to a shared file system is potentially expensive so it is preferred to have CA certificates locally in-
stalled on each worker node, and turn off the copying in ENV/PROXY with arcctl rte params-set ENV/PROXY
COPY_CACERT_DIR No.

The CA certificate packages can be found in the repositories for ARC (http://www.nordugrid.org/documents/arc6/
common/repos/repository.html)

You should also install the fetch-crl package and enable the services as you would on the ARC-CE.

File-system tuning

If you have your sessiondirectories and/or cache directories on NFS make sure you have increased the number of
nfs kernel threads. The default is 8 which is too low. The RPCNFSDCOUNT variable should be increased to 32
or maybe even 64 or even larger depending on your system (number of worker-nodes, number of cores on the nfs
servers).

How to extract backtrace of core dump file

How to extract backtrace of ARC core dump file using gdb and save the output to a file.

gdb <path-to-arc-binary> <path-to-core-file>
(gdb) set logging file gdb.log
(gdb) set logging on
(gdb) thread apply all bt

Example: Assuming ARC is installed in default location: .. code-block:: console

gdb /usr/sbin/arched /var/log/arc/arccore/core.30547 (gdb) set logging file gdb.log (gdb) set logging
on (gdb) thread apply all bt

114 Chapter 5. Documentation for Infrastructure Admins

http://www.nordugrid.org/documents/arc6/common/repos/repository.html
http://www.nordugrid.org/documents/arc6/common/repos/repository.html

NorduGrid ARC 7 Documentation, Release ARC7

How to extract backtraces using a-rex-backtrace-collect

a-rex-backtrace-collect processes core file(s) collected in ARC_LOGS_DIR/arccore folder and produces their back-
traces. The backtrace(s) are stored in files <core_name>.backtrace. The ARC instalation location can be ad-
justed using ARC_LOCATION environment variable. The location of configuration file can be specified using
ARC_CONFIG environment variable.

. . . code-block::console
a-rex-backtrace-collect

5.2.7 Operating ARC CE Subsystems

ARC6 Packages

Table 5.1: List of ARC 6 binary packages

Package info ARC 6 package name Block
name1

ARC 5 package name

Base package holding common files nordugrid-arc N/A nordugrid-arc
ARC Hosting Environment Daemon nordugrid-arc-hed N/A nordugrid-arc-hed
ARC Resource-coupled EXecution ser-
vice (A-REX)

nordugrid-arc-arex [arex] nordugrid-arc-arex

ARC Candypond Service part of
nordugrid-arc-arex

[arex/
ws/
candypond]

nordugrid-arc-candypond

ARC GridFTP Server nordugrid-arc-gridftpd[gridftpd] nordugrid-arc-gridftpd
ARC LDAP-based Information Ser-
vices2

nordugrid-arc-infosys-ldap[infosys/
ldap]

nordugrid-arc-aris,
nordugrid-arc-ldap-infosys

ARC Data Delivery Service (DDS) nordugrid-arc-datadelivery-service[datadelivery-service]nordugrid-arc-datadelivery-service
ARC Cache Index (ACIX) - Core nordugrid-arc-acix-coreN/A nordugrid-arc-acix-core
ARC Cache Index (ACIX) - Scanner nordugrid-arc-acix-scanner[acix-scanner]nordugrid-arc-acix-cache
ARC Cache Index (ACIX) - Index nordugrid-arc-acix-index[acix-index]nordugrid-arc-acix-index
The nordugridmap tool nordugrid-arc-nordugridmap[nordugridmap]nordugrid-arc-gridmap-utils
ARC development files nordugrid-arc-devel N/A nordugrid-arc-devel
Python 2 bindings for ARC python2-nordugrid-arc N/A python2-nordugrid-arc
Python 3 bindings for ARC python3-nordugrid-arc N/A python3-nordugrid-arc
ARC command line clients nordugrid-arc-client own config nordugrid-arc-client
ARC test tools nordugrid-arc-test-utils3N/A nordugrid-arc-misc-utils
ARC LDAP monitor web application nordugrid-arc-monitor N/A nordugrid-arc-ldap-monitor
ARC base plugins (MCCs and DMCs) nordugrid-arc-plugins-neededN/A nordugrid-arc-plugins-needed
ARC Globus plugins nordugrid-arc-plugins-globusN/A nordugrid-arc-plugins-globus
ARC xrootd plugins nordugrid-arc-plugins-xrootdN/A nordugrid-arc-plugins-xrootd
ARC GFAL2 plugins4 nordugrid-arc-plugins-gfalN/A nordugrid-arc-plugins-gfal
ARC S3 plugins nordugrid-arc-plugins-s3N/A nordugrid-arc-plugins-s3
ARC Internal plugin nordugrid-arc-plugins-internalN/A N/A
ARCHERY administration tool nordugrid-arc-archery-manageN/A N/A
A-REX Python LRMS backends nordugrid-arc-python-lrmsN/A N/A
ARC optional worker nodes compo-
nents [6.2]

nordugrid-arc-wn N/A N/A

List of packages deprecated in ARC6:
1 Block names are used by arcctl service enable --as-configured command to fetch necessary packages automanically based on

the blocks configured in arc.conf
2 Package define LDAP/BDII/Glue-Schema dependencies and contains wrappers to start all this LDAP world. Infoproviders are in the A-

REX package.
3 No longer relevant saml_assertion_init tool had been removed.
4 Support for specific rotocols is provided by separate 3rd-party GFAL2 plugin packages.

5.2. ARC CE Deployment and Operation 115

NorduGrid ARC 7 Documentation, Release ARC7

• nordugrid-arc-ws-monitor

• nordugrid-arc-arcproxyalt

• nordugrid-arc-ca-utils

• nordugrid-arc-egiis

• nordugrid-arc-java

ARC6 Services

Table 5.2: List of ARC 6 services

Block
namePage 116, 1

ARC 6 service name Main process ARC 5 service name

[arex] arc-arex arched a-rex
[arex/ws/
candypond]

started by arc-arex arched arc-candypond

[gridftpd] arc-gridftpd gridftpd gridftpd
[infosys/
ldap]

arc-infosys-ldap slapd,
bdii-update

nordugrid-arc-aris

[datadelivery-service]arc-datadelivery-service arched arc-datadelivery-service
[acix-scanner] arc-acix-scanner twistd acix-cache
[acix-index] arc-acix-index twistd acix-index

Authorization, Mapping and Queue selection rules

Overview

ARC CE authorization and mapping rules rely on the concept of authgroups (configured by [authgroup] blocks).

Fig. 5.1: General overview of authorization and mapping concepts in ARC
1 Block names are used by arcctl service start --as-configured command to start/stop necessary services automanically based

on the blocks configured in arc.conf

116 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

During the connection establishment and authentication process on any of the ARC CE interfaces (e.g. job submis-
sion on the figure), the Authgroup matching happened. Each authgroup represents a set of users, whose identities
are matched to configured rules. The same user can match (belongs to) several authgroups.

If configured by allowaccess and denyaccess options, per-interface authorization rules will be enforced. This
rules defines the list of authgoups that granted or denied access to the particular ARC CE interface. Without per-
interface authorization rules, configuration access to the interface is granted to anyone who passed authentication
process.

Warning: User will be successfully authenticated only in case of certificate and proxy-certificate has been
passed validation.

In case of time syncronization problems, missing or invalid CA certificates and CRLs, missing VOMS LSC
files, etc - the connection WILL NOT be established.

Mapping rules in ARC also relies on authgroup membership. Configured mapping rules are processed sequen-
tially and define the OS account ID that will be assigned to authgroup members. Several mapping methods are
available, depending on requirements.

Notice that in ARC authorization rules can also be enforced per-queue. It uses the same allowaccess and
denyaccess options syntax as for per-interface configuration but can additionally restrict access to the particular
queue. By default access to the queue granted to all users authorized on interface level.

Defining authgroups

Authgroups should be defined on the top of arc.conf using the [authgroup:groupname] block before it will be
referenced in the other parts of configuration.

Each authgroup is a named object, that will be referenced by its name during authorization and mapping rules
configuration. There are no special restrictions to the authgroup names except the absence of spaces, so you can
even define * authgroup to blow the mind of other arc.conf readers.

Each config line in the [authgroup:groupname] block represent a matching rule that are processed sequentially.

When the matchig criteria of the rule has been satisfied by user identity - the processing stops within this authgroup.

Whether user belogns to this authgroup or not is defined by the type of rule that was matched: there are positively
and negatively matching rules. By default all rules are positive (user IS a member of authgroup when matched)
unless prefixed with - sign.

Matching one of the authgroups does not mean that the same user is not processed for the next authgroup. All
authgroups are evaluated, even if a user already has a match with one of the earlier processed authgroups.

Note: Notice that:

• authgroup blocks should be defined before referencing!

• authgroup rules within blocks are order-dependent!

• all authgroup blocks are evaluated!

Complete list of authgroup rules can be found in the ARC Configuration Reference document. Some examples are:

[authgroup: norduguest]
-file = /etc/grid-security/banned.dns
voms = nordugrid Guests * *

[authgroup: admin]
subject = /O=Grid/O=Big VO/CN=Main Admin

(continues on next page)

5.2. ARC CE Deployment and Operation 117

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

[authgroup: lcas]
plugin = 10 /usr/libexec/arc/arc-lcas %D %P liblcas.so /usr/lib64 /etc/lcas/lcas.db

[authgroup: any]
authgroup = norduguest
authgroup = admin
authgroup = lcas

[authgroup: *]
all = yes

Applying authorization rules

You can enforce authentication restrictions on every interface. This includes:

• EMI-ES and REST interfaces configured with [arex/ws/jobs] block

• GridFTP job submission interface configured with reference_gridftpd_jobs

• GridFTP trivial storage interface configured with reference_gridftpd_filedir

In addition to interface level authorization, queue-level authorization can be configured using the same configura-
tion approach,

The allowaccess confuguration option defines that the specified authgroup members are authorized to access the
ARC-CE via this interface or access particular queue. A related config option denyaccess can in turns be used
to reject access.

Multiple allowaccess and denyaccess authorization statements are allowed within a configuration block. These
statements are processed sequentially, in the order they are specified in the config block.

The processing stops on first allowaccess or denyaccess statement matching the authgroup membership. If
there are no authorization statements specified, then no additional restrictions are applied for authorizing user
access and the interface or queue is open to everybody authenticated.

Note: Default deny authorization approach can be configured using the empty authgroup.

Example: ARC zero configuration

In the shipped zero configuration the [authgroup: zero] is defined and applied to A-REX WS interface. The
effect of this configuration is to allow access to CE only to the subjects stored in the testCA.allowed-subjects
file. This file is empty by default and close down CE access until subjects are added by arcctl test-ca
usercert.

[authgroup:zero]
file = /etc/grid-security/testCA.allowed-subjects

[arex/ws/jobs]
allowaccess = zero

118 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Example: subject-based authorization

To authorize users based on certificate subject the subject or file rules can be used.

The file option support both:

• plain list of subjects (each line contains only a subject name),

• grid-mapfile format, when subject name followed by mapped account ID.

In both cases subject name should be enquoted if it contains spaces.

[authgroup: banana]
subject = /O=Grid/O=Bad Users/CN=The Worst

[authgroup: boss]
subject = /O=Grid/O=Big VO/CN=Main Boss

[authgroup: dnfromfile]
file = /etc/grid-security/local_users

[gridftpd/jobs]
denyaccess = banana
allowaccess = boss
allowaccess = dnfromfile

Example: VOMS-based authorization

To filter access based on VOMS certificate attributes, define one or more [authgroup] blocks using the voms key-
word.

To verify VO membership signatures, ARC CE needs the so-called list of certificates (LSC) files that can be installed
by arcctl.

Example configuration for atlas, alice and swegrid.se VOs1:

1. Deploy LSC files:

[root ~]# arcctl deploy voms-lsc atlas --egi-vo
[root ~]# arcctl deploy voms-lsc alice --egi-vo
[root ~]# arcctl deploy voms-lsc swegrid.se --voms vomss://voms.ndgf.
↪→org:8443

2. Create authorization group and apply access resctiction to interface and/or queue in arc.conf:

[authgroup: atlas]
voms = atlas * * *

[authgroup: alice]
voms = atlas * * *

[authgroup: swegrid]
voms = swegrid.se * * *

[authgroup: all]
authgroup = atlas
authgroup = alice

(continues on next page)

1 In this example and in what follows, a simplified configuration is shown. An actual configuration will in most cases include different
authgroups for different VO groups and roles.

5.2. ARC CE Deployment and Operation 119

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

authgroup = swegrid

[gridftpd/jobs]
allowaccess = all

[arex/ws/jobs]
allowaccess = all

[queue: qlhc]
allowaccess = alice
allowaccess = atlas

[queue: qswegrid]
allowaccess = swegrid

Configure mapping

Any grid user should be mapped to a local account to start processes and access files.

Mapping rules configured in [mapping] block define which grid-users (specified by authgroup) are mapped to
which system accounts (several mapping methods available).

Rules in the [mapping] block are processed in a sequence in line order of the configuration file (from top to bottom).

There are two kind of rules avaiable:

• mapping rules (started with map_) that defines how the particular authgroup members are mapped,

• policy rules (started with policy_) that modifies the mapping rules sequence processing.

Default policy for mapping rules processing is:

• processing CONTINUES to the next rule if identity of user DO NOT match authgroup specified in the rule
(can be redefined with policy_on_nogroup option)

• processing STOPS if identity of user matched the authgroup specified in the mapping rule. Depend on
whether this mapping rule returns valid UNIX identity the processing can be redefined with policy_on_map
and policy_on_nomap options.

Policy can be redefined at the any point of configuration sequence and affects all mapping rules defined after the
polcy rule.

Warning: If mapping process STOPS and there is still no local UNIX identity identified, the user running
A-REX will be used (typically root unless redefined by user option for specific deployment case).

When grid-identity is mapped to root account - request processing fails implicitely!

Example: mapping to the same account

The map_to_user option allows to map all authgroup members to the same account specified as an argument.

For example in shipped zero configuration all users that are matched to authgroup zero are mapped to the same
nobody account (and nobody group) that will work with local job forking:

[mapping]
map_to_user = zero nobody:nobody

120 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Example: mapping to the accounts pool

The most secure and flexible way is to map authgroup members to account pools (so-called map_to_pool method).
It is recommended to use pools mapping when the resource is under the use of different communities.

In this approach, every member of specified authgroup will be dynamically mapped to one of the available accounts
in the configured pool.

Available pool account names are stored one per line in the pool file inside the dedicated directory. Accounts from
pool are assigned by means of leasing approach. All leased accounts are stored in the other files placed in the same
directory. They can be reassigned to other users after 10 days of inactivity.

Example configuration for atlas:

1. Create necessary number of accounts to be used on ARC CE and Worked Nodes of the cluster.

2. Define ARC accounts pool:

[root ~]# mkdir -p /etc/grid-security/pool/atlas
[root ~]# for u in atlas{001..100}; do echo $u >> /etc/grid-security/pool/
↪→atlas/pool; done

2. Configure mapping in arc.conf2:

[mapping]
map_to_pool = atlas /etc/grid-security/pool/atlas

Example: Legacy grid-mapfile based mapping

Warning: Legacy grid-mapfile based mapping is NOT recommended for the typical production loads.

In the grid-mapfile approach users are mapped to local accounts based on certificate DNs only. Mapping rules are
stored line-by-line in the so-called grid-mapfile that describes which user is mapped to which account, for example:

"/O=Grid/O=NorduGrid/OU=uio.no/CN=Aleksandr Konstantinov" user1
"/O=Grid/O=NorduGrid/OU=hep.lu.se/CN=Oxana Smirnova" user2

In the simplest legacy case ARC can use the grid-mapfile for both authorization and mapping decisions.

Example configuration for legacy grid-mapfile case:

[authgroup: legacy]
file = /etc/grid-security/grid-mapfile

[mapping]
map_with_file = legacy /etc/grid-security/grid-mapfile

Grid-mapfiles in arc.conf can be also referred as a [userlist] objects and be generated regularly, keeping them
up-to-date (from e.g. VOMS database) with nordugridmap utility that can be used and configured with the refer-
ence_nordugridmap

Note: You can find more information about moving from grid-mapfiles in the The life without gridmapfiles
presentation.

2 atlas is the name used in [authgroup: atlas]

5.2. ARC CE Deployment and Operation 121

https://indico.lucas.lu.se/event/1020/material/slides/11.odp

NorduGrid ARC 7 Documentation, Release ARC7

Example: mapping with external LCMAPS rules

ARC can run an external plugin to map users that can be configured with the map_with_plugin option.

To support several production loads, ARC ships with the built-in LCMAPS plugin included in A-REX package:

[authgroup:all]
all = yes

[mapping]
map_with_plugin = all 30 /usr/libexec/arc/arc-lcmaps %D %P liblcmaps.so /usr/lib64 /
↪→etc/lcmaps/lcmaps-arc-argus.db arc

LCMAPS itself is a third-party tool that should be installed and configured separately, which is beyound the scope
of this guide.

Queue selection rules and queue configuration

Note: Behaviour new in ARC 6.11

Once a submitter is authorized to submit to one of the submission interfaces defined in arc.conf, the next step for
ARC is to select a queue and check authorisation at queue-level.

The logic is as follows

1. if (queue defined in job description xrsl)

• submit to that queue w/o modification if authorised in the queue block

2. elseif (no queue defined in job description xrsl but a default queue is defined in arc.conf)

• substitute the default queue into xrsl if authorised in the queue block

3. elseif (no queue in defined in job description xrsl and no default queue is defined in arc.conf and the VO is
authorised in one of the arc.conf queues*)

• substitute into xrsl the first of the queues where the VO is authorised according to arc.conf

4. else

• reject

* any VO is authorised in a queue that has no authorisation defined at all.

Note that this means that you must ensure that the authgroups you wish to allow submission from, are authorized
in the queue you intend the authgroup to submit to. An example of an arc.conf setup that previously could result
in the LRMS selecting the queue, but where submission today will be rejected could be the following:

[authgroup:exp1]
...

[authgroup:exp2]
...

[mapping]
..

[queue:queue1]
allowaccess= exp1

(continues on next page)

122 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

[queue:queue2]
allowacces= exp1

Let’s look at the exp2 authgroup. According to this arc.conf we assume the authorisation and mapping is ok.

Old behaviour: If there is no queue information in the xrls, the old behaviour would be to pass the job to the LRMS
directly and let LRMS select the queue. This means that any queue in the system, even a queue not defined in
arc.conf could be selected, e.g. a queue3 defined by the LRMS, but not in arc.conf.

New behaviour: From ARC version 6.11 only queue1 and queue2 will be possible queues for exp2 (and any au-
thgroups), as they are the ones defined in arc.conf. Therefore in the example, none of the queues are allowed for
exp2 and the job will be rejected.

A possible rewrite of this arc.conf example-snippet, to allow exp2 to submit to queue2 could be:

[queue:queue1]
allowaccess= exp1

[queue:queue2]
<empty>

This is an example of rule 3: No queue is defined in the job description xrsl and no default queue is defined in
arc.conf and the VO is authorised in (at least) one of the arc.conf queues. In this example all VO’s are authorised
for using queue2.

Batch systems support

Overview

The A-REX has to interfaced to the LRMS in order to be able to submit jobs and query their information. The A-
REX supports several Local Resource Management Systems (LRMS), with which it interacts by several backend
scripts.

The A-REX assumes that the LRMS has one or more queues, which is a couple of (usually homogeneous) worker
nodes grouped together. The different LRMSes have different concepts of queues (or have no queues at all).

Nevertheless, in the A-REX configuration, the machines of the LRMS should be mapped to A-REX queues. The
client side job submission tools query the information system for possible places to submit the jobs, where each
queue on a CE is represented as an execution target, and treated separately.

Configring A-REX to use one of these LRMS backends typically involves the following steps:

1. Sharing directories between A-REX, the LRMS frontend and its working nodes. It might involve setup of
shared filesystems such as NFS or similar.

2. Configuring [lrms] block and [queue] blocks in arc.conf in respect to LRMS setup.

3. Configuring the A-REX in respect to the shared scratch directories configuration.

General LRMS configuration

In the [lrms] block he name of the LRMS has to be specified with the lrms option.

The supported LRMS are:

• fork - fork jobs on the ARC CE host node, not a cluster. Targeted for testing and development but not for real
production workloads.

• condor - uses HTCondor-powered HTC resource

• slurm - for SLURM clusters

5.2. ARC CE Deployment and Operation 123

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 5.2: The LRMS frontend and the nodes sharing the session directory and the local users

• pbs - any flavor of PBS batch system, including Torque and PBSPro

• ll - Load Leveler batch system

• lsf - Load Sharing Facility batch system

• sge - Oragle Grid Engine (formely Sun Grid Engine)

• boinc - works as a gateway to BOINC volunteer computing rfesources

• slurmpy - new experimental SLURM backend written in Python (requires nordugrid-arc-python-lrms pack-
age instsalled).

Each LRMS has its own specific configuration options that are prefixed with LRMS name in [lrms] block.

Besided this specific options, the behaviour of LRMS backend is affected by storage areas and limits setup, in
particular:

• tmpdir - defines the path to directory for temporary files on the worker nodes

• shared_filesystem, scratchdir and shared_scratch - changes the way how A-REX will store the jobs’ data
during the processing. More details can be found in Job scratch area document.

• defaultmemory and req-queue defaultmemory - set the memory limit values for jobs that has no explcit
requirements in the job description.

124 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Accounting considerations

A-REX has several approaches to collect accounting information:

• using cgroups measurements of memory and CPU on the WNs (starting from 6.2 release)

• using measurement from the GNU Time utility that wraps the job executable invokation inside the job script

• using data provided by LRMS

Depending on LRMS type in use there are different kind of information availble and/or missing in the LRMS
accounting subsystem.

It is recommended to use cgroups or GNU Time methods to have reliable resources measurements in all cases.
You can find more details in the Measuring accounting metrics of the job document.

Fork Backend

The Fork back-end is a simple back-end that interfaces to the local machine, i.e.: there is no batch system under-
neath. It simply forks the job, hence the name. The back-end then uses standard posix commands (e.g. ps or kill)
to manage the job.

For is the deafult backend used in ARC pre-shipped zero configuration.

Recommended batch system configuration

Since fork is a simple back-end and does not use any batch system, there is no specific configuration needed for the
underlying system.

It is still reqiuires queue definition and the queue should be named fork.

Example:

[lrms]
lrms = fork

[queue:fork]

Known limitations

Since Fork is not a batch system, many of the queue specific attributes or detailed job information is not available.
The support for the Fork batch system was introduced so that quick deployments and testing of the middleware can
be possible without dealing with deployment of a real batch system since fork is available on every UNIX box.

The Fork back-end is not recommended to be used in production. The back-end by its nature, has lots of limitations,
for example it does not support parallel jobs.

Portable Batch System (PBS)

The Portable Batch System (PBS) is one of the most popular batch systems for small clusters. PBS comes in many
flavours such as OpenPBS (unsupported), Terascale Open-Source Resource and QUEue Manager (TORQUE) and
PBSPro (currently owned by Altair Engineering). ARC supports all the flavours and versions of PBS.

5.2. ARC CE Deployment and Operation 125

NorduGrid ARC 7 Documentation, Release ARC7

Recommended batch system configuration

PBS is a very powerful LRMS with dozens of configurable options. Server, queue and node attributes can be
used to configure the cluster’s behaviour. In order to correctly interface PBS to ARC (mainly the information
provider scripts) there are a couple of configuration REQUIREMENTS asked to be implemented by the local system
administrator:

1. The computing nodes MUST be declared as cluster nodes (job-exclusive), at the moment time-shared nodes
are not supported by the ARC setup. If you intend to run more than one job on a single processor then you
can use the virtual processor feature of PBS.

2. For each queue, one of the max_user_run or max_running attributes MUST be set and its value SHOULD
BE IN AGREEMENT with the number of available resources (i.e. don’t set the max_running = 10 if
there are only six (virtual) processors in the system). If both max_running and max_user_run are set then
obviously max_user_run has to be less or equal to max_running.

3. For the time being, do NOT set server limits like max_running, please use queue-based limits instead.

4. Avoid using the max_load and the ideal_load directives. The Node Manager (MOM) configuration file
(<PBS home on the node>/mom_priv/config) should not contain any max_load or ideal_load di-
rectives. PBS closes down a node (no jobs are allocated to it) when the load on the node reaches the max_load
value. The max_load value is meant for controlling time-shared nodes. In case of job-exclusive nodes there
is no need for setting these directives, moreover incorrectly set values can close down a node.

5. Routing queues are now supported in a simple setup were a routing queue has a single queue behind it. This
leverages MAUI work in most cases. Other setups (i.e. two or more execution queues behind a routing
queue) cannot be used within ARC correctly.

6. PBS server logs SHOULD BE shared with ARC CE to allow backend scripts to check the job status and
collect information needed for accounting. The path to logs on the ARC CE is defined with pbs_log_path
option.

Additional useful configuration hints:

• If possible, please use queue-based attributes instead of server level ones.

• The acl_user_enable = True attribute may be used with the acl_users = user1,user2 attribute to
enable user access control for the queue.

• It is advisory to set the max_queuable attribute in order to avoid a painfully long dead queue.

• Node properties from the <PBS home on the server>/server_priv/nodes file together with the
resources_default.neednodes can be used to assign a queue to a certain type of node.

Checking the PBS configuration:

• The node definition can be checked by pbsnodes -a. All the nodes MUST have ntype=cluster.

• The required queue attributes can be checked as qstat -f -Q queuename. There MUST be a
max_user_run or a max_running attribute listed with a REASONABLE value.

Example:

[lrms]
lrms = pbs
defaultmemory = 512
pbs_log_path = /net/bs/var/log/torque/server_logs

[queue:grid_rt]
comment = Realtime queue for infrastructure testing
allowaccess = ops
advertisedvo = ops

[queue:alien]
comment = Dedicated queue for ALICE

(continues on next page)

126 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

allowaccess = alice
advertisedvo = alice
defaultmemory = 3500

Known limitations

Some of the limitations are already mentioned under the PBS deployment requirements. No support for routing
queues, difficulty of treating overlapping queues, the complexity of node string specifications for parallel jobs are
the main shortcomings.

SLURM

SLURM is an open-source (GPL) resource manager designed for Linux clusters of all sizes. It is designed to
operate in a heterogeneous cluster with up to 65,536 nodes. SLURM is actively being developed, distributed and
supported by Lawrence Livermore National Laboratory, Hewlett-Packard, Bull, Cluster Resources and SiCortex.

Recommended batch system configuration

The backend should work with a normal installation using only SLURM or SLURM+MOAB/MAUI. Do not keep
nodes with different amount of memory in the same queue.

For production use-cases it is recommended to enable slurm_use_sacct option.

Example:

[lrms]
lrms=slurm
slurm_use_sacct=yes
defaultmemory=4096

[queue:normal]
comment=Queue for grid jobs
architecture=x86_64
totalcpus=1500

Using Python LRMS backend implementation

Experimental python LRMS backend can be used for SLURM after nordugrid-arc-python-lrms package installa-
tion. Python backed is distinguished by slurmpy name that should be specified in lrms option.

This backend respects the same options set, as a classical SLURM backend script, but additionally allows the
connection over SSH when reference_lrms_ssh is enabled and configured.

5.2. ARC CE Deployment and Operation 127

NorduGrid ARC 7 Documentation, Release ARC7

Known limitations

If you have nodes with different amount of memory in the same queue, this will lead to miscalculations. If SLURM
is stopped, jobs on the resource will get canceled, not stalled. The SLURM backend is only tested with SLURM
1.3, it should however work with 1.2 as well.

HTCondor

The HTCondor system, developed at the University of Wisconsin-Madison, was initially used to harness free cpu
cycles of workstations. Over time it has evolved into a complex system with many grid-oriented features. Condor
is available on a large variety of platforms.

Recommended batch system configuration

Install HTCondor on the A-REX node and configure it as a submit machine. Next, add the following to the node’s
Condor configuration (or define CONDOR_IDS as an environment variable):

CONDOR_IDS = 0.0

CONDOR_IDS has to be 0.0, so that Condor will be run as root and can then access the Grid job’s session directories
(needed to extract various information from the job log).

Make sure that no normal users are allowed to submit Condor jobs from this node. If normal user logins are not
allowed on the A-REX machine, then nothing needs to be done. If for some reason users are allowed to log into the
A-REX machine, simply don’t allow them to execute the condor_submit program. This can be done by putting
all local Unix users allocated to the grid in a single group, e.g. griduser, and then setting the file ownership and
permissions on condor_submit like this:

[root ~]# chgrp griduser $condor_bin_path/condor_submit
[root ~]# chmod 750 $condor_bin_path/condor_submit

Example:

[lrms]
lrms = condor
defaultmemory = 2000

[queue:EL7]
comment = EL7 queue
defaultmemory = 3000
nodememory = 16384
condor_requirements = (Opsys == "linux") && (OpSysMajorVer == 66)

Known limitations

Only Vanilla universe is supported. MPI universe (for multi-CPU jobs) is not supported. Neither is Java universe
(for running Java executables). ARC can only send jobs to Linux machines in the Condor pool, therefore excluding
other unixes and Windows destinations.

128 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

LoadLeveler

LoadLeveler(LL), or Tivoli Workload Scheduler LoadLeveler in full, is a parallel job scheduling system developed
by IBM.

Recommended batch system configuration

The back-end should work fine with a standard installation of LoadLeveler. For the back-end to report the correct
memory usage and cputime spent, while running. LoadLeveler has to be set-up to show this data in the llq
command. Normally this is turned off for performance reasons. It is up to the cluster administrator to decide
whether or not to publish this information. The back-end will work whether or not this is turned on.

Known limitations

There is at the moment no support for parallel jobs on the LoadLeveler back-end.

LSF

Load Sharing Facility (or simply LSF) is a commercial computer software job scheduler sold by Platform Comput-
ing. It can be used to execute batch jobs on networked Unix and Windows systems on many different architectures.

Recommended batch system configuration

Set up one or more LSF queues dedicated for access by grid users. All nodes in these queues should have a resource
type which corresponds to the one of the the frontend and which is reported to the outside. The resource type needs
to be set properly in the lsb.queues configuration file.

Be aware that LSF distinguishes between 32 and 64 bit for Linux. For a homogeneous cluster, the type==any
option is a convenient alternative.

In lsb.queues set one of the following:

RES_REQ = type==X86_64
RES_REQ = type==any

See the -R option of the bsub command man page for more explanation.

The lsf_profile_path option must be set to the filename of the LSF profile that the back-end should use.

Furthermore it is very important to specify the correct architecture for a given queue in arc.conf. Because the
architecture flag is rarely set in the xRSL file the LSF back-end will automatically set the architecture to match the
chosen queue.

LSF’s standard behaviour is to assume the same architecture as the frontend. This will fail for instance if the
frontend is a 32 bit machine and all the cluster resources are 64 bit. If this is not done the result will be jobs being
rejected by LSF because LSF believes there are no useful resources available.

5.2. ARC CE Deployment and Operation 129

NorduGrid ARC 7 Documentation, Release ARC7

Known limitations

Parallel jobs have not been tested on the LSF back-end.

The back-end does not at present support reporting different number of free CPUs per user.

SGE

Sun Grid Engine (SGE, Oracle Grid Engine, Codine) is an open source batch system maintained by Sun (Oracle).
It is supported on Linux, and Solaris in addition to numerous other systems.

Recommended batch system configuration

Set up one or more SGE queues for access by grid users. Queues can be shared by normal and grid users. In case
it is desired to set up more than one ARC queue, make sure that the corresponding SGE queues have no shared
nodes among them. Otherwise the counts of free and occupied CPUs might be wrong. Only SGE versions 6 and
above are supported. You must also make sure that the ARC CE can run qacct, as this is used to supply accounting
information.

Example:

[lrms]
lrms = sge
sge_root = /opt/n1ge6
sge_bin_path = /opt/n1ge6/bin/lx24-x86

[queue: long]
sge_jobopts= -P atlas -r yes

Known limitations

Multi-CPU support is not well tested. All users are shown with the same quotas in the information system, even
if they are mapped to different local users. The requirement that one ARC queue maps to one SGE queue is too
restrictive, as the SGE’s notion of a queue differs widely from ARC’s definition. The flexibility available in SGE
for defining policies is difficult to accurately translate into NorduGrid’s information schema. The closest equivalent
of nordugrid-queue-maxqueuable is a per-cluster limit in SGE, and the value of nordugrid-queue-localqueued is
not well defined if pending jobs can have multiple destination queues.

BOINC

BOINC is an open-source software platform for computing using volunteered resources. Support for BOINC in
ARC is currently at the development level and to use it may require editing of the source code files to fit with each
specific project.

130 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Recommended batch system configuration

The BOINC database can be local to the ARC CE or remote. Read-access is required from the ARC CE to check
for finished jobs and gather information on available resources. The ARC CE must be able to run commands in the
project’s bin/ directory.

Project-specific variables can be set up in an RTE which must be used for each job. The following example shows
the variables which must be defined to allow job submission to BOINC for the project “example” to work:

export PROJECT_ROOT="/home/boinc/project/example" # project directory
export BOINC_APP="example" # app name
export WU_TEMPLATE="templates/example_IN" # input file template
export RESULT_TEMPLATE="templates/example_OUT" # output file template
export RTE_LOCATION="$PROJECT_ROOT/Input/RTE.tar.gz" # RTEs, see below

The last variable is a tarball of runtime environments required by the job.

Known limitations

The BOINC back-end was designed around projects that use virtualisation. The prototype implementation in the
current ARC version may not be generic enough to suit all BOINC projects.

When preparing a BOINC job, the ARC CE copies a tarball of the session directory to the BOINC project download
area. Once the job is completed and the output uploaded to the BOINC peoject upload area, a modified assimilator
daemon must be used to copy the result back to the session directory so that it can be retrieved by ARC clients or
uploaded to Grid storage by the ARC CE.

ARC Information System

TBD

ARC CE Data Staging and Caching

RunTime Environments in ARC

Understanding RunTime Environments

ARC Computing Element is a front-end to the various heterogeneous resource providers. To run jobs on the partic-
ular resource provider there are always a set of software or workflow-specific paths, tools, libraries, environmental
variables or even dynamic content that should be recreated in the job content.

To provide a flexible way of job runtime environment tuning, ARC enforces the concept of the RunTime Environ-
ment (RTE).

ARC RunTime Environments (RTEs) provide two features:

Advertising
indicate the available environment to be requested by end-users

Modifying job environment
flexibly contextualize job execution environment

5.2. ARC CE Deployment and Operation 131

NorduGrid ARC 7 Documentation, Release ARC7

Advertising RTEs

Advertising RTEs provides user interfaces to application software and other resources in a way that is independent
of the details of the local installation of the application and computing platform (OS, hardware, etc.).

It addresses setups typically required by large research groups or user bases, dealing with a common set of software.
The actual implementation of a particular RTE may differ from site to site as necessary.

However, it should be designed so that resource providers with different accounting, licence or other site-specific
implementation details can advertise the same application interface (RTE) for all users.

Despite possibly different parameters or implementation, the same software addressed by the same RTE name
should be known by community. It is also supported to add RTE versioning at the end of the RTE name (after a
dash). The RTE version will be used for resource matchmaking along with the RTE name.

For example to request ENV/PROXY and APPS/HEP/ATLAS with version 20.1.0.1 or greater in the xRSL job
description:

(runTimeEnvironment="ENV/PROXY")
(runTimeEnvironment>="APPS/HEP/ATLAS-20.1.0.1")

It is always up to the local system administrators to take a decision whether to install and enable a particular RTE
or not.

Modifying job environment

The RTE content itself is a BASH script that is aimed to run any arbitrary code during the job life cycle.

The first argument of the RTE script indicates the so-called RTE stage. If the job description specifies additional
arguments for corresponding RTE’s those are appended starting at the second position.

ARC CE

Job Script Generate

Worker Node

Job Script Run

RTEs from Job Description

Default RTEs

RTEs Stage 0

Embeded RTEs contetnt

Submit Batch Job

LRMS Scheduler Init LRMS Job

Setup job workdir

RTEs Stage 1

Job Processing

RTEs Stage 2

There are 3 stages of an RTE execution:

132 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Stage 0
RTE script sourced before the creation of the job’s LRMS submission script. In this case the scripts are run
by A-REX on the frontend (ARC CE), before the job is sent to the LRMS. Some environment variables are
defined in this case, and can be changed to influence the job’s execution later. TODO: list of grami attributes
as a dedicated technical note

Stage 1
The Embedded RTE function runs before the main job processing on the Worker Node under the LRMS.
Such stage can prepare the environment for some third-party software package. The current directory in this
case is the one which would be used for execution of the job. The variable $HOME also points to this directory.

Stage 2
The embedded RTE function runs after the main job processing on the Worker Node under the LRMS. The
main purpose is to clean possible changes done by Stage 1 (like removing temporary files).

You can use this template to start writing custom RTE script that fulfill your needs.

RunTime Environment script template

You can start with the following template to write custom RTE script:

#
description: My RTE description ('# description:' is a keyword)
#
###########################
RTE Parameters
###########################
NOTE! RTE parameters is advanced feature to keep the same code,
but make it customizable for different clusters.
Most probably you DO NOT need params for custom site-specific RTE.
RTE parameters requires:
1. Parameters description headers ('# param:' is a keyword):
param:PARAM_1:string:DEFAULT_VALUE:Description of parameter. Predefined 'string'␣
↪→type means it can have arbitrary string value. Default is 'DEFAULT_VALUE'.
param:PARAM_2:v1,v2,v3:v3:Description of parameter. This parameter can be set to 'v1
↪→', 'v2' or 'v3' value only. Default is 'v3'.
These headers used by arcctl to operate parameters.
Should be defined within first 20 lines of RTE script.
#
2. Definiton of parameters default values for shell
PARAM_1="${PARAM_1:-DEFAULT_VALUE}"
PARAM_2="${PARAM_2:-v3}"

###########################
RTE Code
###########################
if ["x$1" = "x0"]; then
RTE Stage 0
You can do something on ARC host as this stage.
Here is the right place to modify joboption_* variables.
Note that this code runs under the mapped user account already!
No root priveledges!

elif ["x$1" = "x1"]; then
RTE Stage 1
Do something on WN before job execution.

elif ["x$1" = "x2"]; then
RTE Stage 2

(continues on next page)

5.2. ARC CE Deployment and Operation 133

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

Do something on WN after job execution.
fi

Operating RunTime Environments

Control Directory Information System

LRMS

System-defined RTEs

arcctl

User-defined RTEs

User-defined RTEs

Community-defined RTEs

Enabled RTEs

Default RTEs

RTE parameters

Advertise RTEs

Embed to jobsript

Installing RTE scripts

There are set of System-defined RTEs pre-installed with the ARC CE packages that aim to fulfill common workflows.

An ARC CE administrator can add additional RTE directories (so-called User-defined RTEs). These additional
places should be specified in arc.conf using the runtimedir configuration option in the [arex] block. Custom
RTE scripts can be developed using this template as a starting point.

The Community-defined RTEs are additional RTEs created by research communities. These RTEs can be provio-
sioned to ARC CE from the trusted registries (including required software bundles) with ARC Control Tool.

Note: In ARC directories with RTE script are local to ARC CE and SHOULD NOT be shared with worker nodes

The RTE names used for advertising are implied by directory structure, e.g. in the ENV/PROXY the ENV is the
directory inside the System RTEs location and PROXY is the name of the file.

Enabling RTEs

Installed RTEs should be enabled to be advertised and used during the job submission.

By name

To enable a particular RTE by name run the following command:

arcctl rte enable ENV/PROXY

134 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

By path

Especially if you have several RTEs with the same name installed, you can choose the exact one by specifying the
filesystem path:

arcctl rte enable /usr/share/arc/rte/ENV/PROXY

Using wildcards

To enable several RTEs you can pass as many names as you want to the arcctl command. Additionally you can
use glob (man 7 glob) wildcards in RTE names.

The following command will enable all APPS/HEP/ATLAS RTEs for SLC7 builds:

arcctl rte enable APPS/HEP/ATLAS-*-X86_64-SLC7-*

Dummy RTEs

In case you need RTEs only for advertising but no need for script content, you can create a Dummy RTE for the
specified name. The following command enables an APPS/MYAPP RTE with empty contents:

arcctl rte enable APPS/MYAPP --dummy

An example of dummy RTEs could be APPS/ATLAS-SITE used by the ATLAS experiment for sites to adversise
that this indeed is an ATLAS-SITE.

Default RTEs

Default RTEs aim to address the workflows when advertising and implicit request in the job description is not
needed, however modification of every submitted job (adjusting memory, setting LRMS scratch, etc) is required
on the resource provider.

Installed RTEs can be selected for default inclusion to the job lifecycle with the following ARC Control Tool
command:

arcctl rte default ENV/LRMS-SCRATCH

This will transparently add ENV/LRMS-SCRATCH to each job and will be executed the same way as Enabled RTEs.
A default RTE does not need to be enabled to be executed, but it can be enabled if one wants to publish it in
addition to executing it.

Note: You can use the same by-name, by-path and wildcard techniques as for enabling

RTE Parameters

To handle heterogeneity of resource providers, some RTEs can be parametrized.

For example, the system-defined ENV/PROXY RTE that transfers the delegated proxy-certificate to the worker node
can optionally transfer CA certificate directories. This optional part is controlled by COPY_CACERT_DIR parameter.

To check if an RTE contains parameters and their default values, run the:

[root ~]# arcctl rte params-get ENV/PROXY
COPY_CACERT_DIR=Yes

5.2. ARC CE Deployment and Operation 135

NorduGrid ARC 7 Documentation, Release ARC7

You can also see the description and allowed values adding the --long keyword.

To set an RTE parameter value, the following command is used:

arcctl rte params-set ENV/PROXY COPY_CACERT_DIR No

List available RTEs and their status

To view the summary of all installed, enabled and default RTEs run:

[root ~]# arcctl rte list
<output omitted>
APPS/HEP/ATLAS-20.8.0-X86_64-SLC7-GCC48-OPT (user, enabled)
APPS/HEP/ATLAS-20.8.1-X86_64-SLC7-GCC48-OPT (user, enabled)
APPS/HEP/ATLAS-20.8.2-X86_64-SLC7-GCC49-OPT (user, enabled)
<output omitted>
ENV/LRMS-SCRATCH (system, default)
ENV/PROXY (system, masked, disabled)
ENV/PROXY (user, enabled)
ENV/RTE (system, disabled)
ENV/RUNTIME/ALIEN-2.17 (user, enabled)
VO-biomed-CVMFS (dummy, enabled)

The first tag describe the RTE origin (system, user or dummy). The following tags shows the status.

The special masked keyword indicates that the RTE name is used more that once and by-name operations will
apply to another RTE script. For example ENV/PROXYwill be enabled from the user-defined location as the system-
defined is masked. However it is possible to enable a masked RTE by specifying its path.

Listing the particular kind of RTEs (e.g. enabled) is possible with the appropriate argument (see ARC Control Tool
for all available options):

[root ~]# arcctl rte list --enabled
<output omitted>
APPS/HEP/ATLAS-20.8.2-X86_64-SLC7-GCC49-OPT
ENV/PROXY
ENV/RUNTIME/ALIEN-2.17
VO-biomed-CVMFS

The long listing allows to get the detailed pointers to RTEs locations and descriptions:

[root ~]# arcctl rte list --long
System pre-defined RTEs in /usr/share/arc/rte:

ENV/PROXY # copy proxy certificate to the job session␣
↪→directory

ENV/RTE # copy RunTimeEnvironment scripts to the job␣
↪→session directory

ENV/LRMS-SCRATCH # enables the usage of local to WN scratch␣
↪→directory defined by LRMS
User-defined RTEs in /etc/arc/rte:

ENV/RUNTIME/ALIEN-2.17 # RTE Description is Not Available
ENV/PROXY # RTE Description is Not Available

Enabled RTEs:
ENV/RUNTIME/ALIEN-2.17 -> /etc/arc/rte/ENV/RUNTIME/ALIEN-2.17
ENV/PROXY -> /etc/arc/rte/ENV/PROXY

Default RTEs:
ENV/LRMS-SCRATCH -> /usr/share/arc/rte/ENV/LRMS-SCRATCH

136 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

View RTE content

Dumping the content of an RTE that will be embedded to job script is possible with the cat action:

[root ~]# arcctl rte cat ENV/LRMS-SCRATCH
SCRATCH_VAR="LOCALTMP"
description: enables the usage of local to WN scratch directory defined by LRMS
param:SCRATCH_VAR:string:WORKDIR:Variable name that holds the path to job-specific␣
↪→WN scratch directory

SCRATCH_VAR="${SCRATCH_VAR:-WORKDIR}"

if ["x$1" = "x0"]; then
RUNTIME_LOCAL_SCRATCH_DIR="\${${SCRATCH_VAR}}"

fi

Disable and Undefault RTEs

Enabled RTEs can be disabled running:

arcctl rte disable ENV/PROXY

The similar operation for default RTEs is called undefault:

arcctl rte undefault ENV/LRMS-SCRATCH

Note: You can use the same by-name, by-path and wildcard techniques as for enabling

System-defined RunTime Environments shipped with ARC

ENV/PROXY

Export delegated credentials (proxy certificate) to the job’s session directory. Optionally copies CA certificates
directory from ARC CE to session directory.

Sets the X509_USER_PROXY, X509_USER_CERT and X509_CERT_DIR to make files instantly available to client
tools.

Parameters:

• COPY_CACERT_DIR = Yes/No - If set to Yes, CA certificate directory will be copied to the session directory
along with proxy certificate. Default is Yes.

• USE_DELEGATION_DB = Yes/No - If set to Yes RTE will try to extract proxy certificate from A-REX dele-
gation DB (works in limited number of cases). Default is No.

5.2. ARC CE Deployment and Operation 137

NorduGrid ARC 7 Documentation, Release ARC7

ENV/RTE

Copy RunTime Environment scripts to the job session directory for some workloads that require the files themselves
instead of embedding the RTEs to the jobscript.

Designed to be used as default RTE.

Has no parameters.

ENV/LRMS-SCRATCH

Many resource providers use scratchdir to move files to the local worker node disk before running the job.

When the local scratch directory is created dynamically by LRMS (e.g. in the job prologue) and then cleaned
up automatically after the job completion, the ENV/LRMS-SCRATCH is needed. The scratch place should be
indicated by some environmental variable that holds a path to such LRMS-defined scratch directory.

This RTE is designed to be used as a default RTE to enable this optional functionality.

Parameters:

• SCRATCH_VAR = name - Variable name that holds the path to job-specific WN scratch directory. Default is
WORKDIR.

• TMPDIR_LOCATION = path - Define the TMPDIR path on WN. Variable names can be used as a part of the
path, e.g. '$WORKDIR/tmp'.

Note: The ENV/LRMS-SCRATCH is not needed if the scratch directory used and created on the worker node is
of type /<arc-conf-scratchdir-var>/<arc-job-id>. It is only needed if the folder should be of type <path
defined by LRMS in SCRATCH_VAR>/<arc-job-id>, i.e. a LRMS defined path is included.

ENV/CONDOR/DOCKER

ARC HTCondor backend supports submission to the Docker universe. This RTE enables this feature on-demand.

The RTE can be use by end-users when enabled. The RTE argument defines the Docker image name to be used,
e.g:

(runtimeenvironment="ENV/DOCKER" "debian")

The RTE can also be used as default RTE to enforce Docker universe submission for any job. The Docker image
should be set with the RTE parameter.

Parameters:

• DOCKER_IMAGE = name - Docker image to use for submitted jobs by default.

ENV/SINGULARITY

A general-purpose RTE that allows to run the submitted jobscript inside a defined singularity container image.

This RTE is designed to be used as both a default and enabled RTE.

When enabled, a user can specify the singularity image as an RTE argument:

(runtimeenvironment="ENV/SINGULARITY" "mysoftwareimage.sif")

Parameters:

138 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

• SINGULARITY_IMAGE = images - Define singulatiry images to de used with a job. It accepts comma sep-
arated vo:path pairs, where vo defines the virtual organization with image located at path. The special
default value for vo defines the image used by default (if specific image for VO is not defined). The special
NULL value for path skips singularity usage.

• SINGULARITY_OPTIONS = options - Define additional options for singularity executable. In particu-
lat additional storage areas (e.g. CVMFS, CA certificates) can be specified to be mounted here.

ENV/CANDYPOND (experimental)

Makes available the arccandypond tool for use inside the job script on the Worker Nodes (including necessary
environmental variables for it’s operation).

Note: The CandyPond service itself should be enabled (defining the [arex/ws/candypond] block) on ARC CE as
well.

Parameters:

• CANDYPOND_URL = url - Redefine the URL of CandyPond service (default is auto – ARC CE URL used
for job submission will be used automatically)

Working with community-defined RTEs

New in version 6.5.

Community-defined RTEs are RTEs that created, managed and distributed by particular community.

ARC provides the software solution to automate Community-defined RTEs discovery and software environment
provisioning for distributed computing e-Infrastructures.

Typicaly community-defined RTEs describes software packages used for computations. The cummunity itself is
responsible for building, testing and verifying a particular version of software packages and the RTE scripts that
will prepare such runtime enviroment to be used on the computing cluster worker nodes behind the computing
element.

In general RunTime Environments in ARC are very flexible, so in addition to defining software packages such
RTEs can be used to transfer data or communicate with community services to fetch/register some data. It is up to
community to define what they need.

This document describes how to work with community RTEs from ARC CE admin point of view.

To establish community-defined RTEs registry refer to this guide.

1. Enable Community-defined RTEs support

Community RTEs support is added as a technology preview in the ARC 6.5 and turned off by default.

If you need to support Community RTEs deployment on ARC CE, please install
nordugrid-arc-community-rtes package:

[root ~]# yum -y install nordugrid-arc-community-rtes

5.2. ARC CE Deployment and Operation 139

NorduGrid ARC 7 Documentation, Release ARC7

2. Establish trust chain with community

The trust-chain between community and site-admin is based on the digital signatures. All Community-defined
RTEs are supposed to be signed using OpenPGP standard for signatures. Technical implementation relies on the
GNU Privacy Guard (GPG) software.

To add new community to the trusted list run:

[root ~]# arcctl rte community add example.org
The imported community public key data is:
pub 2048R/AA56A775 2020-01-30 [expires: 2022-01-29]

Key fingerprint = 3A47 F0D4 E406 D854 EDAA ADB5 8FD6 DD57 AA56 A775
uid Example Computations Lab <support@example.org>
sub 2048R/3F914B9D 2020-01-30 [expires: 2022-01-29]

Is the community key fingerprint correct? (yes/NO): yes

Warning: Check the community key fingerprint matches the one provided to you by community authorities!

Note: Alternatively you can pass expected fingerprint value to --fingerprint option

In the provided example the example.org is the name of the community to add and in the same time it is interpreted
as a domain name of ARCHERY community-defined RTEs registry.

If ARCHERY domain name is diffrent add --archery <DOMAIN> option.

It is also possible to establish trust with community using OpenPGP compatible keyserver or web-based RTEs
registry1 as an alternative to ARCHERY.

3. Discover RTEs in the registry

Note: Examples below show APPS/EXAMPLE.ORG/SIMULATION-3.0.1 is already deployed on ARC CE. That
is result of the next step execution.

You can list all available community-defined RTEs with rte-list command:

[root ~]# arcctl rte community rte-list example.org
APPS/EXAMPLE.ORG/SIMULATION-3.0.1 (deployed, registry)
APPS/EXAMPLE.ORG/ANALYSIS-1.7.0 (registry)
ENV/EXAMPLE.ORG/SENDSTATS-1.0.0 (registry)

RTEs optionally provide description string that can be viewer with long listing:

[root ~]# arcctl rte community rte-list example.org --long
Community deployed RTEs:
APPS/EXAMPLE.ORG/SIMULATION-3.0.1 # Example Simulation Software

Additional community RTEs available in the registry:
APPS/EXAMPLE.ORG/ANALYSIS-1.7.0 # Example Analysis Software
ENV/EXAMPLE.ORG/SENDSTATS-1.0.0 # Send stats to central example.org services

Before deployment it can be usefull to look inside the RTE script. The rte-cat will show you the content:
1 TODO: Document this alternative options. For now you can follow –help to find some info

140 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

[root ~]# arcctl rte community rte-cat example.org APPS/EXAMPLE.ORG/ANALYSIS-1.7.0
description: Example Analysis Sowtware
download: url:https://example.org/soft/analysis.sif␣
↪→checksum:md5:63490ad38190a6f172a9020c0c5615f4

if ["x$1" = "x1"]; then
mkdir ${RUNTIME_JOB_DIR}/bin
cat > ${RUNTIME_JOB_DIR}/bin/example-analysis <<EOF

#!/bin/bash
exec singularity run ${RUNTIME_JOB_SWDIR}/analysis.sif "\$@"
EOF
chmod +x ${RUNTIME_JOB_DIR}/bin/example-analysis
export PATH=${RUNTIME_JOB_DIR}/bin:${PATH}

fi

4. Deploy community-defined RTE

Deploying community-defined RTE from the registry requires nothing more that passing RTE name to
rte-deploy:

[root ~]# arcctl rte community rte-deploy example.org APPS/EXAMPLE.ORG/SIMULATION-3.0.
↪→1

This command will:

• fetch RTE script signed by community

• verify signature using trusted community public keys (installed during step 2)

• deploy RTE script itself to be used further with arcctl rte

• download files specified in the community-defined RTE script to community software location

• verify checksum data of downloaded files

Note: HINT: It is usefull to increase debug level to at least INFO level during the deployment phase to monitor
the progress.

5. Enable community-defined RTE

After deployemnt of community-defined RTEs, operating can be done as ususal - the same was as for other RTE
types.

In particular you can list, enable or default RTEs including deployed from community registry:

[root ~]# arcctl rte list
ENV/CANDYPOND (system, disabled)
ENV/PROXY (system, enabled)
ENV/RTE (system, disabled)
ENV/SINGULARITY (system, disabled)
APPS/EXAMPLE.ORG/SIMULATION-3.0.1 (community, disabled)

[root ~]# arcctl rte enable APPS/EXAMPLE.ORG/SIMULATION-3.0.1

5.2. ARC CE Deployment and Operation 141

NorduGrid ARC 7 Documentation, Release ARC7

Additional information and hints

This section provide information how to customize the cummunity-defined RTEs operations.

Location of deployed community software

By default the location for deployed community software picked up automatically based on arc.conf and rely on
the session directory in particular.

You can discover and change the location with arcctl:

[root ~]# arcctl rte community config-get example.org
SOFTWARE_DIR=/shared/session/_software/example.org
SOFTWARE_SHARED=Yes

[root ~]# arcctl rte community config-set example.org SOFTWARE_DIR /opt/community/
↪→example.org

Operating without the registry

It is possible to deploy community-defined RTEs using the same arcctl automations without registry.

During the deployment phase you can provide URL to signed RTE file with the --url option:

[root ~]# arcctl rte community deploy example.org ENV/URLDEPLOYED-1.0.0 --url http://
↪→example.org/rte.signed

Or it can be even RTE script wihtout signature if you trust the content:

[root ~]# arcctl rte community deploy example.org APPS/SIM-DEVEL --url file:///home/
↪→example/dev/myrte.sh --insecure

Removing RTEs and communities

If you want to remove deployed RTE or entire community, there are rte-remove and remove actions respectively:

[root ~]# arcctl rte community rte-remove example.org APPS/EXAMPLE.ORG/SIMULATION-3.0.
↪→1
[2020-02-06 18:11:03,653] [ARCCTL.RunTimeEnvironment.Community] [ERROR] [32505]␣
↪→[Community
RTE APPS/EXAMPLE.ORG/SIMULATION-3.0.1 is enabled. Please disable it first or use "--
↪→force"
to disable and undefault automatically]
[root ~]# arcctl rte community rte-remove example.org APPS/EXAMPLE.ORG/SIMULATION-3.0.
↪→1 --force
[root ~]# arcctl rte community remove example.org

142 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Measuring accounting metrics of the job

ARC CE has built-in capabilities to collect information about per-job resource consumption. This includes both
ARC CE resources (e.g. data transfers, software environments) and worker nodes resources (e.g. CPU and memory
usage). The full list of attributes stored in the A-REX Accounting Records (AAR) can be found in this document.

A-REX can use different methods (described below) to measure memory and CPU usage on the worker nodes,
depending on their availability in the particular deployment case.

Measuring memory and CPU usage on the WN with cgroups

New in version 6.2.

When recent versions of GNU/Linux OS are used on the worker nodes the most precise and transparent way to
measure all job workload is to rely on the cgroups kernel subsystem. Any systemd-based Linux distribution
relies on cgroups heavily and they are already used.

Note: Some older operating systems may require mounting the cgroups tree explicitly. For example in RHEL6 it
can be easily done with libcgroup:

[root ~]# yum install libcgroup
[root ~]# service cgconfig start

The benefit of using cgroups is that everyting will be accounted. Even if several payloads are executed (e.g. in
pilot mode) or extra helper processes are spawned - the resource accounting will be accurate for the all workload
done.

Enabling cgroups usage

To be able to use cgroups for accounting ARC needs an extra tool installed on the worker nodes – the
arc-job-cgroup. Based on the tool availability, the job script will or will NOT use cgroups for measuring
accounting metrics automatically.

The arc-job-cgroup tool is available for the majority of OSes as a packaged binary build as a part of ARC
distribution (nordugrid-arc-wn package). So the easiest way to install it is to use your package manager on the
worker nodes, e.g.:

[root ~]# yum install nordugrid-arc-wn

If it is not possible to install the packaged version for some reason, it is easy to compile the pure C source code
with standard C library calls only.

[root ~]# wget https://source.coderefinery.org/nordugrid/arc/raw/master/src/wn/arc-
↪→job-cgroup.c
[root ~]# cc -o arc-job-cgroup arc-job-cgroup.c
[root ~]# mv arc-job-cgroup /usr/local/bin/
[root ~]# chmod 4755 /usr/local/bin/arc-job-cgroup

5.2. ARC CE Deployment and Operation 143

NorduGrid ARC 7 Documentation, Release ARC7

How ARC operates cgroups

The idea behind LRMS-independent cgroup-based resource usage measurements in ARC is to:

• create child cgroups for memory and cpuacct controllers

• put the jobscript process into created cgroups (this will automatically catch all child processes)

• collect the accounting data at the end of the jobscript

• remove the child cgroup created at the beginning (moving all processes to parent cgroup)

If cgroups are used in the Kernel, the process already belongs to some cgroup. It can be either a root cgroup
(used for all processes) or some dedicated cgroup created by LRMS with cgroups support, container management
system, etc.

All resources used by the child cgroup are accounted in the parent cgroup. Moreover all parent-defined limits
are inherited and enforced as well. So creating another child cgroup in hierarchy is safe from all points of view.

Warning: Creating a child cgroup and put a task into it requires root privileges. This is the reason behind
the SUID bit for arc-job-cgroup. However the code itself is as simple as the mkdir. You can review these
333 lines to reassure any possible fears.

If the arc-job-cgroup tool is not available, the cgroups tree is not mounted, or there are any other issues with
cgroups creation, the job script code falls back to the GNU time measurement method.

Measuring memory and CPU usage on the WN with GNU time

The GNU time utility is capable of measuring and displaying information about the resources used by the exe-
cutable it runs.

It is used as a part of the ARC-generated job script if found on the worker node.

Note: Changed in version 6.2.

In case of successful cgroups usage, GNU time will NOT be used by job script.

Warning: The GNU time is a separate binary typically installed by dedicated package. Do not mix it up with
built-in version of time in your shell (e.g. bash, zsh).

Typically you can install it with e.g. yum install time or similar package management command.

For a non-standard location of GNU Time the reference_arex_gnu_time configuration option can be used to define
it.

If the GNU time utility is not available the job will run as it is and only LRMS-provided metrics will be accounted.

144 Chapter 5. Documentation for Infrastructure Admins

https://source.coderefinery.org/nordugrid/arc/blob/master/src/wn/arc-job-cgroup.c
https://source.coderefinery.org/nordugrid/arc/blob/master/src/wn/arc-job-cgroup.c

NorduGrid ARC 7 Documentation, Release ARC7

Using LRMS-provided metrics

After the job has finished execution in the LRMS, the batch system backend scan-script extracts accounting infor-
mation about the job from the LRMS, either executing command line clients, parsing logs or using API.

The exact data measurements and the method of these data collection completely depends on the LRMS backend
implementation and differs from one backend to another.

Common metrics include LRMSStartTime and LRMSEndTime. There are also typically some memory and CPU
usage metrics available.

Accounting Subsystem

New in version 6.4.

Changed in version 6.12.

Warning: Information in this chapter is relevant only for 6.4+ ARC releases.

Moreover ARC 6.12 get accounting changes to address the APEL move to ARGO messaging service protocol.
If you are publishing to APEL you must update to 6.12+ ARC release.

Note: If you are lookng for the information about legacy accounting subsystem in 6.0-6.3 ARC releases please
read Accounting with legacy JURA but it is highly recommended to update to recent release.

The next generation ARC Accounting Subsystem aimed to improve scalability, eliminate bottlenecks of the legacy
implementation and provide a local on-site ARC CE accounting database to be queried and analyzed by CE admins.

Overview

Figure shows the overview of next generation accouting subsystem in ARC. More details can be found in ARC
Accounting Technical Details.

The central point of ARC next generation Accounting Subsystem is a local SQLite accounting database that stores
all the A-Rex Accounting Record (AAR) information. AAR defines all accounting information stored about a single
ARC CE job.

The database is populated directly by A-REX based on per-job files inside the control directory. In particular the
.diag file is a main source of resource usage information, .statistics holds data transfers measurements and
.local is a general datastore about the job properties like ID, owner, etc.

The record about the job is created in the accounting database as soon as the job enters ARC CE. Than each
state change of the job is recorded. Once the job reached terminal state (both successfull completion or failed)
all resource usage data is written becomes available via local queries (arcctl accounting) or for reporting to
SGAS/APEL (jura-ng).

Accounting subsystem is integral part of the A-REX and allways enabled.

5.2. ARC CE Deployment and Operation 145

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 5.3: Next generation ARC accounting subsystem overview: creating AAR records, getting access to the data
and publishing to external SGAS/APEL services

Configuration

In the typical use-case accounting subsystem just works and does not requires additional configuration.

However in some rare cases there are several things you can consider to tune.

WLCG VOs

The recommended and typically used way to authorize WLCG VOs is to use [authgroup] block voms configuration
option that exactly match attributes in VOMS extesion of proxy certificate.

If you have authorization rules configured this way NOTHING should be configured.

In case you do not have at least one voms option in the any of the defined [authgroup] blocks A-REX will not
trigget the VOMS attributes parsing, that consequently leads to no VO info in the accounting!

To have VO info in the accounting in this particular case you can add standalone authroup with voms option that
have no further usage in arc.conf:

[authgroup: parsevoms]
voms = * * * *

There is also forcedefaultvoms configuration option (can be defined on per-queue basis) that can define the ac-
counted VO for jobs that have no VOMS extension in owner’s certificate.

146 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Enabling accounting records reporing

It is possible to send resource usage reports to the centralized SGAS and/or APEL accounting databases.

Based on the local accounting database data the Accounting Publishing Module is capable of generating the:

• OGF Usage Record 1.0 (UR) XML format to be sent to the SGAS LUTS (Logging and Usage Tracking
Service)

• EMI Compute Accounting Record (CAR) v1.2 XML format for individual job records to be sent to APEL

• APEL Summaries (to reduce traffic) and APEL Sync messages for full-featured integration with APEL ser-
vices

Regular publishing sequence is handled by jura-ng helper tool and can be enabled with [arex/jura] block.

A-REX periodically runs jura-ng with default and minimum hourly period. It can be increased with urdeliv-
ery_frequency option. Futhremore it can be increased per-target, using the same option inside a particulat targer
block.

JURA has dedicated log file defined by logfile option. Log rotation has been set for default /var/log/arc/jura.
log location.

Accounting services for sending the records are configured with dedicated sub-blocks. You need to define a separate
block with an unique targetname for every target server used.

Note: The target block name will be used by jura-ng to track that latest records sent to this targed. Be aware
that if you rename the block, target will be handled as a new one. However targeturl change will not trigger a
new target handling and records will continue publishing using the latest recorded timestamp

The AARs data will be reported to all of the defined destinations, unless vofiler option configured for some of
them to filter records by VO name.

Warning: There were sevaral issues in the codebase and misunderstanging from the operational point of view
how the benchmarks are propagated to the central accounting services with ARC accounting. Please read
About benchmarks and accounting publishing for more details.

Configuring reporting to SGAS

The SGAS sub-block enables and configures an SGAS accounting server as a target destination to which ARC CE
will send properly formatted OGF.98 Usage Record 1.0 (UR) XML records.

The targeturl option is the only mandatory parameter to configure SGAS target. In the specific setup cases you can
also apply VO filtering and set prefix for local job IDs.

Example:

[arex/jura/sgas: NeIC]
targeturl = https://grid.uio.no:8001/logger
urbatchsize = 80

5.2. ARC CE Deployment and Operation 147

NorduGrid ARC 7 Documentation, Release ARC7

Configuring reporting to APEL

Changed in version 6.12.

The APEL sub-block enables and configures an APEL accounting server as a target destination to which ARC will
send the data.

The targeturl option defines the APEL broker URL to send records to. The currently known APEL AMS endpoint
is provided in the targeturl example but you should refer to APEL for up to date information.

The apel_messages option allows you to choose between per-job EMI Compute Accounting Record (CAR) XML
records publishing and APEL Summaries publishing. Sending summaries is a default and recommended by APEL
behaviour that allows to save resources and traffic.

APEL Sync records that syncronize the total job counters per-month are always sent.

You also need GOCDB name of the resource. Since move to AMS publishing the APEL topic is always
gLite-APEL that is a default value.

For correct production accounting setup it is recommended to specify resource benchmarking results in the
[queue:name] block. ARC assumes that the nodes in the same queue are homogeneous with respect to the bench-
mark performance and benchmark values are specified per-queue.

Example:

[arex/jura/apel: EGI]
targeturl = https://msg.argo.grnet.gr
gocdb_name = RAL-LCG2

[queue: grid]
benchmark = HEPSPEC 8.73

Lookup local accounting data

Data in ARC CE accounting database can be viwed with ARC Control Tool. Timeframe of interest and many other
filters can be specified, e.g.:

[root ~]# arcctl accounting stats --filter-vo ops --start-from 2019-07-10
A-REX Accounting Statistics:
Number of Jobs: 1317
Execution timeframe: 2019-07-10 00:01:45 - 2019-07-26 12:48:13
Total WallTime: 4:40:28
Total CPUTime: 0:22:32 (including 0:00:00 of kernel time)
Data staged in: 2.3M
Data staged out: 9.7K

[root ~]# arcctl accounting job events␣
↪→UufLDmmmS5unf5481mks8bjnABFKDmABFKDmmSMKDmNBFKDm9nRnVo
2019-07-10 17:30:00 ACCEPTED
2019-07-10 17:30:00 PREPARING
2019-07-10 17:30:00 DTRDOWNLOADSTART
2019-07-10 17:30:08 SUBMIT
2019-07-10 17:30:08 DTRDOWNLOADEND
2019-07-10 17:30:11 INLRMS
2019-07-10 17:30:16 LRMSSTART
2019-07-10 17:30:26 LRMSEND
2019-07-10 17:30:47 FINISHING
2019-07-10 17:30:47 FINISHED
2019-07-14 15:01:16 DELETED

(continues on next page)

148 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

[root ~]# arcctl accounting job transfers␣
↪→UufLDmmmS5unf5481mks8bjnABFKDmABFKDmmSMKDmNBFKDm9nRnVo
Data transfers (downloads) performed during A-REX stage-in:
http://download.nordugrid.org:80/packages/nordugrid-arc/releases/6.1.0/src/

↪→nordugrid-arc-6.1.0.tar.gz:
Size: 5.2M
Download timeframe: 2019-07-10 17:30:00 - 2019-07-10 17:30:04

No stage-out data transfers (uploads) performed by A-REX.

More queries examples can be found in this document.

Republishing records

When something goes wrong with accounting services, network, etc there is possible need of republishing local
records again.

In the current implementation of accounting subsystem, there is no difference between publishing and re-publising.
The same Accounting Publishing Module will be used to generate the records to be sent to target service for defined
timeframe.

Rebuplishing is triggered by ARC CE administrator using ARC Control Tool.

The most streamlined way is to republish data to the target that is already configured in arc.conf for regular
publishing:

[root ~]# arcctl accounting republish -b 2019-06-01 -e 2019-07-01 -t EGI

However it is also possible to define all target options from the command line, without the defined target in arc.
conf:

[root ~]# arcctl accounting republish --end-from 2019-06-01 --end-till 2019-07-01 \
> --apel-url https://msg.argo.grnet.gr --gocdb-name "UA-KNU" \
> --apel-messages summaries --apel-topic gLite-APEL

Clean up of the <controldir>/logs folder

With the accounting subsystem change in ARC 6.4 legacy archive files are no longer used or written to the
<controldir>/logs directory. It is recommended to manually wipe this directory.

Job scratch area

ARC allows to configure different approaches to manage the job scratch area during the job life cycle. In most
cases this is achieved by generating a wrapper submission script to the batch system that carries on tasks relative
to directory creation and data movement.

The key elements are:

job session directory
directory on the ARC CE where the job files are located.

job scratch directory
directory on LRMS-managed worker nodes (WNs) where all I/O during computation is performed.

<arc-job-id>

a unique identifier for the job, assigned by ARC.
Example: 10YLDmDRgrynVALY5mGJwcyoABFKDmABFKDmUvKKDmABFKDmG588Rm

5.2. ARC CE Deployment and Operation 149

NorduGrid ARC 7 Documentation, Release ARC7

job files

• input files, those coming from the client and data-staging framework that are needed for the actual
job processing, copied inside a folder named after <arc-job-id>, that will also contain the job
stdout and stderr files.

• some metadata files used by ARC, mainly <arc-job-id>.comment and <arc-job-id>.diag

Job session directory is configured with sessiondir configuration option. It is possible to configure several session
directory root paths. A-REX will then select one of the available directories and append the <arc-job-id> to the
path.

Example:

/nfs/sessiondir5/
10YLDmDRgrynVALY5mGJwcyoABFKDmABFKDmUvKKDmABFKDmG588Rm

script.sh
outfile
stderr
stdout

10YLDmDRgrynVALY5mGJwcyoABFKDmABFKDmUvKKDmABFKDmG588Rm.comment
10YLDmDRgrynVALY5mGJwcyoABFKDmABFKDmUvKKDmABFKDmG588Rm.diag

There are several configuration options that affect the selection of job scratch directory:

shared_filesystem
defines if the job session directory is shared between ARC CE and WNs (by means of e.g. NFS). Sets
the environment variable RUNTIME_NODE_SEES_FRONTEND.

scratchdir
defines the path to job scratch directory on the WN. Sets the environment variable
RUNTIME_LOCAL_SCRATCH_DIR.

movetool
defines what tool the job wrapper will use to move data from the session directory to the local WNs
scratch directory. Sets the environment variable RUNTIME_LOCAL_SCRATCH_MOVE_TOOL.

shared_scratch

defines that the WNs scratch directory can be accessible from ARC CE (by means of e.g. NFS) using
the configured path. Sets the environment variable RUNTIME_FRONTEND_SEES_NODE.
Currently this legacy option is not used much, as it is uncommon that nodes share a single scratch
directory. If you require such functionality please contact the ARC team.

Note: Described environment variables can be redefined by RunTime Environments dynamically. For example
ENV/LRMS-SCRATCH can be used to utilize local scratch that created dynamically by LRMS.

Compute inside shared session directory

In the simplest case, where the job session directory is shared between ARC CE and WNs (e.g. via NFS) and
accessible on the same path - the job scratch directory is the job session directory.

Configuration:

[arex]
shared_filesystem = yes

Variables set in the wrapper script:

RUNTIME_NODE_SEES_FRONTEND='yes'

150 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 5.4: Sessiondir is shared between ARC CE and WNs. No local scratchdir defined.

Compute inside a local WN scratch directory

Session directory is shared, WN scratch directory is not shared

For I/O performance reasons it is possible to perform computations inside a local directory on the WN.

In this case job scratch directory is created in the configured local directory and files from the job session directory
are moved to job scratch before execution starts (a).

Only files representing the job’s stdout and stderr are placed in the original job session directory and soft-linked
in scratch (b).

After the execution has completed all output files are moved to the job session directory (b) and are then available
for clients to download (c).

The move is performed by default using the mv command. The admin can change this behaviour using the movetool
option.

Configuration:

[lrms]
movetool = rsync -av

[arex]
shared_filesystem = yes
scratchdir = /mnt/scratch/arc

Variables set in the wrapper script:

RUNTIME_NODE_SEES_FRONTEND='yes'
RUNTIME_LOCAL_SCRATCH_DIR='/mnt/scratch/arc'
RUNTIME_LOCAL_SCRATCH_MOVE_TOOL='rsync -av'

5.2. ARC CE Deployment and Operation 151

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 5.5: Sessiondir is shared between ARC CE and WNs, scratchdir is defined and available only on nodes.

152 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Session directory is NOT shared, WN scratch directory is NOT shared

If the session directory is not shared the data movement between ARC CE and WN can be done by one or a
combination of these two:

• means of LRMS backend
How to implement the data movement between the ARC CE and WN depends on the particular batch
system backend used.
This is not described here, please refer to your batch system manuals.
For example, in PBS this corresponds to #PBS -W stagein options. In SLURM it could be custom
prolog and epilog scripts.

• A custom made RTE
This topic is currently not part of this guide, but it is implemented in some ARC setup, so please ask
for support from the community.

Warning: This setup is not recommended, and is not actively supported by ARC. You can as always reach
out to the ARC community for help and support if you need this setup.

Two known use cases of setting up ARC to work with such setup are described below.

Use-case 1: Static path to WN scratch directory

In this use case the path of the scratch directory on every WN is a static path that does not change depending on
the job.

ARC will create a wrapper script that expects all the job files to be on the WN in the path
$RUNTIME_LOCAL_SCRATCH_DIR/<arc-job-id>.

Warning: In this use case, when the job session directory is not shared (shared_filesystem = no) job
scratch directory MUST BE defined (scratchdir = path) to instruct LRMS where to find the files. Other-
wise job submission to LRMS will fail.

After all input files are gathered in the job session directory on ARC CE, the LRMS or the custom RTE copies files
to the job scratch directory on WN (Figure a)).

The job performs all I/O using local job scratch directory. After execution all declared output files (including
stdout and stderr) must be staged out to the job session directory on ARC CE by LRMS or custom RTE (Figure
b)).

When the output job files are available in the job session directory on ARC CE they are ready to be uploaded to
external storage elements or be downloaded by the user (Figure c)).

Configuration:

[arex]
shared_filesystem = no
scratchdir = /mnt/scratch/arc

Variables set in the wrapper script:

RUNTIME_NODE_SEES_FRONTEND=''
RUNTIME_LOCAL_SCRATCH_DIR='/mnt/scratch/arc'

5.2. ARC CE Deployment and Operation 153

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 5.6: NEITHER sessiondir NOR WN scratchdir are shared between ARC CE and WNs.

154 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Use-case 2: Dynamic job path to the WN scratch directory

In this use case the LRMS generates a dynamic path for each submitted job. This path is not known to ARC
during the creation time of the wrapper script, therefore it must be obtained in some way at runtime, after the job
is submitted.

A sysadmin may already have defined such variable in their prolog/epilog scripts.

The workflow is very similar to the one described in the picture of the static path use case, with the difference that
the name of the LRMS specific environment variable that contains the dynamic path can be defined and configured
in a special RTE called ENV/LRMS-SCRATCH, so that it will be used at runtime to generate a path of the kind
<lrms-job-id>/<arc-job-id>.

The sysadmin can now create a custom RTE with LRMS specific commands and make use of the variable above
when referencing the dynamic dir.

In this scenario the arc.conf variable scratchdir can be defined but it is not mandatory, as the LRMS may have a
completely different base path for each node/job.

However, if configured, the scratchdir path will be prefixed to the dynamic path, as in:
<arc-conf-scratchdir-var>/<lrms-job-id>/<arc-job-id>

Please refer to the documentation of the bundled ENV/LRMS-SCRATCH runtime environment for more details.

Configuration:

[arex]
shared_filesystem = no

Variables set in the wrapper script:

RUNTIME_NODE_SEES_FRONTEND=''
RUNTIME_LOCAL_SCRATCH_DIR=''

Accounting with legacy JURA

WARNING: This component was deprecated in ARC 6.4 and completely removed in ARC 6.8!

Warning: Information in this chapter is relevant only for 6.0-6.3 ARC releases.

Starting from ARC 6.4 release the Accounting Subsystem with local accounting database will be introduced.
Make sure you are reading the documentation that match your ARC CE release version.

The Job Usage Reporter of ARC (JURA) is a component which is capable to create standard-complient usage
records from job usage information provided by the A-REX (Job Log files) and send the records to remote ac-
counting services.

JURA is capable of creating two types of usage records from the job log files:

• Usage Record 1.0 (UR) XML format to be sent to an SGAS LUTS (Logging and Usage Tracking Service)

• Compute Accounting Record (CAR) XML format to be sent to APEL

5.2. ARC CE Deployment and Operation 155

NorduGrid ARC 7 Documentation, Release ARC7

Overview

Figure shows the overview of accouting workflow in ARC. More details can be found in Legacy JURA Accounting
Technical Details.

Fig. 5.7: Accounting records processing in ARC CE: creating, processing, publishing and archiving

When accounting is enabled, the sequence of events is the following:

1. A-REX writes the per-job accouting records to Job Logs directory (logs directory inside the controldir).

2. A-REX periodically runs jura. Default and minimum period is hourly but can be increased with urdeliv-
ery_frequency option.

3. Jura reads jobs accounting information from Job Logs and depending on the targets cofigured in arc.conf
creates accounting records according to required format.

4. Jura publishes accounting records to the configured accounting services.

5. If records archiving is enabled, JURA also puts the records into Accounting Archive

6. When archiving functionalily is used, A-REX also runs the jura-archive-manager process which man-
ages the archive structure and indexes the records in the local database. The local accounting database can
then be used to lookup statistics or to republish data.

Enabling accounting records reporing

JURA is a stand-alone binary application that is a part of the A-REX package and can be enabled with [arex/jura]
block.

JURA has a dedicated log file as defined by the logfile option. Log rotation is set for the default /var/log/arc/
jura.log location. Accounting logs can be also viewed with arcctl:

Changed in version 6.4: Extra legacy argument is required to access legacy accounting subsystem functionality.
Use arcctl accounting legacy logs.

[root ~]# arcctl accounting logs

Accounting services for sending the records are configured with dedicated sub-blocks. You need to define a separate
block with an unique targetname for every target server used.

156 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

The usage record of each job will be reported to all of the destinations, unless the vofiler option is configured
for some of them to filter records by VO name.

Configuring reporting to SGAS

The SGAS sub-block enables and configures an SGAS accounting server as a target destination to which JURA
will send properly formatted Usage Record 1.0 (UR) XML records.

The targeturl option is the only mandatory parameter to configure an SGAS target. In the specific setup cases you
can also apply VO filtering and set prefix for local job IDs.

Example:

[arex/jura/sgas: NeIC]
targeturl = https://grid.uio.no:8001/logger
urbatchsize = 80

Configuring reporting to APEL

The APEL sub-block enables and configures an APEL accounting server as a target destination to which JURA
will send properly formatted Compute Accounting Record (CAR) XML records.

The targeturl option defines the APEL broker URL to send records to. Unlike the native APEL client that relies
on Top-BDII infrastructure in runtime to find the blockers, ARC uses a dedicated target URL in the configuration.
However, it is possible to look up available targets with arcctl:

[root ~]# arcctl accounting apel-brokers
http://mq.cro-ngi.hr:6163/
http://broker-prod1.argo.grnet.gr:6163/
[root ~]# arcctl accounting apel-brokers --ssl
https://mq.cro-ngi.hr:6162/
https://broker-prod1.argo.grnet.gr:6162/

SSL or non-SSL connecton should be defined accordingly with the reference_arex_jura_apel_use_ssl option.

You also need the GOCDB name of the resource and the APEL topic to which JURA will publish accounting
records. For a correct production accounting setup it is recommended to specify resource benchmarking results.

Example:

[arex/jura/apel: EGI]
targeturl = https://mq.cro-ngi.hr:6162
topic = /queue/global.accounting.cpu.central
gocdb_name = RAL-LCG2
benchmark_type = Si2k
benchmark_value = 2625.00
use_ssl = yes

Note: Pubishing to APEL relies on SSM framework that has own logfile viewable with arcctl accounting
logs --ssm.

5.2. ARC CE Deployment and Operation 157

NorduGrid ARC 7 Documentation, Release ARC7

Records archiving

The archiving functionality allows to store generated usage records in a specified directory on the disk.

The reference_removed_arex_jura_archiving enables this functionality. Directory path for the archivedJ ura usage
records is defined with the reference_arex_jura_archiving_archivedir option.

Once archive is enabled, Jura writes generated usage records to files named usagerecord[CAR].<jobid>.
<random>. If a A-REX job log file is processed repeatedly – for example because of temporary connection failures
to the remote accounting service – and a respective usage record archive file already exists, then the usage record
is not generated again. Instead, the content of the archive file is used without change (the creation time stamp is
also retained).

Note: Records archive can grow very rapidly on heavy loaded sites with huge ammount of jobs comming daily.
To limit the archiving time, use the reference_arex_jura_archiving_archivettl option.

To better organize archived records and index the accounting data in the local database, the
jura-archive-manager helper process is run periodically by A-REX when archive is enabled.

The archive manager:

• reads the resource usage data and stores it to an indexed SQLite database file accounting.db.

• moves files according to the following directory structure: YYYY-MM/DD/<jj>/<kkkkk>.<random>.
{UR|CAR}, where jj is first 2 characters of <jobid> and kkkkk is the rest of <jobid>

Lookup local accounting data

Data in the local accounting database can be viewed with arcctl for each type of destination. Timeframe of
interest and many other filters can be specified, e.g.:

Changed in version 6.3: Extra legacy argument is required to access legacy accounting subsystem functionlity.
Use arcctl accounting legacy stats.

[root ~]# arcctl accounting stats -t apel -b 2018-11-01 -e 2018-11-30
Statistics for APEL jobs from 2018-11-01 00:00:02 till 2018-11-29 23:59:13:
Number of jobs: 355168
Total WallTime: 48146 days, 18:06:50
Total CPUTime: 71927 days, 10:33:33

[root ~]# arcctl accounting stats -t apel -v
ops
belle
atlas
ops.ndgf.org
[root ~]# arcctl accounting stats -t apel --filter-vo belle
Statistics for APEL jobs from 2015-04-13 07:28:52 till 2019-04-02 00:25:57:
Number of jobs: 869400
Total WallTime: 216866 days, 3:33:33
Total CPUTime: 193604 days, 19:40:58

158 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Republishing records

When something goes wrong with accounting services, network etc, it may be needed to republish local records
again.

Warning: Republishing is ONLY possible when Records archiving is enabled and records still exist for the
required time period.

The ARC Control Tool should be used to republish data. It is tightly integrated with the accounting archive database:
arcctl will look up needed records in the database for the defined republishing period, prepare them for repub-
lishing and than invoke jura with correct configuration settings.

Warning: It is strongly recommended to AVOID running republishing in ARC5-way, executing the jura
command manually. Even if you manage to get it working, it can cause unpredictable results.

Define the timeframe of interest and run the command to rebuplish data:

Changed in version 6.4: Extra legacy argument is required to access legacy accounting subsystem functionality.
Use arcctl accounting legacy republish.

[root ~]# arcctl accounting republish -b 2018-12-01 -e 2018-12-31 -s https://sgas.
↪→grid.org.ua:8443/sgas
[root ~]# arcctl -d DEBUG accounting republish -b 2019-04-01 -e 2019-04-10 -a https://
↪→mq.cro-ngi.hr:6162

Next generation ARC accounting: arcctl example queries

General statistic queries examples

[root arc-dev]# arcctl accounting stats
A-REX Accounting Statistics:
Number of Jobs: 238
Execution timeframe: 2019-07-09 18:42:18 - 2019-07-12 15:16:56
Total WallTime: 6 days, 1:35:37
Total CPUTime: 4:19:45 (including 0:00:00 of kernel time)
Data staged in: 62.1M
Data staged out: 1.7K

[root arc-dev]# arcctl accounting stats -o
brief data-staged-in jobcount json walltime
cputime data-staged-out jobids users wlcgvos
[root arc-dev]# arcctl accounting stats -o wlcgvos
moldyngrid
ops
matmoden

[root arc-dev]# arcctl accounting stats --filter-vo ops -o jobcount
222

[root arc-dev]# arcctl accounting stats --filter-vo ops --start-from 2019-07-11
A-REX Accounting Statistics:
Number of Jobs: 131
Execution timeframe: 2019-07-11 00:16:08 - 2019-07-12 15:33:26

(continues on next page)

5.2. ARC CE Deployment and Operation 159

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

Total WallTime: 0:20:38
Total CPUTime: 0:02:02 (including 0:00:00 of kernel time)
Data staged in: 219.3K
Data staged out: 1.0K

[root arc-dev]# arcctl accounting stats --filter-queue grid \
> --filter-user /DC\=org/DC\=ugrid/O\=people/O\=KNU/CN\=Andrii\ Salnikov
A-REX Accounting Statistics:
Number of Jobs: 8
Execution timeframe: 2019-07-09 18:42:18 - 2019-07-10 17:31:59
Total WallTime: 0:01:20
Total CPUTime: 0:00:00 (including 0:00:00 of kernel time)
Data staged in: 61.7M
Data staged out: 0

[root arc-dev]# arcctl accounting stats --filter-endpoint org.ogf.glue.emies.
↪→activitycreation \
> --end-till 2019-07-10 -o data-staged-out
75

[root arc-dev]# arcctl accounting stats --filter-state failed --filter-vo moldyngrid␣
↪→-o data-staged-in
21574172

[root arc-dev]# arcctl accounting stats --filter-extra rte ENV/PROXY -o json | jq .
{
"stageout": 0,
"rangeend": 1562938441,
"count": 86,
"cpukerneltime": 0,
"users": [
"/DC=EU/DC=EGI/C=HR/O=Robots/O=SRCE/CN=Robot:argo-egi@cro-ngi.hr",
"/DC=EU/DC=EGI/C=GR/O=Robots/O=Greek Research and Technology Network/

↪→CN=Robot:argo-egi@grnet.gr"
],
"wlcgvos": [
"ops"

],
"cpuusertime": 0,
"cputime": 0,
"rangestart": 1562688395,
"stagein": 398180,
"walltime": 172

}

[root arc-dev]# arcctl accounting stats --filter-extra jobname "test 04"
A-REX Accounting Statistics:
Number of Jobs: 4
Execution timeframe: 2019-07-10 13:40:00 - 2019-07-10 17:31:59
Total WallTime: 0:00:40
Total CPUTime: 0:00:00 (including 0:00:00 of kernel time)
Data staged in: 30.9M
Data staged out: 0

[root arc-dev]# arcctl accounting stats --filter-extra jobname "test 04" -o jobids
g3AMDmCCP5unf5481mks8bjnABFKDmABFKDmN9IKDmIBFKDmnjU0ym

(continues on next page)

160 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

nEhMDmvqQ5unf5481mks8bjnABFKDmABFKDmN9IKDmZBFKDmtXEYGn
UufLDmmmS5unf5481mks8bjnABFKDmABFKDmmSMKDmNBFKDm9nRnVo
bdoLDmCnS5unf5481mks8bjnABFKDmABFKDmmSMKDmaBFKDmfKldDn

Job-specific accounting queries

[root arc-dev]# arcctl accounting job events␣
↪→bdoLDmCnS5unf5481mks8bjnABFKDmABFKDmmSMKDmaBFKDmfKldDn
2019-07-10 17:30:26 ACCEPTED
2019-07-10 17:30:26 PREPARING
2019-07-10 17:30:26 DTRDOWNLOADSTART
2019-07-10 17:30:27 SUBMIT
2019-07-10 17:30:27 DTRDOWNLOADEND
2019-07-10 17:30:29 INLRMS
2019-07-10 17:30:47 LRMSSTART
2019-07-10 17:30:57 LRMSEND
2019-07-10 17:31:59 FINISHING
2019-07-10 17:31:59 FINISHED

[root arc-dev]# arcctl accounting job transfers ␣
↪→bdoLDmCnS5unf5481mks8bjnABFKDmABFKDmmSMKDmaBFKDmfKldDn
Data transfers (downloads) performed during A-REX stage-in:
http://download.nordugrid.org:80/packages/nordugrid-arc/releases/6.1.0/src/

↪→nordugrid-arc-6.1.0.tar.gz (from cache):
Size: 5.2M
Download timeframe: 2019-07-10 17:30:26 - 2019-07-10 17:30:27

http://download.nordugrid.org:80/packages/nordugrid-arc/releases/6.0.0/src/
↪→nordugrid-arc-6.0.0.tar.gz (from cache):

Size: 5.1M
Download timeframe: 2019-07-10 17:30:26 - 2019-07-10 17:30:27

No stage-out data transfers (uploads) performed by A-REX.

[root arc-dev]# arcctl accounting job info ␣
↪→bdoLDmCnS5unf5481mks8bjnABFKDmABFKDmmSMKDmaBFKDmfKldDn
Job bdoLDmCnS5unf5481mks8bjnABFKDmABFKDmmSMKDmaBFKDmfKldDn accounting info:
===
Job description:
Job was submitted at 2019-07-10 17:30:26 via "org.ogf.glue.emies.activitycreation"␣

↪→interface using "https://arc.matmoden.kiev.ua:443/arex" endpoint.
Job owned by "/DC=org/DC=ugrid/O=people/O=KNU/CN=Andrii Salnikov" as a member of

↪→"moldyngrid" WLCG VO.
It was targeted to the "grid" queue with "381309.head.energrid.ipme.kiev.ua" LRMS␣

↪→ID.
Job completed with exit code 0 at 2019-07-10 17:31:59.
Following job properties are recorded:
Localuser: prdmdg24
Clienthost: 130.235.185.244:58458
Lrms: pbs
Nodenames: n2
Jobname: test 04

Resource usage:
Execution timeframe: 2019-07-10 17:30:26 - 2019-07-10 17:31:59
Used WallTime: 10
Used CPUTime: 0 (including 0 of kernel time)

(continues on next page)

5.2. ARC CE Deployment and Operation 161

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

Used WN Scratch: 0
Max physical memory: 528
Max virtual memory: 0
Used CPUs: 1 on 1 node(s)
Data staged in: 0
Data staged out: 0

Used RunTime Environments:
There are no RTEs used by the job.

Auth token attributes provided:
VOMS FQAN: /moldyngrid
VOMS FQAN: /moldyngrid/Role=VO-Admin
VOMS FQAN: /moldyngrid/Role=production
VOMS FQAN: /moldyngrid/edu

About benchmarks and accounting publishing

After the changes in the accounting system in ARC 6.4.0 there were some issues related to missing benchmark
values in the accounting records. Some of them are related to a bug that unfortunately snuck into the codebase,
however sites can have issues with benchmarks for other reasons too.

This page is aimed to clarify how benchmarks are recorded and propageted, in what situations problems can occur,
and how to fix them.

If you see HEPSPEC 1.0 is being used in the jura.log - (some of) your job records are missing benchmark
values.

Follow the questions to clarify your case.

Which version of ARC you have?

Depending on the ARC version, there are several issues related to the benchmark values processing:

• ARC < 6.4.0:

– completely different accounting codebase is in use, information in this document is irrelevant. General
advise is definitely to update to the recent version, bugs in the old codebase will not be fixed.

• ARC < 6.5.0:

– bug with handling benchmark values in the publishing code

– HTCondor backend with non-shared filesystem have missing benchmarks

– APEL summaries query performance is degrading with increasing ammount of stored records

• ARC < 6.8.0:

– HTCondor backend with non-shared filesystem have missing benchmarks

– APEL summaries query performance is degrading with increasing ammount of stored records

• ARC >= 6.8.0:

– all known benchmark related issues are fixed

– if you see HEPSPEC 1.0 is being used there is some valid reason for it, including missconfigura-
tion

Note: It is important to understand that benchmark values are part of the job accounting record. Benchmark
data in the job accounting record is defined on the job start time and stored when job is just finished.

162 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

If you have jobs started before update of ARC or configuration fix (depending on your case) - you need to manu-
ally fix already stored records. There is no way changes will be applied retrospectively to already stored records
automatically.

What are the reasons for missed benchmark value in the job records?

There are several valid reasons when you will see HEPSPEC 1.0 is being used message:

1. The job was started when ARC was at version < 6.5

2. The job was started when the [queue:name] block in arc.conf had no proper benchmark defined

3. The permissions or other issues (including HTCondor backend bug with non-shared filesystem in ARC <
6.8.0) prevents the writing of .diag files on the worker nodes

4. The job failed in LRMS before even execution of initial jobscript wrapper part (node failure, etc).

The last issue is simply can happen very rarely and nothing to do with it, but such jobs has zero cputime, so
benchmark is really irrelevant.

Nevertheless, to eliminate the log message that annoys admins and avoid aditional type of summary records during
the publishing, ARC 6.8.0 introduced benchmark option in [lrms] block that will be used as a fallback if the
benchmark metric is missing in the job data.

Warning: Again! The benchmark option in [lrms] block has no influence on already stored records. It is
during storing time but NOT publishing time.

How to fix missing benchmark values manually?

Already stored accounting records that has no benchmark values can be fixed by issuing an sqlite query that adds
benchmark value. Following example assumes the controldir is the default /var/spool/arc/jobstatus:

[root ~]# sqlite3 /var/spool/arc/jobstatus/accounting/accounting.db "insert into␣
↪→JobExtraInfo
(RecordID, InfoKey, InfoValue) select distinct RecordID, 'benchmark', 'HEPSPEC:12.1'
from JobExtraInfo where RecordID not in
(select RecordID from JobExtraInfo where InfoKey='benchmark');"

If you discover that some records use the default benchmark of HEPSPEC 1.0 instead of your desired benchmark
value in arc.conf (e.g. you had added benchmark values after job start) you can update the values as well:

[root ~]# sqlite3 /var/spool/arc/jobstatus/accounting/accounting.db "update␣
↪→JobExtraInfo
set InfoValue = 'HEPSPEC:12.1' where InfoKey = 'benchmark' and InfoValue =

↪→'HEPSPEC:1.0';"

5.2. ARC CE Deployment and Operation 163

NorduGrid ARC 7 Documentation, Release ARC7

What should I know to avoid running into bechmark issues?

To understand how the HEPSPEC 1.0 is being used occurs in the jura.log there are 3 points to understand:

1. JURA is only the publisher and it sends the data about the jobs stored in the local ARC accounting database.
NO values from arc.conf (apart from where to publish records) are used during publishing.

2. Info about benchmarks is part of the job accounting data stored in the ARC local accounting database when
the job is in the finishing state. Moreover, the static data, including the benchmark defined in arc.conf are
defined during the jobscript generation (job start time). Any update to arc.conf AFTER the job start HAS
NO EFFECT on already stored records.

3. In case of publishing to APEL, the default method to use is APEL summaries. This means that jurawill send
(update) the total counters about last 2 month of data that aggregated per VO, DN, Endpoint (include queue)
and Benchmark! CONSEQUENTLY if any single job within 2 month timeframe is missing the benchmark
data - this warning about using HEPSPEC 1.0 will be there!

Warning: For ARC < 6.8.0 the APEL summary query includes grouping by benchmark which was out of
scope of the initial ARC accounting database design. The extra tables join is harmful to performance on heavy
loaded sites! The recommended mitigation to save ARC CE CPU cycles is to go back to individual usage
records publishing with apel_messages = urs option.

In the ARC 6.8.0 the APEL summary querying were improved and performance hit is not that valuable. You
can use summaries on the heavy loaded sites as well.

It is also important to understand the chain of benchmark propagation for the issues troubleshooting:

1. The value of benchmark defined in the [queue:name] block block in arc.conf is written to the .diag file
as it is on the frontend (controldir).

2. The .diag file from the control directory is copied next to the job’s session directory and either shared
to worker node (shared sessiondir case) or moved by LRMS. See more details about shared vs non-shared
sessiondir in the Job scratch area document.

3. During job execution jobscript writed data to .diag on the worker node. This includes benchmark that can
be redefined in runtime (e.g. by RunTime Environments in ARC)

4. After job completion the .diag from worker node is moved to the frontend’s session directory if sessiondir
is not shared.

5. On the frontend .diag from session directory merged with .diag in the control directory and more infor-
mation from the LRMS accounting is added to it.

6. A-REX parse the .diag in the control directory and store data to the database. From ARC 6.8.0 at this stage
the default fallback benchmark is added to the data from arc.conf if missing in the .diag.

So, should I do something if I see “HEPSPEC 1.0 is being used” message?

If this is a rare single job that just failed in LRMS before writing the accounting data - nothing to worry about.

But if it annoys you, you can fix even single job data manually as describer above. Or starting from ARC 6.8.0 you
can define the fallback benchmark to aviod it completely.

To identify how many jobs are missing benchmark data in the database, run the following query:

[root ~]# sqlite3 /var/spool/arc/jobstatus/accounting/accounting.db "select JobID␣
↪→from AAR
where RecordID not in (select RecordID from JobExtraInfo where InfoKey='benchmark

↪→');"

This returns list of the job IDs with missing benchmark data. Than you can use:

164 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

[root ~]# arcctl accounting job info <JobID>

to find what are those jobs.

If there are many, than something definitely goes wrong and you should:

1. Check if you are facing the knows issues if you are running ARC < 6.8.0. ARC update + manual records fix
will solve your problem in this case.

2. Check the arc.conf syntax in respect to benchmark. It should be defined in the [queue:name] block and
use either HEPSPEC or si2k. Manual records fix for already stored records is needed anyway.

3. Check the .diag file contains information, use arcctl to check stored data, check A-REX logs for any
hints.

4. Open a bugzilla ticket if nothing helps.

5.2.8 ARC tutorial

In this tutorial we will take an existing HPC cluster, install and configure ARC to become a production grid site,
and test that it is working by submitting some test-jobs from a remote ARC client server.

Note: This is the first tutorial with the not yet released ARC 7 and with using tokens. ARC still works as before
with x509 user certificates, the differences will be pointed out.

Prequisites

There are many ways to set up ARC for production depending on the infrastructure you are installing ARC in front
of. Sites will need different configuration options as a result. For a detailed overview of getting a production ready
site the ARC installation and configuration guide is a good source of reference, in addition to the ARC configuration
reference document.

Note: If you are following this tutorial as part of the EGI 2023 conference, then a set of test-clusters have been
prepared for you to use. They are already set up with the necessary prerequisites. You find the list of endpoints
and can claim one, through this google spreadsheet.

In this tutorial we will set up a site with a set of recommended and commonly used configuration options.

To follow this tutorial you should have a functional cluster with the following required components:

For tutorial part 1 and 2

• A way to obtain a token

• Already installed and working batch system (in this tutorial we will focus on SLURM or HTCondor, but
other supported batch systems are also ok)

• One server for ARC installation - this server could also host the batch system (be the SLURM master or
HTCondor CM)

– The ARC server must be able to submit jobs to the batch system

– The ARC server must have an x509 host certificate

• Optionally a separate server for the SLURM master/HTCondor CM

• Minimally 1 compute node

• Shared filesystem between the ARC server and the compute nodes

5.2. ARC CE Deployment and Operation 165

https://bugzilla.nordugrid.org./enter_bug.cgi?product=NorduGrid%20ARC&component=Accounting
https://docs.google.com/spreadsheets/d/1C5E9LCIOayxcoQQlRrqXEBnFhAuZu6Ov9Mexf1MmB-A/edit?usp=sharing

NorduGrid ARC 7 Documentation, Release ARC7

For tutorial part 3

• Requirements from part 1 and 2

• Minimally 1 server for remote datadelivery service

Tutorial overview

• Part 0: Install ARC nightly build repo

• Part 1: Zero-conf test-setup using tokens (from Step 2)

• Part 2: Production ready setup with LOCAL ARC datadelivery

• Part 3: Production ready setup with REMOTE ARC datadelivery service

• Part 4: Brief mention of the powerful statecallout and RunTimeEvironment functionality that comes with
ARC.

No tokens? Using x509 instead?

• Prequisite: An x509 user certificate or use the zero-conf test user certificate

• Part 1: Zero-conf test-setup using x509 (from Step 2)

All commands in an bash file

For the EGI test-sites set up for this tutorial, all commands that we have gone through in this tutorial are aggregated
in the two scripts belows. You can download these on the ARC-CE and execute them as root.

Warning: this will only work for the prepared EGI test-servers, as configuration values for other sites will be
different.

• Script with all commands to set up the zero-conf ARC-CE (slurm).

• Script with commands to set up production ARC-CE (slurm)

5.3 ARCHERY

The ARC Hierarchical Endpoints Registry (ARCHERY) is a novel DNS-based registry for e-Science infras-
tructures to store service endpoints and execution environment definitions.

ARCHERY inherits all the benefits of the DNS infrastructure since deployment, management and operation of the
system is fully relying on the DNS protocol.

166 Chapter 5. Documentation for Infrastructure Admins

http://www.nordugrid.org/arc/arc7/admins/quickstart_jwt.html#step-2-install-a-rex
http://www.nordugrid.org/arc/arc7/admins/quickstart_x509.html#step-2-install-a-rex

NorduGrid ARC 7 Documentation, Release ARC7

ARCHERY implements a minimalistic data model representing services and their endpoints within e-
Infrastructures and embeds the service endpoint information directly into the DNS database.

All the services available within an e-Infrastructure are indexed by means of an ARCHERY instance.

Nordugrid Collaboration, the organization behind the ARC software, operates a top-level ARCHERY hosted within
nordugrid.org DNS zone.

Similar hierarchical service catalogues can be deployed by any organization or project under a dedicated DNS
zone. Instructions for howto create such registry is given here.

Note: Sites are NOT required to run any reristration service on an ARC6 CE.

Read this document to understand what needs to be done so that an ARC6 CE would appear in an ARCHERY
registry.

Previously a different technology was used as a service registry that was based on LDAP (see details here).

Following documents cover the generic aspects of the ARCHERY deployment and operation, including the very
specific case of NorduGrid infrastructure:

5.3.1 ARCHERY deployment for NorduGrid

The NorduGrid topology for ARCHERY

The root element of the hierarchical service registry tree is the nordugrid.org DNS zone hosted by Niels Bohr
Institutet.

The root zone holds references to:

• per-country registries in the dedicated sub-zones under <country>.archery.nordugrid.org domains
or

• projects-based registries under project-owned specific DNS zones (e.g. archery.myproject.org)

Fig. 5.8: The NorduGrid ARCHERY topology model

5.3. ARCHERY 167

http://www.nordugrid.org/NorduGridMDS/index_service.html

NorduGrid ARC 7 Documentation, Release ARC7

Per-Country ARCHERY DNS zones of the NorduGrid

Services indexed by NorduGrid are naturally belonging to a country. Therefore the deployed NorduGrid
ARCHERY topology contains a set of contry-level DNS zones.

These per-country ARCHERY zones are maintained in a collaborative manner by different organizations respon-
sible for specific country services.

A country-level DNS subzone was created for every country that previously run an ARC CE (services were taken
from the monitor and GOCDB)

Note: Zones whose maintenance is not delegated yet are served by Niels Bohr Institutet along with the root
nordugrid.org zone.

The summary table shows the country-level ARCHERY entry points together with the administrating contact de-
tails.

Country Main entry point Additional entry
points

Administration contact

Denmark dk.archery.
nordugrid.org

Petter Urkedal,
urkedal@nbi.dk

Estonia ee.archery.
nordugrid.org

Zone is not delegated yet

Finland fi.archery.
nordugrid.org

Zone is not delegated yet

Hungary hu.archery.
nordugrid.org

Zone is not delegated yet

Portugal and Spain pt.archery.
nordugrid.org

Zone is not delegated yet

Lithuania lt.archery.
nordugrid.org

Zone is not delegated yet

Norway no.archery.
nordugrid.org

Zone is not delegated yet

Slovakia sk.archery.
nordugrid.org

Zone is not delegated yet

Slovenia si.archery.
nordugrid.org

Zone is not delegated yet

Sweden se.archery.
nordugrid.org

Zone is not delegated yet

Switzerland ch.archery.
nordugrid.org

Zone is not delegated yet

Ukraine ua.archery.
nordugrid.org

grid.org.ua Andrii Salnikov,
archery@grid.org.ua

UK uk.archery.
nordugrid.org

Zone is not delegated yet

Contact us if you want to take over the administration of a contry sub-zone.

168 Chapter 5. Documentation for Infrastructure Admins

mailto:urkedal@nbi.dk
mailto:archery@grid.org.ua
mailto:nordugrid-discuss@nordugrid.org

NorduGrid ARC 7 Documentation, Release ARC7

Project-based ARCHERY Registries of NorduGrid

Other way to organize services is to group them by the host project. ARCHERY allows services to be affiliated
with multiple projects.

It is assumed that projects are administrating their own list of services and that information is stored under a
dedicated ARCHERY project-owned DNS zone.

The summary table collects ARCHERY entry points and administration contact information for projects indexed
by the NorduGrid.

Registry Entry point Administration contact
NeIC Services for ATLAS atlas.archery.ndgf.org Dmytro Karpenko,

dmytrok@fys.uio.no

ARCHERY DNS zone administration tasks

As an ARCHERY DNS zone administrator you are expected to do following administration tasks:

• one-time initial DNS zone setup,

• defining and keeping up to date ARCHERY instance services topology in the configuration file,

• operate regular runs of archery-manage to keep DNS zone info up to date (e.g. cron-job).

Registering site in the ARCHERY

In ARCHERY sites are indexed top-to-bottom and the list of ARC CEs a maintained on the country-level and/or
project-level.

As a site administrotor you should technically do nothing for site registration.

Warning: In contrast to previous indexing system, ARCHERY does not requires bottop-to-top registration.

Static list of CEs is managed by ARCHERY administrator. In case your CE is not yet in the registry1 contact your
country registry manager to find the details about the established registration procedures.

Contact information for known ARCHERY managers can be found below: they will provide details for the organi-
zational procedures (if any) upon request.

You can also contact us in case of any questions.

5.3.2 Initial setup of ARCHERY instance

This document describes how to setup an ARCHERY instance in the DNS zone, including both DNS aspects and
initial service endpoint information embedding.

The described procedures apply to either NorduGrid deployment case or any other ARCHERY instance setup
flavors, e.g. country-level, project/experiment, virtual organization, etc.

Note: Administrative access to the DNS server is required during the ARCHERY initial setup to create DNS zone
and configure remote access to this zone.

Further operating of ARCHERY instance DOES NOT require administrative access to the DNS.

1 You can check NorduGrid Monitor that takes ARC CE list from ARCHERY

5.3. ARCHERY 169

mailto:dmytrok@fys.uio.no
mailto:nordugrid-discuss@nordugrid.org
http://www.nordugrid.org/monitor/

NorduGrid ARC 7 Documentation, Release ARC7

Choose DNS zone name

ARCHERY registry instance is accessible by DNS name, that is used as an entry point (e.g. to submit jobs to the
infrastructure).

This guide uses example.org as an organization-owned domain name that will contain a zone for ARCHERY
setup.

Despite it is possible to put records directly into the example.org zone, for manageability and security1 reasons
it is strongly advised to have dedicated DNS sub-zone configured for ARCHERY records.

In the ARCHERY deployment for NorduGrid per-country sub-zone names are pre-defined.

Any other setup can use arbitrary sub-zone name. This guide uses index.example.orgDNS zone for ARCHERY
setup.

Generate transaction signature key to manage ARCHERY

ARCHERY implies the usage of Dynamic DNS (DDNS) updates to manage the data inside DNS zone.

The archery-manage tool, that is part of NorduGrid ARC middleware, will do the DDNS updates for you as
described below.

DDNS eliminates typos, allows to maintain up-to-date information and keeps it simple operate ARCHERY without
administrative access to the DNS server itself.

Use the following command to generate the key:

[user ~]$ dnssec-keygen -a HMAC-MD5 -b 256 -n USER archery

From the generated files you need a secret part to be included in both BIND and archery-manage configuration.

Define key in BIND

Note: Configuration examples in this guide are provided for BIND, however you can use any name server imple-
mentation configured in a similar way.

Create the /etc/named/archery.key and put the generated secret key inside:

key archery_key {
algorithm hmac-md5;
secret "S0Me+SecRet+keYgener@tedwithdnssec==";

};

Include the key definition into /etc/named.conf using the following config line:

include "/etc/named/archery.key";

1 The zone content will be updated dynamically. Setting up a dedicated sub-zone is the easiest way to isolate ARCHERY data and completely
eliminate the risk of changing other records that are not related to ARCHERY.

170 Chapter 5. Documentation for Infrastructure Admins

https://www.isc.org/bind/

NorduGrid ARC 7 Documentation, Release ARC7

Keyfile for archery-manage

Create a file archery-manage.key and put the generated key in the following format:

archery_key:S0Me+SecRet+keYgener@tedwithdnssec==

Configure DNS zone for ARCHERY

It is generally required by the worldwide DNS infrastructure that at least one slave DNS server should be configured
for every DNS zone for reliability reasons.

In this guide the following addressed will be used:

• Primary (master) DNS: ns1.example.org (192.0.2.100)

• Seondary (slave) DNS: ns2.example.org (192.0.2.200)

Define zone in BIND

Add zone definition to master DNS /etc/named.conf:

zone "index.example.org." IN {
type master;
file "master/index.example.org.db";
notify yes;
also-notify {

slave DNS IP address
192.0.2.200;

};
allow-transfer {

slave DNS IP address
192.0.2.200;

};
allow-update {

key archery_key;
};

};

Please observer the allow-update directive that authorize DDNS update requests signed by archery-manage
key.

The secondary DNS should be configured without any special options:

zone "index.example.org." IN {
type slave;
file "slave/index.example.org.db";
masters {

192.0.2.100;
};
allow-transfer {

192.0.2.100;
};

};

5.3. ARCHERY 171

NorduGrid ARC 7 Documentation, Release ARC7

Create zonefile with a basic zone info

Basic zonefile requires only SOA record. It will be filled with data by archery-manage later.

You can use following zonefile template (timers are subject to arrange depending on the planned update frequency):

$ORIGIN example.org.
$TTL 3600
index IN SOA ns1.example.org. hostmaster.example.org. (

2018082401 ; serial
1200 ; refresh (20 minutes)
180 ; retry (3 minutes)
604800 ; expire (1 week)
60 ; minimum (1 minute)
)

NS ns1.example.org.
NS ns2.example.org.

Define records in parent zone

Note: If you setup a country-level index for the Nordugrid infrastructure such records are defined in the parent
nordugrid.org zone.

Please provide your DNS setup information to us instead of following this section.

Define NS records2 to refer to defined subzone:

$ORIGIN example.org.
dedicated ARCHERY zone
index NS ns1.example.org.
index NS ns2.example.org.

To create an ARCHERY entry point in the parent zone you can:

• define CNAME record to use example.org as an entry point:

$ORIGIN example.org.
ARCHERY entry point
_archery CNAME _archery.index

• OR define TXT resource record with ARCHERY data pointing to group:

$ORIGIN example.org.
ARCHERY entry point
_archery TXT “u=index.example.org t=archery.group”

The same technique can be used to define any other DNS aliases for an entry point (even in a completele different
domain).

CNAME is recommended if you referring only one ARCHERY group.
2 If you plan to use a different out-of-scope domain names in NS don’t forget to add glue A records.

172 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Populate ARCHERY DNS zone with initial data

The archery-manage is a dedicated tool to manage information in the ARCHERY DNS zone. It is available as
nordugrid-arc-archery-manage package in the NorduGrid repositories and EPEL.

The tool uses the configuration file in the plain text of JSON format that define services topology. Configuration
file syntax is very simple and described in details in the operations guide.

For initial data provisioning you should run archery-manage once supplying config, DNS zone and transaction
signature key path generated in the previous steps.

After zone is populated with data Operating ARCHERY instance comes down to kepping it up to date, running
periodic updates.

5.3.3 Operating ARCHERY instance

JSON topology configuration file for ARCHERY

New in version 6.5.

JSON configuration file for archery-manage is a most flexible and customizable topology source for provisioning
ARCHERY.

Following sections exmplains JSON syntax with the example use-cases.

Simple ARC services group

The simplest JSON config that describes single group of ARC services (matching the arcce-list plain-text
source) can be written as follows. The arc-services keyword will trigger automatic endpoints discovery from
ARC information system.

{
"arc-services": [

"arc1.example.org",
"arc2.example.org"

]
}

Defining nested groups and arbitrarty services

The following JSON configures the 2 subgroups - ARC and Storage.

The ARC subgroup contains 2 ARC CE. ARC CE endpoints will be discovered automatically by means of querying
information system.

The Storage subgroup contains 2 manually defined services. All service endpoints specification is included into
JSON file.

{
"groups": [

{
"id": "ARC",
"arc-services": ["arc1.example.org", "arc2.example.org"]

},
{
"id": "Storage",
"services": [
{

(continues on next page)

5.3. ARCHERY 173

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

"id": "se1.example.org",
"type": "DPM",
"endpoints": [{ "httpg://se1.example.org:8446/srm/managerv2": "SRM" }]

},
{
"id": "se2.exmple.org",
"type": "dCache",
"endpoints": [
{ "gsiftp://ccsrm.ihep.ac.cn:2811": "gsiftp" },
{ "httpg://ccsrm.ihep.ac.cn:8446/srm/managerv2": "SRM" },
{ "xroot://ccsrm.ihep.ac.cn:1094": "xroot" }

]
}

]
}

]
}

Integration with BDII

The archery-manage is able to fetch services and their endpoints from Site-BDII.

The external-source keyword in JSON configuration allows to inject discovered services to the desired branch
of the ARCHERY registry tree.

{
"groups": [
{
"id": "NGI_XX",
"type": "ngi.type",
"groups": [
{
"id": "XX-Site1",
"type": "site.type",
"external-source": {
"sitebdii": "ldap://bdii.site1.example.org:2170/GLUE2DomainID=XX-Site1,

↪→o=glue",
}

},
{
"id": "XX-Site2",
"type": "site.type",
"external-source": {
"sitebdii": "ldap://bdii.site2.example.org:2170/GLUE2DomainID=XX-Site2,

↪→o=glue",
}

}
]

},
{
"id": "NGI_YY",
"type": "ngi.type",
"groups": [
{
"id": "YY-WLCG-Site",

(continues on next page)

174 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

"type": "site.type",
"external-source": {
"sitebdii": "ldap://bdii.wlcgsite.example.org:2170/GLUE2DomainID=YY-WLCG-

↪→Site,o=glue",
"filters": ["vo:atlas,cms", "portscan"]

}
}

]
},

]
}

Plese notice that for YY-WLCG-Site site, during the information fetching from the Site-BDII, only services (and
their endpoints) that match defined filters will be added to ARCHERY registry. In particular, it is services that ac-
cording to published AccessPolicy allows to use endpoints by atlas or cms VOs and pass the network reachability
test.

ARCHERY as a cummunity trusted software registry

New in version 6.5.

The archery-manage is able to provision community trusted software rigistry objects into the ARCHERY zone.

The JSON configuration should define the software and points to RunTimeEnvironment scripts location:

{
"software": {
"rtes_dir": "/home/community/rtesroot"

}
}

Read more details in this document.

Referencing existing ARCHERY objects

ARCHERY allows to embedd overlapped trees into the DNS.

For example if particular service or group is already represented in DNS, it can be “linked” to another ARCHERY
tree.

To specify such linking to existing objects the external-archery-object keyword should be defined in JSON
config.

{
"groups": [
{
"id": "Sweden",
"type": "country",
"arc-services": [

"arc1.example.org",
"arc2.example.org",
"arc3.example.org"

]
},
{
"external-archery-object": "dns://_archery.norway.nordugrid.org"

},
(continues on next page)

5.3. ARCHERY 175

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

{
"id": "Infrastructure Services",
"services": [
{
"external-archery-object": "dns://voms.services.cern.ch"

},
{
"id": "voms.ndgf.org",
"type": "org.glite.voms",
"endpoints": [

{ "voms://voms.ndgf.org:15015/nordugrid.org": "org.glite.voms" },
{ "https://voms.ndgf.org:8443/voms/nordugrid.org": "org.glite.voms-admin

↪→" }
]

}
]

}
]

}

Example JSON configuration above defines 3 subgroups in the ARCHERY:

• Sweden ARC services defined with arc-services

• Reference to existing country-level ARCHERY deployment under norway.nordugrid.org domain

• Common Infrastructure Services group that includes manual specification of voms.ndgf.org ser-
vice endpoints and external VOMS service defined in another ARCHERY instance under voms.services.
cern.ch domain.

Custom DNS data in ARCHERY zone controlled by archery-manage

It is possible to add arbitrary records into the ARCHERY DNS zone.

In particular it is useful to handle subzone delegation by declaring the NS and A records in the same configuration
file.

Use raw-dns keyword to defiene array of the DNS records to be managed in the zone. Each record is represented
by object that have name, DNS record type and rdata field that contains:

• string for a single record

• list of strings for set of records

• null if this record shold be removed from the DNS

{
"groups": [
{
"id": "si",
"arc-service": [

"meja.arnes.si",
"jost.arnes.si"

]
},
{
"external-archery-object": "dns://_archery.ua.archery.nordugrid.org"

}
],

(continues on next page)

176 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

"raw-dns": [
{ "name": "ua", "type": "NS", "rdata": [

"ns1.ua.archery.nordugrid.org.",
"ns2.ua.archery.nordugrid.org."

]
},
{ "name": "ns1.ua", "type": "A", "rdata": "194.44.249.94" },
{ "name": "ns2.ua", "type": "A", "rdata": "194.44.249.10" }

]
}

Example JSON configuration above defines:

• 2 subgroups: one for Slovenia (si) and one delegated for Ukraine

• NS and 2 glue A records to define subzone delegation to the different server

Managing ARCHERY data in DNS

ARCHERY reuses the existing DNS infrastructure services thus eliminating the need to develop, deploy and operate
new set of custom dedicated services.

To simplify the process of rendering ARCHERY records and injecting those into the DNS, ARC6 comes with the
archery-manage information management tool.

The archery-manage tool had been designed to simplify common operations with ARCHERY, including registry
initial bootstrap, data migration from the other service registries and keeping dynamic information up to date.
It discover service endpoints, querying the resources in the defined topology configuration, then based on this
information generate DNS records suitable for ARCHERY operations.

Relying on the dynamic DNS updates feature, the archery-manage had been designed to modify data in the DNS
zone remotely, eliminating the need to interact with DNS zone configuration itself after the initial setup.

This approach also makes the setup and access rights delegation simple, fully separating the DNS hosting itself
and ARCHERY data management machine.

Example of the DNS zone configuration can be found in Initial setup of ARCHERY instance guide.

The archery-manage data processing

It is important to understand the archery-manage data processing chain to efficiently maintain the ARCHERY
instance:

Step 1. Define e-Infrastructure topology

Topology data defines how services are grouped within the e-Infrastructure. It comes either from a configuration
file or from other databases that holds such information (including another ARCHERY instance). Interaction with
already established databases (e.g. GOCDB) simplifies the integration and/or migration process.

Static list of ARC CE hostnames defined line-by-line in the plain text file is a trivial topology source that can form
a group of computing elements that represent country or organization.

5.3. ARCHERY 177

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 5.9: The archery-manage data processing chain

Step 2. Fetch service data

Topology database provides the pointers to information services that can be used to query service data. During
this step the archery-manage tool discovers available endpoints and fetches service information.

For ARC CE hosts, the infosys LDAP GLUE2 is used to discover available endpoints with a fall-back to legacy
LDAP Nordugrid schema querying.

Step 3. Filter endpoints

Set of discovered endpoints later passed to the filtering process. Based on the endpoint data (e.g. endpoint type),
or additional testing (e.g. endpoint network availability check) endpoints that does not pass the filters are excluded.

Filters are extensible by design. The up to date list of currently supported filters can be obtailed passing -f help
to archery-manage. The overview of mostly used filters can be found in operations guide.

Step 4a. Incremental DDNS Update

The target automation use-case is to push the discovered data to the DNS database. This is done automatically
with Dynamic DNS updates over the network. Comparing the data already available in the DNS with discovered
information, archery-manage constructs the incremental update that only applies the difference.

Step 4b. Output data

In addition to automatic updating of the DNS database, it is also possible to automate manual operation use-case.
For this the tool following the same processing chain, can be used to print out endpoint or service lists with their
types or the ARCHERY DNS records that can be manually added to DNS zone configurations.

The first and main task of the administrator of ARCHERY DNS zone is to keep services topology up to date.

Services topology is a static list of e-Infrastructure services (and optionaly their grouping) defined in the simple
confiuration file (see below).

The archery-manage tool than uses the topology configuration file, fetch necessary information about the defined
services and update data in ARCHERY DNS zone.

178 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

As an ARCHERY DNS zone administrator you should establish regular updates (e.g. cron-job or similar) to keep
the information up to date.

The following sections will provide details about this operations tasks.

Define infrastructure services topology

In the simplest way, when a topolgy is a flat list of ARC services - the text file with hostnemaes specified line-by-line
can be used.

More advanced topologies (e.g. grouping or non-ARC services) can be described in the JSON topology configu-
ration file for ARCHERY .

Simple topology: flat list of ARC CEs

CE hostanames can be defined line-by-line in a plain text file:

ce01.example.org
ce02.example.org
arc6.example.org

Alternatively you can use JSON config syntax as well:

{
"arc-services": [

"ce01.example.org",
"ce02.example.org",
"arc6.example.org"

]
}

The archery-manage will automatically detect ARC service endpoints using information services on ARC CE and
push it to DNS zone with an incremental DDNS update.

Hierarchical topology and non-ARC services

ARCHERY is NOT restricted to the ARC services only and can hold any e-Infrastructure service endpoints infor-
mation.

To define such services the JSON configuration file, as a most flexible source of topology definition for archery-
manage should be used.

Please consult the JSON topology configuration file for ARCHERY document for such topologies configuration
examples.

Run archery-manage to update DNS zone information

To populate DNS zone with endpoint information based on the configured services topology you should run
archery-manage:

[user ~]$ archery-manage -s arcce-list:ces.list --ddns-update \
--domain index.example.org --ddns-master-ip 192.0.2.100 \
--ddns-tsig-keyfile archery-manage.key

The -s key that define the type of configuration file to use and path to configuration file separated by colon. The
arcce-list type corresponds to the plain text list of ARC services. The json type should be used for JSON
configuration file.

5.3. ARCHERY 179

NorduGrid ARC 7 Documentation, Release ARC7

The --ddns-tsig-keyfile points to the location of generated transaction signature key.

Options --domain and --ddns-master-ip defined the dedicated ARCHERY DNS zone name and master DNS
server IP respectively.

Note: Updates are performed over the network, so you can run archery-manage on any host. It SHOULD NOT
be the DNS server itself.

The archery-manage writes a logs to stderr that indicate the status of each operations performed during the run,
including fetching, filtering and DDNS updates. You can increase logs verbosity with -d option.

Consider to add filters to archery-manage:

Filter: Port connectivity

Check network connectivity to endpoint TCP port and filter endpoints that do not pass this test.

It is advised to have the portscan filter enabled during the regular operations.

[user ~]$ archery-manage -s arcce-list:ce.list -f portscan ...

Filter: Endpoint type

By default any service endpoints types that are defined or discovered will be published. If you want to filter
endpoints based on type there is a dedicated filter to apply.

For example, if you want only ARC REST endpoints in the ARCHERY:

[user ~]$ archery-manage -s json:/etc/archery.json -f type:org.nordugrid.arcrest ...

Both ARC REST and LDAP GLUE2 endpoints:

[user ~]$ archery-manage -s json:/etc/archery.json -f type:org.nordugrid.arcrest,org.
↪→nordugrid.ldapglue2 ...

Filter: VO

Note: VO filtering is only available when service endpoints are automatically discovered based on information
services (e.g. ARC services, Site-BDII, etc)

For project-based ARCHERY deployment it is also useful to filter endpoints based on VO access policy. Only
endpoints that advertise specified VO support will be added1:

[user ~]$ archery-manage -s arcce-list:ce.list -f vo:exampleVO ...

1 Resource information (GLUE2PolicyRule in GLUE2 and nordugrid-cluster-acl in Nordugrid LDAP) will be used as a source of
supported VOs.

180 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Check the data is embedded to DNS

Once you populate ARCHERY DNS zone with data, you can try to query the ARCHERY data from the DNS to
verify the update is working. This includes manual DNS queries or job submission.

Setup regular updates to ARCHERY

To keep information about endpoints up to date setup a CRON job (or Systemd Timer) to run archery-manage
regularly.

In combination with at least port filtering this allows to eliminate stale endpoints and actualize information in
registry.

ARCHERY operations hints

Optimize information fetching frequency

Available services endpoints itself is not subject of rapid change. But the enpoint availability status is.

The archery-manage automatic endpoints fetching can be done less frequent as actual endpoint availability scan
using the JSON configuration output:

1. Setup endpoints fetching to expanded JSON config.

Run archery-manage with defined topology and desired filters but without DDNS update.
This job can be run less frequent, e.g. once daily.

[user ~]$ archery-manage -s json:/etc/archery.json -f vo:exampleVO -
↪→o json > /etc/archery-expanded.json

2. Update information in the ARCHERY DNS zone using expanded JSON config.

For actual ARCHERY DNS zone updates use obtained expanded JSON config. This job
should be run more frequently (e.g. every 5 minutes) with a portscan filter to eliminate
stale endpoints.

[user ~]$ archery-manage -s json:/etc/archery-expanded.json -f␣
↪→portscan \

--ddns-update --ddns-tsig-keyfile archery-manage.key \
--domain index.example.org --ddns-master-ip 192.0.2.100

Configure LDAP-monitor to use ARCHERY

The popular ARC CE monitoring tool - the LDAP monitor, can be used with ARCHERY out-of-the box.

It support fetching endpoints2 from ARCHERY with the following configuration in settings.inc:

<?php
$archery_list = array (
array (
"endpoint" => "example.org",
)

);
?>

2 Nordugrid monitor only works with org.nordugrid.ldapng data (and LDAP GLUE2 is experimental), so Nordugrid LDAP schema
publishing is mandatory to use monitor.

5.3. ARCHERY 181

NorduGrid ARC 7 Documentation, Release ARC7

5.3.4 Querying ARCHERY registry data

On the registry client level ARCHERY benefits from the distributed DNS caching on many levels, making the
registry scalable.

Since DNS client is an integral part of any operating system, obtaining and processing service endpoint information
from ARCHERY comes down to parsing and interpreting the data obtained from the DNS in accordance to the
ARCHERY data model rendering.

There are several tools and options available to fetch ARCHERY data:

The archery-manage tool as registry client

Using ARCHERY as a topology source for archery-manage allows to use tool output capabilities as a registry
client. For example:

[user ~]$ archery-manage -s archery:moldyngrid.org -o arc-CEs
golowood.mao.kiev.ua
arc.imbg.org.ua
arc.univ.kiev.ua
uagrid.org.ua
grid.isma.kharkov.ua

[user ~]$ archery-manage -s archery:egi.grid.org.ua -o services
glue:sehn02.atlas.ualberta.ca/data : org.dcache.storage
glue:lcg-se1.sfu.computecanada.ca/data : org.dcache.storage
urn:ogf:ComputingService:lcg-ce1.sfu.computecanada.ca:arex : org.nordugrid.arex
urn:ogf:ComputingService:lcg-ce2.sfu.computecanada.ca:arex : org.nordugrid.arex
neutsrv1.triumf.ca_bdii-site_497425383 : bdii_site
<output omitted>

[user ~]$ archery-manage -s archery:nordugrid.org -o endpoints --json | jq .
[
{
"t": "org.nordugrid.gridftpjob",
"u": "gsiftp://deckard.dcsc.ku.dk:2811/jobs",
"rr_data": "u=gsiftp://deckard.dcsc.ku.dk:2811/jobs t=org.nordugrid.gridftpjob"

},
{
"t": "org.nordugrid.ldapglue2",
"u": "ldap://deckard.dcsc.ku.dk:2135/o=glue",
"rr_data": "u=ldap://deckard.dcsc.ku.dk:2135/o=glue t=org.nordugrid.ldapglue2"

},
<output omitted>

Any DNS client for manual data retrieval

Any DNS client or library can be used to obtain ARCHERY resource record sets. The rendering is designed to be
simple and raw data is human readable:

[user ~]$ host -t TXT _archery.nordugrid.org
_archery.nordugrid.org descriptive text "u=uk.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=ua.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=fi.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=lt.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=si.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=hu.archery.nordugrid.org t=archery.group"

(continues on next page)

182 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

_archery.nordugrid.org descriptive text "u=ch.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=atlas.archery.ndgf.org t=archery.group"
_archery.nordugrid.org descriptive text "u=pt.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=se.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=no.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=sk.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=ee.archery.nordugrid.org t=archery.group"
_archery.nordugrid.org descriptive text "u=dk.archery.nordugrid.org t=archery.group"

[user ~]$ host -t TXT _archery.dk.archery.nordugrid.org
_archery.dk.archery.nordugrid.org descriptive text "u=dns://e06b294c0d._archery.dk.
↪→archery.nordugrid.org. t=archery.service"

[user ~]$ host -t TXT e06b294c0d._archery.dk.archery.nordugrid.org
e06b294c0d._archery.dk.archery.nordugrid.org descriptive text "o=service t=org.
↪→nordugrid.arex id=deckard.dcsc.ku.dk"
e06b294c0d._archery.dk.archery.nordugrid.org descriptive text "u=ldap://deckard.dcsc.
↪→ku.dk:2135/o=glue t=org.nordugrid.ldapglue2"
e06b294c0d._archery.dk.archery.nordugrid.org descriptive text "u=ldap://deckard.dcsc.
↪→ku.dk:2135/Mds-Vo-Name=local,o=grid t=org.nordugrid.ldapng"
e06b294c0d._archery.dk.archery.nordugrid.org descriptive text "u=gsiftp://deckard.
↪→dcsc.ku.dk:2811/jobs t=org.nordugrid.gridftpjob"

ARC Client/SDK endpoint retrieval plugin

ARCHERY endpoint retrieval plugin for ARC client/SDK is a part of release starting from ARC 5.4.4.

It is installed within core plugins set and cen be used transparently with -g option:

[manf@arc-client ~]$ arctest -J 2 -g moldyngrid.org -d INFO
INFO: Configuration (/etc/arc/client.conf) loaded
INFO: Configuration (/home/manf/.arc/client.conf) loaded
INFO: Using proxy file: /home/manf/.globus/x509_user_proxy
INFO: Using certificate file: /home/manf/.globus/usercert.pem
INFO: Using key file: /home/manf/.globus/userkey.pem
INFO: Using CA certificate directory: /etc/grid-security/certificates
INFO: Broker Random loaded
INFO: Found service endpoint index.moldyngrid.org (type org.nordugrid.archery)
INFO: Status for service endpoint "dns://d9b05b0008._archery.index.moldyngrid.org."␣
↪→is set to inactive in ARCHERY. Skipping.
INFO: Status for service endpoint "dns://ac525b5fea._archery.index.moldyngrid.org."␣
↪→is set to inactive in ARCHERY. Skipping.
INFO: Found service endpoint dns://7c99fb635c._archery.index.moldyngrid.org. (type␣
↪→archery.service)
INFO: Found service endpoint dns://616f87be8e._archery.index.moldyngrid.org. (type␣
↪→archery.service)
INFO: Found service endpoint dns://46e36be5ec._archery.index.moldyngrid.org. (type␣
↪→archery.service)
INFO: Found service endpoint ldap://grid.isma.kharkov.ua:2135/Mds-Vo-Name=local,
↪→o=grid (type org.nordugrid.ldapng)
INFO: Found service endpoint https://grid.isma.kharkov.ua:60443/arex (type org.ogf.
↪→glue.emies.activitymanagement)
<output omitted>
INFO: Found service endpoint gsiftp://arc6.univ.kiev.ua:2811/jobs (type org.nordugrid.
↪→gridftpjob)
INFO: Found service endpoint ldap://arc6.univ.kiev.ua:2135/o=glue (type org.nordugrid.

(continues on next page)

5.3. ARCHERY 183

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

↪→ldapglue2)
INFO: Found service endpoint https://arc6.univ.kiev.ua:443/arex (type org.nordugrid.
↪→arcrest)
Submitting test-job 2:
&(executable = "/usr/bin/env")(stdout = "stdout")(stderr = "stdout")(gmlog =
↪→"gmlog")(jobname = "arctest2")(clientxrsl = "&(executable = ""/usr/bin/env""␣
↪→)(jobname = ""arctest2"")(stdout = ""stdout"")(join = ""yes"")(gmlog = "
↪→"gmlog"")")
Client version: nordugrid-arc-6.2.0
Test submitted with jobid: gsiftp://arc6.univ.kiev.ua:2811/jobs/
↪→RHZKDmPeedvnjwO5upha6lOqABFKDmABFKDmIeLKDmABFKDmItfmym

NorduGrid monitor is fetching ARCHERY data

NorduGrid infrastructure monitoring web application (aka monitor) is able to visualize realtime ARC CE informa-
tion obtained using ARCHERY service endpoint discovery.

If you have own monitor setup, you can easiely configure ARCHERY as an information source.

Community instance of ARCHERY capable to hold execution environment definitions (known as RunTime En-
vironments). This turns ARCHERY into all-in-one community registry that cover both resources available to
community and execution software envitonments verified and used by community.

Following document covers the ARCHERY usage as RunTime Environments registry:

5.3.5 ARCHERY as a community-defined RTEs registry

New in version 6.5.

Community-defined RTEs is a new concept that aimed to automate software environment provisioning for dis-
tributed computing infrastructures.

Community-defined RTEs are prepared and digitally singed by community. All RTEs are than indexed in the registry
to be discoverable. The ARC CE admin can deploy such RTEs with a signle ARC Control Tool command after
establishing a trust chain with community.

This document describes how to use ARCHERY as a Community-defined software environment registry.

1. Signing keys

The trust-chain between community and site-admin is based on the digital signatures. All Community-defined
RTEs are supposed to be signed using OpenPGP standard for signatures. Technical implementation relies on the
GNU Privacy Guard (GPG) software.

If you already have GPG keypair it can be used to sign community RTEs.

If not, generate a new keypair with:

[user ~]$ gpg --gen-key

184 Chapter 5. Documentation for Infrastructure Admins

http://www.nordugrid.org/monitor/

NorduGrid ARC 7 Documentation, Release ARC7

2. Preparing RTEs

Community-defined RTE script is any script that follows RunTime Environments in ARC design for both naming
scheme and the content.

In many production cases community RTEs require additional files that need to be deployed on ARC CE.

Such files can be listed within RTE script metadata (at the top of file), using the download keyword, for example:

download: url:https://example.org/mySW.sif␣
↪→checksum:sha256:1c0176d901301be17f86df3330f121d0ae603652eced38e8dbae413f75fad670

This will instruct the arcctl to download the mySW.sif singularity image from https://example.org/, verify
the file checksum and place it into the software deployment directory for this community.

During the job execution, these downloaded files are available to payload.

Path to the directory containing these files stored in the RUNTIME_JOB_SWDIR variable in the job context.

Note: If RTE requires complete software package bundle it is advised to have Singularity container or at least a
single tarball to be deployed on the ARC CE. Than write a simple commands for RTE stage 1 to extract the files or
define paths to the container image.

3. Signing and publishing RTEs

The ARCHERY Manage Tool completely automates the RTEs signing and publishing process.

Just do it

In case your RTEs are organized in the typical directory-based structure, all you need to do is to add following
configuration into the JSON topology configuration file for ARCHERY :

{
"software": {
"rtes_dir": "/home/community/rtesroot"

}
}

This configuration will instruct archery-manage to:

• export public key from GPG database (default location) to be published

• index all RTEs available in the specified directory

• extract descriptions from RTE scripts if available (to be published)

• sign all RTE scripts with GPG

• embedds public key, RTEs index and signed RTEs content into the ARCHERY zone

5.3. ARCHERY 185

NorduGrid ARC 7 Documentation, Release ARC7

Customize the process

GPG location and key

In case your GPG database is not in the standard location and/or you have several keypairs in the database use the
following options to point archery-manage to the right place:

{
"software": {
"gpg_home": "/srv/cummunity-gpg",
"gpg_keyid": "community@example.org",
"rtes_dir": "/home/community/rtesroot"

}
}

Manually define public key

In case you are not going to sign RTEs on the same machine you probably have to define the community public
key manually.

One way to do it - provide URL that points to the key location:

{
"software": {
"pubkey_url": "https://example.org/gpg.public.key",
"rtes_dir": "/home/community/rtesroot"

}
}

Or you can put base64-encoded key value1 directly into the configuration:

{
"software": {
"pubkey":

↪→"mQENBF4y4ssBCADN9317J1KiEZSkDX2T00sCjtRLcL46XcN2llxHPFJm43ziG2GVqFHdoLQEhoN4ozvfNKxndTFkNTh6aP2CdG9ml0mzsEuHc1SYqrB+uSSOrVPz3LF95tjVJgJTFJQmY/
↪→hLD5/M12Iq4ayYdBBwLJFdZDg/PSclX3kRFS4CDDvVtlXfQ1Jc/XLaVOk7nFDdbTbFEvfenMgcen/
↪→cxmlj1GI7IplNoiFoBjLP72NwbPW/
↪→WdxGkPzHO+9ypW1WSYHNTL9442zXypcOYyfRhxqae5D+pSIEmptu7279Hr9u7OlhYBRQW4uGI7CTiuqWxBYUKVK1s0UyjB79EJRtzN5c+fgZABEBAAG0L01vbER5bkdyaWQgVmlydHVhbCBMYWIgPHN1cHBvcnRAbW9sZHluZ3JpZC5vcmc+iQFUBBMBCAA+FiEEOkfw1OQG2FTtqq21j9bdV6pWp3UFAl4y4ssCGwMFCQPCZwAFCwkIBwIGFQoJCAsCBBYCAwECHgECF4AACgkQj9bdV6pWp3Ve9AgAwnAiecFLWznKg8n9/
↪→VBE5jYENAA7uRe3hxeBqvlm0wmohBQ2QTDSPgwuZqp7M5kiK/
↪→FPf8q0QtyZGoYlCGUQc0dsBXyRjnHOsUiTKl0M9/
↪→PDc+u+Y2teR2XibdQ8ja8CedU09NT5Lbhx+MSv2azLSxLjB7zAVEzPCfxgcXX3G5zfNFsO4+5FoR1GsoGirEN9dkZAxGa71hMh6bEkqAqJrK+wpDPqGlB9mmwi2MsDnfd5E3N2rl5Z8rDDoXL5tdlk0kKN9iaycXqCEZU7gs1v+fSe8N/
↪→RBDV85aiE4RLeCZ+LQL5IND6ftezQuw3GfRzy8w5EycGCpfWoAr+D5WBhibkBDQReMuLLAQgAr9onAVIzORKjbCapUGVCiTsNpTNzKsevMiwxqVanyr3iZLpEgGXrP7yLjxvKY4ow2nZMr9AdqyPAA==
↪→",

"rtes_dir": "/home/community/rtesroot"
}

}

1 Use gpg --export | base64 -w0 to get value

186 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Host signed RTEs instead of embedding into DNS

The RTE scripts are typically small enoygh to be emedded directly into the ARCHERY DNS zone. But if you want
to publish it on the web instead, just use signed_rtes_url option.

{
"software": {
"signed_rtes_url": "https://example.org/rtes/",
"rtes_dir": "/home/community/rtesroot"

}
}

In this case ARCHERY will store only the references to signed RTE scripts in https://example.org/rtes/
location.

Signed RTEs srcipts will be saved locally in the signed directory2 and NEEDS TO BE manually uploaded to the
web-hosting to be actually accessible in that location.

Manually define RTEs

Instead of organizing RTEs in the directory-like structure, they can be explicitely described in the configuration
one-by-one. This allows more flexibility, as you can point to already existing and signed RTEs published anywhere.

To manully describe community RTEs define rtes array in the configuration:

{
"software": {
"rtes": [
{
"name": "APPS/COMMUNITY/SW1-1.0.0",
"description": "Community SW1",
"url": "https://example.org/rtes/SW1-1.0.0.signed",

},
{
"name": "APPS/COMMUNITY/SW2-1.7.0",
"description": "Community SW2",
"data":

↪→"owGbwMvMwMHYf+1u+Kqw5aWMaxmPJ3EEG+ka6xnoGcRZrbinrJCSWpxclFlQkpmfZ6Xgm5/
↪→jUpnnXpSZohBspBCcX15SnliUqqCRklmkyQVUm1+el5OfmKJQWpRjlVFSUlBspa+fm5+TUpmXDtSjl1+Url9UklqsX2ykV5yZppCckZqcXVyaa1WckWhkamZlmGxgaG6WYmlgaGxgmJRqaJ5mYZaSZmxsbJBmaGSYYpCYamZgbGZqlJqcmmJskWxOubdHvkVqmRzX9vn/
↪→FwA=",

},
{
"name": "APPS/COMMUNITY/SW3-0.2.1",
"path": "/home/community/rtes/APPS/COMMUNITY/SW3-0.2.1"

}
]

}
}

Array contains objects describing RTEs. Each object defines the name, optionally description and points to the
content of community-defined RTE script, using one of the following options:

• url - provide URL to signed RTE script

• data - provide base64-encoded signed RTE script content

• path - local path to plain (unsigned) RTE script location

To sign RTE script without archery-manage, you can use following command:
2 can be also redefined with additional signed_rtes_dir option

5.3. ARCHERY 187

NorduGrid ARC 7 Documentation, Release ARC7

[console ~]# gpg --output rtescript.signed --sign rtescript.sh

It is possible to use both rtes array and rtes_dir simultaneously.

Note: If you are looking for more details behind the ARCHERY idea - read this paper.

5.4 ARC Admin Tools Reference

This section holds an online version of the command line options reference for ARC admin tools.

5.4.1 ARC Control Tool

NorduGrid ARC Control Tool

usage: arcctl [-h] [-c CONFIG] [-d {CRITICAL,ERROR,WARNING,INFO,DEBUG}]
COMPONENT ...

Named Arguments

-c, --config config file location (default is /etc/arc.conf)

-d, --debug Possible choices: CRITICAL, ERROR, WARNING, INFO, DEBUG

verbosity level (default is “WARNING”)

Default: “WARNING”

ARC Components

COMPONENT Possible choices: deploy, test-ca, test-jwt, config, service, rte, accounting,
job, cache, datastaging

DESCRIPTION

Sub-commands:

deploy

Third party components deployment

arcctl deploy [-h] ACTION ...

188 Chapter 5. Documentation for Infrastructure Admins

https://rdcu.be/cBfFH

NorduGrid ARC 7 Documentation, Release ARC7

Deployment Actions

ACTION Possible choices: igtf-ca, vomses, voms-lsc, iptables-config

DESCRIPTION

Sub-commands:

igtf-ca

Deploy IGTF CA certificates

arcctl deploy igtf-ca [-h] [-i {igtf,egi-trustanchors,nordugrid}]
{classic,iota,mics,slcs} [{classic,iota,mics,slcs} ...]

Positional Arguments

bundle Possible choices: classic, iota, mics, slcs

IGTF CA bundle name

Named Arguments

-i, --installrepo Possible choices: igtf, egi-trustanchors, nordugrid

Add specified repository that contains IGTF CA certificates

vomses

Deploy VOMS client configuration files

arcctl deploy vomses [-h] (-v VOMS | -e) [-u] [-c] vo

Positional Arguments

vo VO Name

Named Arguments

-v, --voms VOMS-Admin URL

-e, --egi-vo NOTE: BROKEN due to an EGI server change. Fetch information from EGI
VOs database

Default: False

-u, --user Install to user’s home instead of /etc

Default: False

-c, --use-client-cert Use client certificate to contact VOMS-Admin

Default: False

5.4. ARC Admin Tools Reference 189

NorduGrid ARC 7 Documentation, Release ARC7

voms-lsc

Deploy VOMS server-side list-of-certificates files

arcctl deploy voms-lsc [-h] (-v VOMS | -e) [--pythonssl] vo

Positional Arguments

vo VO Name

Named Arguments

-v, --voms VOMS-Admin URL

-e, --egi-vo NOTE: BROKEN due to an EGI server change. Fetch information from EGI
VOs database

Default: False

--pythonssl Use Python SSL module to establish TLS connection (default is to call exter-
nal OpenSSL binary)

Default: False

iptables-config

Generate iptables config to allow ARC CE configured services

arcctl deploy iptables-config [-h] [--any-state] [--multiport]

Named Arguments

--any-state Do not add ‘–state NEW’ to filter configuration

Default: False

--multiport Use one-line multiport filter instead of per-service entries

Default: False

test-ca

ARC Test CA control

arcctl test-ca [-h] [--ca-id CA_ID] [--ca-dir CA_DIR] ACTION ...

190 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Named Arguments

--ca-id Define CA ID to work with (default is to use hostname-based hash)

--ca-dir Redefine path to CA files directory

Test CA Actions

ACTION Possible choices: init, cleanup, hostcert, usercert

DESCRIPTION

Sub-commands:

init

Generate self-signed TestCA files

arcctl test-ca init [-h]
[-d {md2,md4,md5,mdc2,sha1,sha224,sha256,sha384,sha512}]
[-v VALIDITY] [-f]

Named Arguments

-d, --digest Possible choices: md2, md4, md5, mdc2, sha1, sha224, sha256, sha384,
sha512

Digest to use (default is “sha256”)

Default: “sha256”

-v, --validity Validity of certificate in days (default is 90)

Default: 90

-f, --force Overwrite files if exist

Default: False

cleanup

Cleanup TestCA files

arcctl test-ca cleanup [-h]

hostcert

Generate and sign testing host certificate

arcctl test-ca hostcert [-h]
[-d {md2,md4,md5,mdc2,sha1,sha224,sha256,sha384,sha512}]
[-v VALIDITY] [-n HOSTNAME] [-f] [-t]

5.4. ARC Admin Tools Reference 191

NorduGrid ARC 7 Documentation, Release ARC7

Named Arguments

-d, --digest Possible choices: md2, md4, md5, mdc2, sha1, sha224, sha256, sha384,
sha512

Digest to use (default is “sha256”)

Default: “sha256”

-v, --validity Validity of certificate in days (default is 30)

Default: 30

-n, --hostname Generate certificate for specified hostname instead of this host

-f, --force Overwrite files if exist

Default: False

-t, --export-tar Export tar archive to use from another host

Default: False

usercert

Generate and sign testing user certificate

arcctl test-ca usercert [-h]
[-d {md2,md4,md5,mdc2,sha1,sha224,sha256,sha384,sha512}]
[-v VALIDITY] [-n USERNAME] [-i INSTALL_USER] [-t]
[-f] [--no-auth]

Named Arguments

-d, --digest Possible choices: md2, md4, md5, mdc2, sha1, sha224, sha256, sha384,
sha512

Digest to use (default is “sha256”)

Default: “sha256”

-v, --validity Validity of certificate in days (default is 30)

Default: 30

-n, --username Use specified username instead of automatically generated

-i, --install-user Install certificates to $HOME/.globus for specified user instead of workdir

-t, --export-tar Export tar archive to use from another host

Default: False

-f, --force Overwrite files if exist

Default: False

--no-auth Do not add user subject to allowed list

Default: False

192 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

test-jwt

ARC Test JWT control

arcctl test-jwt [-h] [--iss-id ISS_ID] [--jwk-dir JWK_DIR] ACTION ...

Named Arguments

--iss-id Define arcctl token Issuer ID to work with (default is hostname)

--jwk-dir Redefine path to JWK files directory (default is “/etc/grid-security/jwt”)

Default: “/etc/grid-security/jwt”

Test JWT Actions

ACTION Possible choices: init, info, export, cleanup, config-get, config-set, token

DESCRIPTION

Sub-commands:

init

Generate RSA key-pair for JWT signing

arcctl test-jwt init [-h] [-f]

Named Arguments

-f, --force Overwrite files if exist

Default: False

info

Show information about Test JWT issuer

arcctl test-jwt info [-h] [-a]

Named Arguments

-a, --arc-conf Show arc.conf snippet for using issuer

Default: False

5.4. ARC Admin Tools Reference 193

NorduGrid ARC 7 Documentation, Release ARC7

export

Export JWT issuer information to be imported to ARC CE

arcctl test-jwt export [-h]

cleanup

Cleanup TestJWT files

arcctl test-jwt cleanup [-h]

config-get

Get JWT token generation config

arcctl test-jwt config-get [-h] [-p PROFILE] [key]

Positional Arguments

key Config key

Named Arguments

-p, --profile Config named profile (default is “default”

Default: “default”

config-set

Set JWT token generation config

arcctl test-jwt config-set [-h] [-p PROFILE]
{username,validity,scopes,claims} value

Positional Arguments

key Possible choices: username, validity, scopes, claims

Config key as in token options

value Config value

194 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Named Arguments

-p, --profile Config named profile (default is “default”

Default: “default”

token

Issue JWT token

arcctl test-jwt token [-h] [-p PROFILE] [-n USERNAME] [-v VALIDITY]
[-s SCOPES] [-c CLAIMS]

Named Arguments

-p, --profile Generate using token named profile (default is “default”

Default: “default”

-n, --username Use specified username instead of automatically generated

-v, --validity Validity of the token in hours (default is 12)

-s, --scopes Additional scopes to include into the token

-c, --claims Additional claims (JSON) to include into the token

config

ARC CE configuration control

arcctl config [-h] ACTION ...

Config Actions

ACTION Possible choices: dump, get, describe, brief, verify

DESCRIPTION

Sub-commands:

dump

Dump ARC CE running configuration

arcctl config dump [-h]

5.4. ARC Admin Tools Reference 195

NorduGrid ARC 7 Documentation, Release ARC7

get

Print configuration option value

arcctl config get [-h] block option

Positional Arguments

block Name of configuration block (without square breakets)

option Configuration option name

describe

Describe configuration option

arcctl config describe [-h] [-r REFERENCE] block option

Positional Arguments

block Name of configuration block (without square breakets)

option Configuration option name

Named Arguments

-r, --reference Redefine arc.conf.reference location (default is “/usr/share/doc/nordugrid-
arc//arc.conf.reference”)

Default: “/usr/share/doc/nordugrid-arc//arc.conf.reference”

brief

Print configuration brief points

arcctl config brief [-h] [-t {storage,logs}]

Named Arguments

-t, --type Possible choices: storage, logs

Show brief only for provided options type

196 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

verify

Verify ARC CE configuration syntax

arcctl config verify [-h] [-r REFERENCE]

Named Arguments

-r, --reference Redefine arc.conf.reference location (default is “/usr/share/doc/nordugrid-
arc//arc.conf.reference”)

Default: “/usr/share/doc/nordugrid-arc//arc.conf.reference”

service

ARC CE services control

arcctl service [-h] ACTION ...

Services Actions

ACTION Possible choices: enable, disable, start, restart, stop, list

DESCRIPTION

Sub-commands:

enable

Enable ARC CE services

arcctl service enable [-h] [--now] (-a | -s SERVICE)

Named Arguments

--now Start the services just after enable

Default: False

-a, --as-configured Use information from arc.conf to get services list

Default: False

-s, --service Service name

5.4. ARC Admin Tools Reference 197

NorduGrid ARC 7 Documentation, Release ARC7

disable

Disable ARC CE services

arcctl service disable [-h] [--now] (-a | -s SERVICE)

Named Arguments

--now Stop the services just after disable

Default: False

-a, --as-configured Use information from arc.conf to get services list

Default: False

-s, --service Service name

start

Start ARC CE services

arcctl service start [-h] (-a | -s SERVICE)

Named Arguments

-a, --as-configured Use information from arc.conf to get services list

Default: False

-s, --service Service name

restart

Restart ARC CE services

arcctl service restart [-h] (-a | -s SERVICE)

Named Arguments

-a, --as-configured Use information from arc.conf to get services list

Default: False

-s, --service Service name

198 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

stop

Stop ARC CE services

arcctl service stop [-h] (-a | -s SERVICE)

Named Arguments

-a, --as-configured Use information from arc.conf to get services list

Default: False

-s, --service Service name

list

List ARC CE services and their states

arcctl service list [-h] [-i | -e | -a]

Named Arguments

-i, --installed Show only installed services

Default: False

-e, --enabled Show only enabled services

Default: False

-a, --active Show only running services

Default: False

rte

RunTime Environments

arcctl rte [-h] ACTION ...

RunTime Environments Actions

ACTION Possible choices: enable, disable, list, default, undefault, cat, params-get,
params-set, params-unset, community

DESCRIPTION

5.4. ARC Admin Tools Reference 199

NorduGrid ARC 7 Documentation, Release ARC7

Sub-commands:

enable

Enable RTE to be used by A-REX

arcctl rte enable [-h] [-f] [-d] rte [rte ...]

Positional Arguments

rte RTE name

Named Arguments

-f, --force Force RTE enabling

Default: False

-d, --dummy Enable dummy RTE that do nothing but published in the infosys

Default: False

disable

Disable RTE to be used by A-REX

arcctl rte disable [-h] rte [rte ...]

Positional Arguments

rte RTE name

list

List RunTime Environments

arcctl rte list [-h] [-l] [-e | -d | -a | -s | -u | -n | -c]

Named Arguments

-l, --long Detailed listing of RTEs

Default: False

-e, --enabled List enabled RTEs

Default: False

-d, --default List default RTEs

Default: False

-a, --available List available RTEs

Default: False

200 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

-s, --system List available system RTEs

Default: False

-u, --user List available user-defined RTEs

Default: False

-n, --dummy List dummy enabled RTEs

Default: False

-c, --community List deployed community RTEs

Default: False

default

Transparently use RTE for every A-REX job

arcctl rte default [-h] [-f] rte [rte ...]

Positional Arguments

rte RTE name

Named Arguments

-f, --force Force RTE enabling

Default: False

undefault

Remove RTE from transparent A-REX usage

arcctl rte undefault [-h] rte [rte ...]

Positional Arguments

rte RTE name

cat

Print the content of RTE file

arcctl rte cat [-h] rte

5.4. ARC Admin Tools Reference 201

NorduGrid ARC 7 Documentation, Release ARC7

Positional Arguments

rte RTE name

params-get

List configurable RTE parameters

arcctl rte params-get [-h] [-l] rte

Positional Arguments

rte RTE name

Named Arguments

-l, --long Detailed listing of parameters

Default: False

params-set

Set configurable RTE parameter

arcctl rte params-set [-h] rte parameter value

Positional Arguments

rte RTE name

parameter RTE parameter to configure

value RTE parameter value to set

params-unset

Use default value for RTE parameter

arcctl rte params-unset [-h] rte parameter

Positional Arguments

rte RTE name

parameter RTE parameter to unset

202 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

community

Operating community-defined RunTimeEnvironments

arcctl rte community [-h] ACTION ...

Community RTE Actions

ACTION Possible choices: add, remove, list, config-get, config-set, rte-list, rte-cat, rte-
deploy, rte-remove

DESCRIPTION

Sub-commands:

add

Add new trusted community to ARC CE

arcctl rte community add [-h] [-f FINGERPRINT]
[-a ARCHERY | -u URL | --pubkey PUBKEY | --keyserver␣

↪→KEYSERVER]
community

Positional Arguments

community Trusted community name

Named Arguments

-f, --fingerprint Fingerprint of the community key

-a, --archery Use ARCHERY domain name (this is the default with community name as a
domain)

-u, --url Use JSON URL

--pubkey Manually defined location (URL) of the public key

--keyserver Manually defined location of PGP keyserver

remove

Remove trusted community from ARC CE

arcctl rte community remove [-h] [-f] community

5.4. ARC Admin Tools Reference 203

NorduGrid ARC 7 Documentation, Release ARC7

Positional Arguments

community Trusted community name

Named Arguments

-f, --force Disable and undefault all community RTEs automatically

Default: False

list

List trusted communities

arcctl rte community list [-h] [-l]

Named Arguments

-l, --long Print more information

Default: False

config-get

Get config variables for trusted community

arcctl rte community config-get [-h] [-l] community [option ...]

Positional Arguments

community Trusted community name

option Configuration option name

Named Arguments

-l, --long Print more information

Default: False

config-set

Set config variable for trusted community

arcctl rte community config-set [-h] community option value

204 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Positional Arguments

community Trusted community name

option Configuration option name

value Configuration option value

rte-list

List RTEs provided by community

arcctl rte community rte-list [-h] [-l | -a | -d] community

Positional Arguments

community Trusted community name

Named Arguments

-l, --long Print more information

Default: False

-a, --available List RTEs available in the software registry

Default: False

-d, --deployed List deployed community RTEs

Default: False

rte-cat

Print the content of RTEs provided by community

arcctl rte community rte-cat [-h] community rtename

Positional Arguments

community Trusted community name

rtename RunTimeEnvironment name

rte-deploy

Deploy RTE provided by community

arcctl rte community rte-deploy [-h] [-u URL] [-f] [--insecure]
community rtename

5.4. ARC Admin Tools Reference 205

NorduGrid ARC 7 Documentation, Release ARC7

Positional Arguments

community Trusted community name

rtename RunTimeEnvironment name

Named Arguments

-u, --url Explicitly define URL to signed RTE file

-f, --force Force RTE files redeployment if already exists

Default: False

--insecure Do not validate community signature for URL-based deployment

Default: False

rte-remove

Remove deployed community RTE

arcctl rte community rte-remove [-h] [-f] community rtename

Positional Arguments

community Trusted community name

rtename RunTimeEnvironment name

Named Arguments

-f, --force Disable and undefault RTE automatically

Default: False

accounting

A-REX Accounting records management

arcctl accounting [-h] ACTION ...

Accounting Actions

ACTION Possible choices: stats, job, republish

DESCRIPTION

206 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Sub-commands:

stats

Show A-REX AAR statistics

arcctl accounting stats [-h] [-b END_FROM] [-e END_TILL] [-s START_FROM]
[--filter-vo FILTER_VO] [--filter-user FILTER_USER]
[--filter-state FILTER_STATE]
[--filter-queue FILTER_QUEUE]
[--filter-endpoint FILTER_ENDPOINT]
[--filter-extra ATTRIBUTE VALUE]
[-o {brief,jobcount,walltime,cputime,data-staged-in,data-

↪→staged-out,wlcgvos,users,jobids,json}]

Named Arguments

-b, --end-from Define the job completion time range beginning (YYYY-MM-DD
[HH:mm[:ss]])

-e, --end-till Define the job completion time range end (YYYY-MM-DD [HH:mm[:ss]])

-s, --start-from Define the job start time constraint (YYYY-MM-DD [HH:mm[:ss]])

--filter-vo Account jobs owned by specified WLCG VO(s)

--filter-user Account jobs owned by specified user(s)

--filter-state Account jobs in the defined state(s)

--filter-queue Account jobs submitted to the defined queue(s)

--filter-endpoint Account jobs submitted via defined endpoint type(s)

--filter-extra Filter extra attributes (e.g. jobname, project, vomsfqan, rte, dtrurl, etc)

-o, --output Possible choices: brief, jobcount, walltime, cputime, data-staged-in, data-
staged-out, wlcgvos, users, jobids, json

Define what kind of stats you want to output (default is “brief”)

Default: “brief”

job

Show job accounting data

arcctl accounting job [-h] ACTION ...

Job Accounting Actions

ACTION Possible choices: info, events, transfers

DESCRIPTION

5.4. ARC Admin Tools Reference 207

NorduGrid ARC 7 Documentation, Release ARC7

Sub-commands:

info

Show job accounting data

arcctl accounting job info [-h]
[-o {all,description,resources,rtes,authtokens,json}]
jobid

Positional Arguments

jobid Job ID

Named Arguments

-o, --output Possible choices: all, description, resources, rtes, authtokens, json

Define what kind of job information you want to output (default is “all”)

Default: “all”

events

Show job event history

arcctl accounting job events [-h] jobid

Positional Arguments

jobid Job ID

transfers

Show job data transfers statistics

arcctl accounting job transfers [-h] jobid

Positional Arguments

jobid Job ID

208 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

republish

Republish accounting records to defined target

arcctl accounting republish [-h] -b END_FROM -e END_TILL
(-t TARGET_NAME | -a APEL_URL | -s SGAS_URL)
[--apel-topic {gLite-APEL,/queue/global.accounting.test.

↪→cpu.central}]
[--apel-messages {urs,summaries}]
[--gocdb-name GOCDB_NAME]
[--localid-prefix LOCALID_PREFIX]
[--vofilter VOFILTER] [--urbatchsize URBATCHSIZE]

Named Arguments

-b, --end-from Define republishing timeframe start (YYYY-MM-DD [HH:mm[:ss]])

-e, --end-till Define republishing timeframe end (YYYY-MM-DD [HH:mm[:ss]])

-t, --target-name Specify configured accounting target name from arc.conf (e.g. neic_sgas).

-a, --apel-url Specify APEL server URL (e.g. https://msg.argo.grnet.gr)

-s, --sgas-url Specify SGAS server URL (e.g. https://grid.uio.no:8001/logger)

APEL

Options to be used when target is specified using –apel-url

--apel-topic Possible choices: gLite-APEL, /queue/global.accounting.test.cpu.central

Define APEL topic (default is gLite-APEL)

--apel-messages Possible choices: urs, summaries

Define APEL messages (default is summaries)

--gocdb-name (Re)define GOCDB site name

SGAS

Options to be used when target is specified using –sgas-url

--localid-prefix Define optional SGAS localid prefix

Other options

Works for both APEL and SGAS targets

--vofilter Republish only jobs owned by these VOs

--urbatchsize Size of records batch to be send (default is 50 for SGAS, 500 for APEL)

5.4. ARC Admin Tools Reference 209

https://msg.argo.grnet.gr
https://grid.uio.no:8001/logger

NorduGrid ARC 7 Documentation, Release ARC7

job

A-REX Jobs

arcctl job [-h] [-t CACHETTL] ACTION ...

Named Arguments

-t, --cachettl GM-Jobs output caching validity in seconds (default is 30)

Default: 30

Jobs Control Actions

ACTION Possible choices: list, script, log, info, stdout, stderr, attr, path, kill, killall,
clean, cleanall, stats, accounting, datastaging

DESCRIPTION

Sub-commands:

list

List available A-REX jobs

arcctl job list [-h] [-l]
[-s {ACCEPTED,PREPARING,SUBMIT,INLRMS,FINISHING,FINISHED,DELETED,

↪→CANCELING}]
[-o OWNER]

Named Arguments

-l, --long Detailed listing of jobs

Default: False

-s, --state Possible choices: ACCEPTED, PREPARING, SUBMIT, INLRMS, FINISH-
ING, FINISHED, DELETED, CANCELING

Filter jobs by state

-o, --owner Filter jobs by owner

script

Display job script submitted to LRMS

arcctl job script [-h] jobid

210 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Positional Arguments

jobid Job ID

log

Display job log

arcctl job log [-h] [-f] [-r] [-s] jobid

Positional Arguments

jobid Job ID

Named Arguments

-f, --follow Follow the job log output

Default: False

-r, --raw Show raw logfile content as it is (including jobscript)

Default: False

-s, --service Show ARC CE logs containing the jobID instead of job log

Default: False

info

Show job main info

arcctl job info [-h] jobid

Positional Arguments

jobid Job ID

stdout

Show job executable stdout

arcctl job stdout [-h] [-f] jobid

5.4. ARC Admin Tools Reference 211

NorduGrid ARC 7 Documentation, Release ARC7

Positional Arguments

jobid Job ID

Named Arguments

-f, --follow Follow the job log output

Default: False

stderr

Show job executable stderr

arcctl job stderr [-h] [-f] jobid

Positional Arguments

jobid Job ID

Named Arguments

-f, --follow Follow the job log output

Default: False

attr

Get job attribute

arcctl job attr [-h] jobid [attr]

Positional Arguments

jobid Job ID

attr Attribute name

path

Print control directory path for a job

arcctl job path [-h] jobid

212 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Positional Arguments

jobid Job ID

kill

Cancel job

arcctl job kill [-h] jobid [jobid ...]

Positional Arguments

jobid Job ID

killall

Cancel all jobs

arcctl job killall [-h]
[-s {ACCEPTED,PREPARING,SUBMIT,INLRMS,FINISHING,FINISHED,DELETED,

↪→CANCELING}]
[-o OWNER]

Named Arguments

-s, --state Possible choices: ACCEPTED, PREPARING, SUBMIT, INLRMS, FINISH-
ING, FINISHED, DELETED, CANCELING

Filter jobs by state

-o, --owner Filter jobs by owner

clean

Clean job

arcctl job clean [-h] jobid [jobid ...]

Positional Arguments

jobid Job ID

5.4. ARC Admin Tools Reference 213

NorduGrid ARC 7 Documentation, Release ARC7

cleanall

Clean all jobs

arcctl job cleanall [-h]
[-s {ACCEPTED,PREPARING,SUBMIT,INLRMS,FINISHING,FINISHED,DELETED,

↪→CANCELING}]
[-o OWNER]

Named Arguments

-s, --state Possible choices: ACCEPTED, PREPARING, SUBMIT, INLRMS, FINISH-
ING, FINISHED, DELETED, CANCELING

Filter jobs by state

-o, --owner Filter jobs by owner

stats

Show jobs statistics

arcctl job stats [-h] [-l] [-t | -d]

Named Arguments

-l, --long Detailed output of stats

Default: False

-t, --total Show server total stats

Default: False

-d, --data-staging Show server datastaging stats

Default: False

accounting

Show job accounting data

arcctl job accounting [-h] ACTION ...

Job Accounting Actions

ACTION Possible choices: info, events, transfers

DESCRIPTION

214 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Sub-commands:

info

Show job accounting data

arcctl job accounting info [-h]
[-o {all,description,resources,rtes,authtokens,json}]
jobid

Positional Arguments

jobid Job ID

Named Arguments

-o, --output Possible choices: all, description, resources, rtes, authtokens, json

Define what kind of job information you want to output (default is “all”)

Default: “all”

events

Show job event history

arcctl job accounting events [-h] jobid

Positional Arguments

jobid Job ID

transfers

Show job data transfers statistics

arcctl job accounting transfers [-h] jobid

Positional Arguments

jobid Job ID

5.4. ARC Admin Tools Reference 215

NorduGrid ARC 7 Documentation, Release ARC7

datastaging

Job Datastaging Information for jobs preparing or running.

arcctl job datastaging [-h] ACTION ...

Job Datastaging Menu

ACTION Possible choices: get-totaltime, get-details

DESCRIPTION

Sub-commands:

get-totaltime

Show the total time spent in the preparation stage for the selected job

arcctl job datastaging get-totaltime [-h] jobid

Positional Arguments

jobid Job ID

get-details

Show details related to the files downloaded for the selected job

arcctl job datastaging get-details [-h] jobid

Positional Arguments

jobid Job ID

cache

ARC A-REX Cache control

arcctl cache [-h] ACTION ...

A-REX Cache Actions

ACTION Possible choices: stats, list, is-cached

DESCRIPTION

216 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Sub-commands:

stats

Show cache usage statistics

arcctl cache stats [-h]

list

List cached URLs

arcctl cache list [-h] [-l]

Named Arguments

-l, --long Output paths to cached files

Default: False

is-cached

Checks is the URL already in A-REX cache

arcctl cache is-cached [-h] [-q] url

Positional Arguments

url URL to check

Named Arguments

-q, --quiet Do not output path to cached file

Default: False

datastaging

DataStaging info

arcctl datastaging [-h] ACTION ...

5.4. ARC Admin Tools Reference 217

NorduGrid ARC 7 Documentation, Release ARC7

DataStaging Control Actions

ACTION Possible choices: summary, job, dtr

DESCRIPTION

Sub-commands:

summary

Job Datastaging Summary Information for jobs preparing or running.

arcctl datastaging summary [-h] ACTION ...

Job Datastaging Summary Menu

ACTION Possible choices: jobs, files

DESCRIPTION

Sub-commands:

jobs

Show overview of the duration of datastaging for jobs active in the chosen (or default=1hr) timewindow

arcctl datastaging summary jobs [-h] [-d DAYS] [-hr HOURS] [-m MINUTES]
[-s SECONDS]

Named Arguments

-d, --days Modification time in days (default: 0 days)

Default: 0

-hr, --hours Modification time in hours (default: 1 hour)

Default: 1

-m, --minutes Modification time in minutes (default: 0 minutes)

Default: 0

-s, --seconds Modification time in seconds (default: 0 seconds)

Default: 0

218 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

files

Show the total number file and and total file-size downloaded in the chosen (or default=1hr)timewindow

arcctl datastaging summary files [-h] [-d DAYS] [-hr HOURS] [-m MINUTES]
[-s SECONDS]

Named Arguments

-d, --days Modification time in days (default: 0 days)

Default: 0

-hr, --hours Modification time in hours (default: 1 hour)

Default: 1

-m, --minutes Modification time in minutes (default: 0 minutes)

Default: 0

-s, --seconds Modification time in seconds (default: 0 seconds)

Default: 0

job

Job Datastaging Information for a preparing or running job.

arcctl datastaging job [-h] ACTION ...

Job Datastaging Menu

ACTION Possible choices: get-totaltime, get-details

DESCRIPTION

Sub-commands:

get-totaltime

Show the total time spent in the preparation stage for the selected job

arcctl datastaging job get-totaltime [-h] jobid

Positional Arguments

jobid Job ID

5.4. ARC Admin Tools Reference 219

NorduGrid ARC 7 Documentation, Release ARC7

get-details

Show details related to the files downloaded for the selected job

arcctl datastaging job get-details [-h] jobid

Positional Arguments

jobid Job ID

dtr

Data-delivery transfer (DTR) information

arcctl datastaging dtr [-h] ACTION ...

DTR info menu

ACTION Possible choices: state

DESCRIPTION

Sub-commands:

state

Show summary of DTR state info

arcctl datastaging dtr state [-h]

Positional Arguments

state Default: False

5.4.2 ARCHERY Manage Tool

The archery-manage tool used to simplify common operations with ARCHERY, including registry initial bootstrap,
integration with topology databases and keeping dynamic information up to date.

usage: archery-manage [-h] [-d {CRITICAL,ERROR,WARNING,INFO,DEBUG}] -s SOURCE
[-f FILTER]
[-o {arc-CEs,services,endpoints,zonefile,json,_debug}]
[--json] [--output-all] [-u] [--domain DOMAIN]
[--ddns-master-ip DDNS_MASTER_IP]
[--ddns-tsig-keyfile DDNS_TSIG_KEYFILE]
[--ddns-tsig-algorithm {HMAC-MD5,HMAC-SHA1,HMAC-SHA224,HMAC-

↪→SHA256,HMAC-SHA384,HMAC-SHA512}]
[--ttl TTL] [--threads THREADS] [--timeout TIMEOUT]

220 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

Named Arguments

-d, --debug Possible choices: CRITICAL, ERROR, WARNING, INFO, DEBUG

Default: “INFO”

-s, --source Services topology source (use ‘help’ value to print available sources)

-f, --filter Add endpoints filter (use ‘help’ value to print available filters)

-o, --output Possible choices: arc-CEs, services, endpoints, zonefile, json, _debug

Write requested data to stdout

--json Change output format from plaintext to JSON

Default: False

--output-all Output all services/endpoints including inactive (filters are still applied)

Default: False

-u, --ddns-update Invoke DNS zone incremental DDNS update secured by TSIG key

Default: False

--domain Domain name of the ARCHERY endpoint to use (required for DDNS update)

--ddns-master-ip Master DNS IP address (required for DDNS update)

--ddns-tsig-keyfile TSIG keyfile (required for DDNS update)

--ddns-tsig-algorithm Possible choices: HMAC-MD5, HMAC-SHA1, HMAC-SHA224, HMAC-
SHA256, HMAC-SHA384, HMAC-SHA512

Cryptographic algorithm for TSIG

Default: “HMAC-MD5”

--ttl DNS resource records TTL value to use (default is 3600)

Default: 3600

--threads Number of treads to fetch information in parallel (default is 8)

Default: 8

--timeout Per-source information fetching timeout (default is 10 seconds)

Default: 10

5.4.3 ARC Configuration Parser

Nordugrid ARC configuration parser

usage: arcconfig-parser [-h] [--debug {CRITICAL,ERROR,WARNING,INFO,DEBUG}]
[--load] [--save] [-r RUNCONFIG] [-c CONFIG]
[-d DEFAULTS] [-b BLOCK] [-o OPTION] [-s]
[-e {bash,json}] [-f EXPORT_FILTER]

5.4. ARC Admin Tools Reference 221

NorduGrid ARC 7 Documentation, Release ARC7

Named Arguments

--debug Possible choices: CRITICAL, ERROR, WARNING, INFO, DEBUG

verbosity level (default is “WARNING”)

Default: “WARNING”

Runtime configuration

Work with runtime configuration that includes default values

--load load ARC runtime configuration

Default: False

--save save ARC runtime configuration

Default: False

-r, --runconfig runtime config file location (default is “/run/arc/arc.runtime.conf”)

Default: “/run/arc/arc.runtime.conf”

Configuration files

Initial ARC configuration files

-c, --config config file location (default is “/etc/arc.conf”)

Default: “/etc/arc.conf”

-d, --defaults defaults file location (default is “/usr/share/arc/arc.parser.defaults”)

Default: “/usr/share/arc/arc.parser.defaults”

Getting values

Get blocks and configuration option values

-b, --block block name (can be specified several times)

-o, --option option name

-s, --subblocks match subblocks against supplied block name(s)

Default: False

-e, --export Possible choices: bash, json

export configuration to the defined format

-f, --export-filter limit bash export to specified options only

5.5 NorduGrid repository information for ARC 7

Note: ARC 7 is not yet released, please refer to NorduGrid Test Repositories for installation: Testing repo.

The NorduGrid ARC packages are available through YUM and APT repositories for several systems. We have
release-based repositories that you can follow. This will keep your install to a particular release of NorduGrid
ARC with only minor and bug-fixing updates. You can also choose to follow the repository “latest” which will
always point to the latest stable release. For each distribution there are 3 channels (repositories) available:

222 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

• base - Base packages (mandatory)

• updates - Updates to the base release (strongly recommended)

• testing - Packages almost ready to go into the updates repository (optional). The alpha, beta and release
candidate releases can be found here.

5.5.1 Repository security

The NorduGrid RPM packages and DEB repositories are signed, and in order for the repository tools APT and
YUM to verify them you must install the NorduGrid GPG key:

For rpm based distributions like Red Hat Enterprise Linux and Fedora:

[root ~]# rpm --import http://download.nordugrid.org/RPM-GPG-KEY-nordugrid-6

For Ubuntu distributions with sudo:

[user ~]$ wget -q http://download.nordugrid.org/DEB-GPG-KEY-nordugrid-6.asc -O- |␣
↪→sudo apt-key add -

For Debian without sudo:

[root ~]# wget -q http://download.nordugrid.org/DEB-GPG-KEY-nordugrid-6.asc -O- | apt-
↪→key add -

5.5.2 Repository configuration - Red Hat Enterprise Linux

The NorduGrid ARC repositories for RedHat Enterprise Linux / CentOS packaging utility yum or dnf can be
configured through:

/etc/yum/nordugrid.repo

The repository configuration can be set up automatically by means of installing nordugrid-release package or
creating the configuration file manually.

Install nordugrid-release package with YUM/DNF

The easiest way to configure YUM/DNF to use the NorduGrid repository for Red Hat Enterprise Linux, CentOS
and similar distributions is to install the nordugrid-release package which can be found in the NorduGrid
package repository for the appropriate RHEL/EPEL release.

Example packages are shown below for x86_64 architectures, they also exist for i386 when applicable. In that
case exchange the x86_64 in the links below with i386.

Rocky Linux: 9 8

CentOS Linux: EL7

CentOS Stream: 9 8

Fedora: 38

Install with yum (CentOS Linux 6+7) or dnf (Fedora, CentOS Stream, Rocky Linux, CentOS Linux 8+9), here
shown for CentOS Linux:

[root ~]# dnf install <rhel-repo link>

This creates the appropriate repo files in /etc/yum.repos.d/.

5.5. NorduGrid repository information for ARC 7 223

https://download.nordugrid.org/packages/nordugrid-release/releases/6.1/rocky/9/x86_64/nordugrid-release-6.1-1.el9.noarch.rpm
https://download.nordugrid.org/packages/nordugrid-release/releases/6.1/rocky/8/x86_64/nordugrid-release-6.1-1.el8.noarch.rpm
https://download.nordugrid.org/packages/nordugrid-release/releases/6.1/centos/el7/x86_64/nordugrid-release-6.1-1.el7.noarch.rpm
https://download.nordugrid.org/packages/nordugrid-release/releases/6.1/centos-stream/9/x86_64/nordugrid-release-6.1-1.el9.noarch.rpm
https://download.nordugrid.org/packages/nordugrid-release/releases/6.1/centos-stream/8/x86_64/nordugrid-release-6.1-1.el8.noarch.rpm
https://download.nordugrid.org/packages/nordugrid-release/releases/6.1/fedora/38/x86_64/nordugrid-release-6.1-1.fc38.noarch.rpm

NorduGrid ARC 7 Documentation, Release ARC7

Manual YUM repository setup - NorduGrid repository

For manual YUM repository setup, create a file /etc/yum.repos.d/nordugrid.repo with the following con-
tents (here using CentOS as example, if you are on Fedora, replace centos with fedora)

If you are installing an alpha, beta or release candiate, please set the nordugrid-testing to enabled=1.

[nordugrid]
name=NorduGrid - $basearch - base
baseurl=http://download.nordugrid.org/repos/6/centos/$releasever/$basearch/base
enabled=1
gpgcheck=1
gpgkey=http://download.nordugrid.org/RPM-GPG-KEY-nordugrid-6

[nordugrid-updates]
name=NorduGrid - $basearch - updates
baseurl=http://download.nordugrid.org/repos/6/centos/$releasever/$basearch/updates
enabled=1
gpgcheck=1
gpgkey=http://download.nordugrid.org/RPM-GPG-KEY-nordugrid-6

[nordugrid-testing]
name=NorduGrid - $basearch - testing
baseurl=http://download.nordugrid.org/repos/6/centos/$releasever/$basearch/testing
enabled=0
gpgcheck=1
gpgkey=http://download.nordugrid.org/RPM-GPG-KEY-nordugrid-6

Check if it works running yum (or dnf), e.g.:

[root ~]# yum makecache

Install required packages

The NorduGrid repositories for RedHat Enterprise Linux/CentOS depends on the EPEL Repositories which must
also be part of the YUM configuration:

For RHEL7 flavour:

yum install -y epel-release

For RHEL8 flavour:

dnf config-manager --set-enabled powertools

224 Chapter 5. Documentation for Infrastructure Admins

https://fedoraproject.org/wiki/EPEL

NorduGrid ARC 7 Documentation, Release ARC7

For RHEL9 flavour:

dnf config-manager --set-enabled crb

Once the NorduGrid repositories are configured, install the packages with:

[root~]# dnf install <list of package names>

If you are installing an alpha, beta or release candiate, you must install by enabling the nordugrid-testing repo.

[root~]# dnf install --enablerepo nordugrid-testing <list-of-packages>

Are you on RHEl flavour 7, use yum instead of dnf.

Please refer to the ARC Computing Element Installation and Configuration Guide for package selection and con-
figuration.

5.5.3 Repository configuration - Debian and Ubuntu

The NorduGrid ARC repositories for Debian and Ubuntu packaging utility APT can be configured through:

/etc/apt/sources.list

or when supported through a repo specific file:

/etc/apt/sources.list.d/nordugrid.list

The configurations for the varios APT based distributions can be found in the following sections. To enable a
specific repository, remove the “#” from the beginning of the line, before the “deb” as shown for the Base Channel.

The repository configuration can be set up automatically by means of installing nordugrid-release package or
creating the configuration file manually.

Install nordugrid-release package for Debian/Ubuntu through dpkg

The examples below give you the link for most recent Debian/Ubuntu releases. Packages are shown below for
amd64 architecture. Replace amd64 for i386 if required for your architecture.

Debian: 12 11 10

Ubuntu: 23.10 22.04 20.04

Install the source file with dpkg, example shown for Debian 12:

[root ~]# wget -q https://download.nordugrid.org/packages/nordugrid-release/releases/
↪→6/debian/12/amd64/nordugrid-release_6~bpo12+1_all.deb
[root ~]# dpkg -i nordugrid-release_6~bpo12+1_all.deb

For a different version of Debian or Ubuntu, change the version names appropriately.

5.5. NorduGrid repository information for ARC 7 225

https://download.nordugrid.org/packages/nordugrid-release/releases/6.2/debian/12/amd64/nordugrid-release_6.2~bpo12+1_all.deb
https://download.nordugrid.org/packages/nordugrid-release/releases/6.2/debian/11/amd64/nordugrid-release_6.2~bpo11+1_all.deb
https://download.nordugrid.org/packages/nordugrid-release/releases/6.2/debian/10/amd64/nordugrid-release_6.2~bpo10+1_all.deb
https://download.nordugrid.org/packages/nordugrid-release/releases/6.2/ubuntu/23.10/amd64/nordugrid-release_6.2~mantic1_all.deb
https://download.nordugrid.org/packages/nordugrid-release/releases/6.2/ubuntu/22.04/amd64/nordugrid-release_6.2~jammy1_all.deb
https://download.nordugrid.org/packages/nordugrid-release/releases/6.2/ubuntu/20.04/amd64/nordugrid-release_6.2~focal1_all.deb

NorduGrid ARC 7 Documentation, Release ARC7

Manual APT repository setup - NorduGrid repository

For manual APT repository setup for Debian, the APT sources file should contain the following (here shown for
Debian 12 Bookworm):

Base channel - must be enabled
deb http://download.nordugrid.org/repos/6/debian/ bookworm main
deb-src http://download.nordugrid.org/repos/6/debian/ bookworm main

Updates to the base release - should be enabled
deb http://download.nordugrid.org/repos/6/debian/ bookworm-updates main
deb-src http://download.nordugrid.org/repos/6/debian/ bookworm-updates main

Scheduled package updates - optional
#deb http://download.nordugrid.org/repos/6/debian/ bookworm-experimental main
#deb-src http://download.nordugrid.org/repos/6/debian/ bookworm-experimental main

For manual APT repository setup for Ubuntu, the APT sources file should contain the following (here shown for
Ubuntu 22.04 Jammy):

Base channel - must be enabled
deb http://download.nordugrid.org/repos/6/ubuntu/ jammy main
deb-src http://download.nordugrid.org/repos/6/ubuntu/ jammy main

Updates to the base release - should be enabled
deb http://download.nordugrid.org/repos/6/ubuntu/ jammy-updates main
deb-src http://download.nordugrid.org/repos/6/ubuntu/ jammy-updates main

Scheduled package updates - optional
#deb http://download.nordugrid.org/repos/6/ubuntu/ jammy-experimental main
#deb-src http://download.nordugrid.org/repos/6/ubuntu/ jammy-experimental main

For a different release version, change the version name accordingly.

For Debian:

• 12: bookworm

• 11: bullseye

• 10: buster

For Ubuntu:

• 23.10: mantic

• 22.04: jammy

• 20.04: focal

Install required packages

Run the following command to update the packages database:

[root~]# apt-get update

Install the packages with (showing example for nordugrid-arc-arex):

[root~]# apt-get <list-of-packages>

Please refer to the /admins/arc6_install_guide for package selection and configuration.

226 Chapter 5. Documentation for Infrastructure Admins

NorduGrid ARC 7 Documentation, Release ARC7

5.6 NorduGrid testing repository information for ARC 7

The NorduGrid ARC packages are available through YUM and APT repositories for several systems. We have
release-based repositories that you can follow. This will keep your install to a particular release of NorduGrid
ARC with only minor and bug-fixing updates. This page explains how you install NorduGrid ARC packages from
the testing channel - which is used for alpha, beta, and release candidate releases.

5.6.1 Repository security

The NorduGrid RPM packages and DEB repositories are signed, and in order for the repository tools APT and
YUM to verify them you must install the NorduGrid GPG key:

For rpm based distributions like Red Hat Enterprise Linux and Fedora:

[root ~]# rpm --import http://download.nordugrid.org/RPM-GPG-KEY-nordugrid-6

For Ubuntu distributions with sudo:

[user ~]$ wget -q http://download.nordugrid.org/DEB-GPG-KEY-nordugrid-6.asc -O- |␣
↪→sudo apt-key add -

For Debian without sudo:

[root ~]# wget -q http://download.nordugrid.org/DEB-GPG-KEY-nordugrid-6.asc -O- | apt-
↪→key add -

Note: The GPG key will eventually be updated from the old ARC 6 key to a new ARC 7 key.

5.6.2 Repository configuration - Red Hat Enterprise Linux

The NorduGrid ARC repositories for RedHat Enterprise Linux / CentOS packaging utility yum or dnf can be
configured through:

/etc/yum/nordugrid-testing.repo

The repository configuration must be set up manually when using the testing repo, as per instructions below.

Manual YUM repository setup - NorduGrid repository

For manual YUM repository setup, create a file /etc/yum.repos.d/nordugrid-testing.repo with the fol-
lowing contents:

Note: Here we are using Rocky as an example, if you are using other flavours, please replaces rocky with

• Fedora: fedora

• CentOS: centos - NB, the release version should be el7 not just 7

• CentosStream: centos-stream

• AlmaLinux: rocky

5.6. NorduGrid testing repository information for ARC 7 227

NorduGrid ARC 7 Documentation, Release ARC7

[nordugrid-testing]
name=NorduGrid - $basearch - Testing
baseurl=http://download.nordugrid.org/repos/7/rocky/9/$basearch/testing
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-nordugrid-6

[nordugrid-testing-debuginfo]
name=NorduGrid - $basearch - Testing - Debug
baseurl=http://download.nordugrid.org/repos/7/rocky/9/$basearch/testing/debug
enabled=0
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-nordugrid-6

[nordugrid-testing-source]
name=NorduGrid - Testing - Source
baseurl=http://download.nordugrid.org/repos/7/rocky/9/source/testing
enabled=0
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-nordugrid-6

Check if it works running yum (or dnf), e.g.:

[root ~]# yum makecache

Install required packages

The NorduGrid repositories for RedHat Enterprise Linux/CentOS depends on the EPEL Repositories which must
also be part of the YUM configuration:

For RHEL7 flavour:

yum install -y epel-release

For RHEL8 flavour:

dnf config-manager --set-enabled powertools

For RHEL9 flavour:

dnf config-manager --set-enabled crb

Once the NorduGrid repositories are configured and the dependency above installed, install the alpha/beta/release-
candidate packages with:

[root~]# yum install --enablerepo nordugrid-testing <list-of-packages>

For instance:

dnf install --enablerepo nordugrid-testing nordugrid-arc-arex --refresh

228 Chapter 5. Documentation for Infrastructure Admins

https://fedoraproject.org/wiki/EPEL

NorduGrid ARC 7 Documentation, Release ARC7

Are you on RHEL-flavour 7, use yum instead of dnf.

Please refer to the ARC Computing Element Installation and Configuration Guide for package selection and con-
figuration.

5.6.3 Repository configuration - Debian and Ubuntu

The NorduGrid ARC repositories for Debian and Ubuntu packaging utility APT can be configured through:

/etc/apt/sources.list

or when supported through a repo specific file:

/etc/apt/sources.list.d/nordugrid.list

The configurations for the varios APT based distributions can be found in the following sections. To enable a
specific repository, remove the “#” from the beginning of the line, before the “deb” as shown for the Base Channel.

For the testing repo, you must manually set up the configuration file as per instructions below.

Manual APT repository setup - NorduGrid repository

For manual APT repository setup for Debian, the APT sources file should contain the following (here shown for
Debian 12 bookworm):

Scheduled package updates - optional
#deb http://download.nordugrid.org/repos/7/debian/ bookworm-experimental main
#deb-src http://download.nordugrid.org/repos/7/debian/ bookworm-experimental main

For manual APT repository setup for Ubuntu, the APT sources file should contain the following (here shown for
Ubuntu 22.04 jammy):

Scheduled package updates - optional
#deb http://download.nordugrid.org/repos/7/ubuntu/ jammy-experimental main
#deb-src http://download.nordugrid.org/repos/7/ubuntu/ jammy-experimental main

For a different release version, change the version name accordingly.

For Debian:

• 12: bookworm

• 11: bullseye

• 10: buster

For Ubuntu:

• 23.10: mantic

• 22.04: jammy

• 20.04: focal

5.6. NorduGrid testing repository information for ARC 7 229

NorduGrid ARC 7 Documentation, Release ARC7

Install required packages

Run the following command to update the packages database:

[root~]# apt-get update

Install the packages with (showing example for nordugrid-arc-arex):

[root~]# apt-get <list-of-packages>

Please refer to the ARC Computing Element Installation and Configuration Guide for package selection and con-
figuration.

230 Chapter 5. Documentation for Infrastructure Admins

CHAPTER

SIX

TECHNICAL DOCUMENTS DESCRIBING ARC COMPONENTS

Following documents gives a deep technical description of the various ARC components. If you are looking for
architecture internals (how parts of ARC was designed) you can follows this section.

6.1 ARC Data Services Technical Description

6.1.1 A-REX Data Cache technical description

Structure of the cache directory

Cached files are stored in sub-directories under the data directory in each main cache directory. Filenames are
constructed from an SHA-1 hash of the URL of the file and split into subdirectories based on the two initial
characters of the hash. In the extremely unlikely event of a collision between two URLs having the same SHA-1
hash, caching will not be used for the second file.

When multiple caches are used, a new cache file goes to a randomly selected cache, where each cache is weighted
according to the size of the file system on which it is located.

For example: if there are two caches of 1TB and 9TB then on average 10% of input files will go to the first cache
and 90% will go to the second cache.

Some associated metadata including the corresponding URL and an expiry time, if available, are stored in a file
with the same name as the cache file, with a .meta suffix.

For example, with a cache directory /cache the file srm://srm.nordugrid.org/grid/atlas/file1:

• is mapped to /cache/data/37/b19accc950c37876a61d2de6e238d38c9e94c0,

• the file /cache/data/37/b19accc950c37876a61d2de6e238d38c9e94c0.meta contains the original
URL and an expiry time if one is available.

At the start of a file download, the cache file is locked, so that it cannot be deleted and so that another download
process cannot write the same file simultaneously. This is done by creating a file with the same name as the
cache filename but with a .lock suffix. This file contains the process ID of the process and the hostname of
the host holding the lock. If this file is present, another process cannot do anything with the cache file and must
wait until the cache file is unlocked (i.e. the .lock file no longer exists). The lock is continually updated during
the transfer, and is considered stale if 15 minutes have passed since the last update. These stale locks, caused for
example by a download process exiting abnormally, will therefore automatically be cleaned up. Also, if the process
corresponding to the process ID stored inside the lock is no longer running on the host specified in the lock, it is
safe to assume that the lock file can be deleted. If a file is requested which already exists in the cache (and is not
locked), the cache file is not locked, but checks are done at the end of cache processing to ensure the file was not
modified during the processing.

231

NorduGrid ARC 7 Documentation, Release ARC7

How the cache works

If a job requests an input file which can be cached or is allowed to be cached, it is stored in the selected cache
directory, then a hard link is created in a per-job directory, under the joblinks subdirectory of the main cache
directory. Then depending on the configuration, either the hard-link is copied or soft-linked to the SD. The former
option is advised if the cache is on a file system which will suffer poor performance from a large number of jobs
reading files on it, or the file system containing the cache is not accessible from worker nodes. The latter option is
the default option. Files marked as executable in the job will be stored in the cache without executable permissions,
but they will be copied to the SD and the appropriate permissions applied to the copy.

The per-job directory is only readable by the local user running the job, and the cache directory is readable only
by the A-REX user. This means that the local user cannot access any other users’ cache files. It also means that
cache files can be removed without needing to know whether they are in use by a currently running job. However,
as deleting a file which has hard links does not free space on the disk, cache files are not deleted until all per-job
hard links are deleted.

Warning: If a cache is mounted from an NFS server and the A-REX is run by the root user, the server must
have the no_root_squash option set for the A-REX host in the /etc/exports file, otherwise the A-REX
will not be able to create the required directories.

Note: Note that when running A-REX under a non-privileged user account, all cache files will be owned and
accessible by the same user, and therefore modifiable by running jobs. This is potentially dangerous and so caching
should be used with caution in this case.

If the file system containing the cache is full and it is impossible to free any space, the download fails and is retried
without using caching.

Before giving access to a file already in the cache, the A-REX contacts the initial file source to check if the user
has read permission on the file. In order to prevent repeated checks on source files, this authentication information
is cached for a limited time. On passing the check for a cached file, the user’s DN is stored in the .meta file, with
an expiry time equivalent to the lifetime remaining for the user’s proxy certificate. This means that the permission
check is not performed for this user for this file until this time is up (usually several hours). File creation and validity
times from the original source are also checked to make sure the cached file is fresh enough. If the modification
time of the source is later than that of the cached file, the file will be downloaded again. The file will also be
downloaded again if the modification date of the source is not available, as it is assumed the cache file is out of
date. These checks are not performed if the DN is cached and is still valid.

The A-REX checks the cache periodically if it is configured to do automatic cleaning. If the used space on the
file system containing the cache exceeds the high water-mark given in the configuration file it tries to remove the
least-recently accessed files to reduce size to the low water-mark.

Cache cleaning

When [arex/cache/cleaner] block is defined the cache is cleaned automatically periodically (every 5 minutes) by
the A-REX to keep the size of each cache within the configured limits. Files are removed from the cache if the total
size of the cache is greater than the configured limit. Files which are not locked are removed in order of access
time, starting with the earliest, until the size is lower than the configured lower limit. If the lower limit cannot be
reached (because too many files are locked, or other files outside the cache are taking up space on the file system),
the cleaning will stop before the lower limit is reached.

Since the limits on cache size are given as a percentage of space used on the filesystem on which the cache is
located, it is recommended that each cache has its own dedicated file system.

If the cache shares space with other data on a file system, the option calculatesize=cachedir should be set in
arc.conf so that the cache limits are applied on the size of the cache rather than the file system.

With large caches mounted over NFS and an A-REX heavily loaded with data transfer processes, cache cleaning
can become slow, leading to caches filling up beyond their configured limits. For performance reasons it may be

232 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

advantageous to disable cache cleaning by the A-REX, and run the cache-clean tool (usually /usr/libexec/arc/cache-
clean) independently on the machine hosting the file system.

Caches can be added to and removed from the configuration as required without affecting any cached data, but after
changing the configuration file, the A-REX should be restarted. If a cache is to be removed and all data erased, it
is recommended that the cache be put in a draining state until all currently running jobs possibly accessing files in
this cache have finished. In this state the cache will not be used by any new jobs, but the hard links in the joblinks
directory will be cleaned up as each job finishes. Once this directory is empty it is safe to delete the entire cache.

Caches may also be marked as read-only, so that data cached there can be used by new jobs, but no new data will
be written there. Note that read-only caches are not cleaned by A-REX.

Exposing the Cache

Normally the ARC cache is internal to the CE and is not exposed to the outside. However it may be beneficial
to allow reading cache files, if for example the file is lost from Grid storage or as a fallback when Grid storage is
down. This can be done via HTTPS through the A-REX web services interface.

Specifying [arex/ws/cache] block opens remote read access to certain cache files for certain credential properties.
When configured this allows cached files to be read from the A-REX WS endpoint, for example if file gsiftp://
my.host/file1 is cached at CE a-rex.host the file is accessible (if credentials allow) at:

https://a-rex.host/arex/cache/gsiftp://my.host/file1

Since remote reading can increase the load on A-REX, the number of concurrent requests should be limited. This
can be done using the max_data_transfer_requests configuration option.

6.1.2 A-REX data transfer framework (DTR) technical description

This page describes the data staging framework for ARC, code-named DTR (Data Transfer Reloaded).

Overview

ARC’s Computing Element (A-REX) performs the task of data transfer for jobs before and after the jobs run. The
requirements and the design steps for the data staging framework are described in DTR Design and Implementation
Details. The framework is called DTR (Data Transfer Reloaded) and uses a three-layer architecture, shown in the
figure below:

The Generator uses user input of tasks to construct a Data Transfer Request (also DTR) per file that needs to be
transferred. These DTRs are sent to the Scheduler for processing. The Scheduler sends DTRs to the Pre-processor
for anything that needs to be done up until the physical transfer takes place (e.g. cache check, resolve replicas) and
then to Delivery for the transfer itself. Once the transfer has finished the Post-processor handles any post-transfer
operations (e.g. register replicas, release requests). The number of slots available for each component is limited,
so the Scheduler controls queues and decides when to allocate slots to specific DTRs, based on the prioritisation
algorithm implemented. See DTR priority and shares system for more information.

This layered architecture allows any implementation of a particular component to be easily substituted for another,
for example a GUI with which users can enter DTRs (Generator) or an external point-to-point file transfer service
(Delivery).

6.1. ARC Data Services Technical Description 233

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.1: DTR three-layer architecture

Implementation

The middle and lower layers of the architecture (Scheduler, Processor and Delivery) are implemented as a separate
library libarcdatastaging (in src/libs/data-staging in the ARC source tree). This library is included in
the nordugrid-arc common libraries package. It depends on some other common ARC libraries and the DMC
modules (which enable various data access protocols and are included in nordugrid-arc-plugins-* packages)
but is independent of other components such as A-REX or ARC clients. A simple Generator is included in this
library for testing purposes. A Generator for A-REX is implemented in src/services/a-rex/grid-manager/
jobs/DTRGenerator.(h|cpp), which turns job descriptions into data transfer requests.

Configuration

Data staging is configured through the [arex/data-staging] block in arc.conf. Reasonable default values exist
for all parameters but the [arex/data-staging] block can be used to tune the parameters, and also enable multi-host
data staging. A selection of parameters are shown below:

234 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Parame-
ter

Explanation Default
Value

maxdeliv-
ery

Maximum delivery slots 10

maxpro-
cessor

Maximum processor slots per state 10

maxemer-
gency

Maximum emergency slots for delivery and processor 1

maxpre-
pared

Maximum prepared files (for example pinned files using SRM) 200

sharetype Transfer share scheme (dn, voms:vo, voms:group or voms:role) None
defined-
share

Defined share and priority _default
50

Multi-host related parameters
delivery-
service

URL of remote host which can perform data delivery None

localdeliv-
ery

Whether local delivery should also be done no

remote-
sizelimit

File size limit (in bytes) below which local transfer is always used 0

use-
hostcert

Whether the host certificate should be used in communication with remote delivery
services instead of the user’s proxy

no

Description of other data-staging paramters can be found in [arex/data-staging] block. The multi-host parameters
are explained in more detail in ARC Data Delivery Service Technical Description

Example:

[data-staging]
maxdelivery = 10
maxprocessor = 20
maxemergency = 2
maxprepared = 50
sharetype = voms:role
definedshare = myvo:production 80
deliveryservice = https://spare.host:60003/datadeliveryservice
localdelivery yes
remotesizelimit = 1000000

Client-side priorities

To specify the priority of jobs on the client side, the priority element can be added to an XRSL job description,
eg:

("priority" = "80")

For a full explanation of how priorities work see DTR priority and shares system.

6.1. ARC Data Services Technical Description 235

NorduGrid ARC 7 Documentation, Release ARC7

gm-jobs -s

The command “gm-jobs -s” to show transfer shares information now shows the same information at the per-file
level rather than per-job. The number in “Preparing” are the number of DTRs in TRANSFERRING state, i.e. doing
physical transfer. Other DTR states count towards the “Pending” files. For example:

Preparing/Pending files Transfer share
2/86 atlas:null-download
3/32 atlas:production-download

As before, per-job logging information is in the controldir/job.id.errors files, but A-REX can also be configured to
log all DTR messages to a central log file in addition through the logfile parameter.

Using DTR in third-party applications

ARC SDK Documentation gives examples on how to integrate DTR in third-party applications.

Supported Protocols

The following access and transfer protocols are supported. Note that third-party transfer is not supported.

• file

• HTTP(s/g)

• GridFTP

• SRM

• Xrootd

• LDAP

• Rucio

• S3

• RFIO/DCAP/LFC (through GFAL2 plugins)

Multi-host Data Staging

To increase overall bandwidth, multiple hosts can be used to perform the physical transfers. See ARC Data Delivery
Service Technical Description for details.

Monitoring

In A-REX the state, priority and share of all DTRs is logged to the file controldir/dtr.state periodically (every
second). This can then used by the Gangliarc framework to show data staging information as ganglia metrics.

236 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Advantages

DTR offers many advantages over the previous system, including:

High performance
When a transfer finishes in Delivery, there is always another prepared and ready, so the network
is always fully used. A file stuck in a pre-processing step does not block others preparing or
affect any physical transfers running or queued. Cached files are processed instantly rather than
waiting behind those needing transferred. Bulk calls are implemented for some operations of
indexing catalogs and SRM protocols.

Fast
All state is held in memory, which enables extremely fast queue processing. The system knows
which files are writing to cache and so does not need to constantly poll the file system for lock
files.

Clean
When a DTR is cancelled mid-transfer, the destination file is deleted and all resources such as
SRM pins and cache locks are cleaned up before returning the DTR to the Generator. On A-REX
shutdown all DTRs can be cleanly cancelled in this way.

Fault tolerance
The state of the system is frequently dumped to a file, so in the event of crash or power cut,
this file can be read to recover the state of ongoing transfers. Transfers stopped mid-way are
automatically restarted after cleaning up the half-finished attempt.

Intelligence
Error handling has vastly improved so that temporary errors caused by network glitches, timeouts,
busy remote services etc are retried transparently.

Prioritisation
Both the server admins and users have control over which data transfers have which priority.

Monitoring
Admins can see at a glance the state of the system and using a standard framework like Ganglia
means admins can monitor ARC in the same way as the rest of their system.

Scaleable
An arbitrary number of extra hosts can be easily added to the system to scale up the bandwidth
available. The system has been tested with up to tens of thousands of concurrent DTRs.

Configurable
The system can run with no configuration changes, or many detailed options can be tweaked.

Generic flexible framework
The framework is not specific to ARC’s Computing Element (A-REX) and can be used by any
generic data transfer application.

Open Issues

• Provide a way for the infosys to obtain DTR status information

– First basic implementation: when DTR changes state write current state to .input or .output file

• Decide whether or not to cancel all DTRs in a job when one fails

– Current logic: if downloading, cancel all DTRs in job, if uploading don’t cancel any

– Should be configurable by user - also EMI execution service interface allows specifying per-file what
to do in case of error

• Priorities: more sophisticated algorithms for handling priorities

• Advanced features such as pausing and resuming transfers

6.1. ARC Data Services Technical Description 237

NorduGrid ARC 7 Documentation, Release ARC7

Related Documents

DTR Design and Implementation Details

This page documents the requirements and design stages of the new data staging framework which took place
around mid-2010.

Issues with previous implementation

1. Queueing happens per job - that makes it impossible to use potentially more effective processing order

2. Slow data transfers block those which could be done faster.

3. Big data transfers block small ones.

4. Jobs waiting for already cached (or to be cached) files are blocked by other jobs in queue.

5. Special features of sophisticated protocols are not taken into account - like SRM’s “try later”.

6. No priorities aka flexible queues.

7. No support for different credentials for different files.

8. No bandwidth handling.

9. No handling of files with different access latency (eg tape vs disk)

10. No mechanism to choose a preferred replica for the LFC (catalog) inputs, for example: if replicas are in ndgf,
swegrid, signet, unige, try with ndgf first.

Task Summary

The initial task was NOT to solve all these issues. The task was to create a framework which could be extended to
solve them later, ot to find/adopt such a framework.

Requirements

1. Effective usage of bandwidth. Whenever any transfer is paused due to any reason (tape stage in, retry later)
for estimated time another transfer should use available bandwidth.

2. Transfer negotiation (with protocols such as SRM) should be independent of physical data transfer.

3. Each transfer should be capable to use own credentials.

4. Transfer should be capable of pausing (temporary cancel) and resuming (if protocol allows).

5. Automatic/dynamic redistribution of bandwidth is needed to allow short transfer to pass through even while
big transfers are taking whole bandwidth.

6. Transfer from multiple alternative locations.

7. Cache checks should happen independently of data transfer to avoid locks.

8. Jobs where all files are cached should be processed immediately.

9. Better description of file source/destination than just URL (options are difficult to handle, something nicer
is needed)

10. Priorities at different levels: among user groups, inside groups. Any other levels? 3 possible levels: among
VO, users/roles inside VO, inside user identity.

11. Ability for users to set relative priority of their own jobs, both before submission and while job is in queue.

238 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Security Requirements

• It must be built into the design that no process has higher privileges than necessary

• Elevated privileges are required for:

– Access to cache. Cache files are only read/writeable by root user so they cannot be modified by jobs

– Access to session and control directories. Access to the these directories should be performed under
the uid of the job owner. The current method of running as root and chown’ing must not be used.

• Elevated privileges are not required for any other parts of the system such as scheduling

Performance Requirements

• Must scale higher than current highest workloads

• Must be able to handle up to 10000 active jobs (between ACCEPTED and FINISHED)

• Must be able to handle up to 1000 active physical transfers whilst ensuring all available bandwidth is used

• Must be able to handle transfers which have to wait for several hours before the physical file is ready to
transfer

Possible solution to URL options problem

There has been a long standing problem with the format and syntax used to express URLs and associated metadata
and options. While not directly related to data staging, it will be addressed as part of the data staging work.

Architecture Proposal

• 3 layers:

1. Higher layer processing data staging requirements of jobs, collecting requested at-
tributes/properties, resolving priorities (flattening them), managing credentials.

2. Middle layer schedules individual transfers, suspends and resumes them, distributes bandwidth,
etc.

3. Lower level handles individual transfer protocol, communicates with middle layer to acquire, re-
lease and pre-allocate resources (mostly bandwidth), caches connections (if possible).

• Any layer can be outsourced to external service, for example gLite FTS

• Basic file staging stages:

1. Identify transfer options

2. Check cache

3. Evaluate authorization (may require bandwidth)

4. Resolve location (meta-URL, if needed, may require bandwidth)

5. If needed repeat all steps from beginning

6. Do transfer

7. Post-processing (eg register replicas, release cache locks)

6.1. ARC Data Services Technical Description 239

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.2: Functional components and layers.

240 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Requirements for components interfaces (based on protocol descriptions and architecture)

DTR Description

DTR stands for Data Transfer Request. This is the structure that contains several fields that fully describe the file
transfer to be performed. One DTR is generated by the generator per each file transfer.

A detailed description and state diagrams of DTRs can be found in the Detailed description of DTRs

DTR Generator to DTR Scheduler

• Push DTR from Generator to Scheduler:

– DTR contains description of single entity to be transferred - uploaded or downloaded. That includes
endpoint, transfer parameters and limits, credentials - possibly multiple, etc.

– Multiple DTRs may be affiliated together. Possible reasons and uses:

∗ Belong to same job

∗ Belong to bunch of jobs which user indicated as preferably processed together

∗ Belong to same VO and assigned priorities to be applied within group

∗ Failure of one DTR in group may cancel processing of other DTRs (not sure, may be implemented
in Generator)

– DTR may have assigned priorities levels. Probably related to groups.

• Receive DTR from Scheduler to Generator:

– Returned DTR indicates outcome of processing, either positive or negative. In last case it includes
description of encountered problems and level of severity.

• Cancel DTR in Scheduler

• Modify DTR properties in scheduler. Possible usage: - Manipulate priorities

DTR Scheduler to DTR Preprocessor

• Push DTR from Scheduler to Preprocessor

– Because DTR preprocessing is supposed to take short time it may include processing timeout

• Receive DTR from Preprocessor to Scheduler

– Returned DTR indicates outcome of processing

∗ Positive

· DTR comes with information need for further processing either in Preprocessor or Delivery
unit

· DTR may contain multiple/alternative additional endpoints

· Probably such DTR may be presented in tree-like diagram

∗ Failure - includes description of encountered problems and level of severity

∗ Delayed processing

· Includes retry time and possible margins.

· Scheduler must ensure this DTR will go back to Preprocessor within specified time margins.

• Cancel DTR in Preprocessor

6.1. ARC Data Services Technical Description 241

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.3: Example of communication session between DTR Generator and DTR Scheduler.

DTR scheduler to DTR delivery

• Push DTR from Scheduler to Delivery

– DTR may have bandwidth assigned

– DTR may have timeout related parameters assigned - minimal transfer rate, maximal inactivity timeout,
etc.

• Cancel DTR in Delivery

• Suspend DTR in Delivery - should DTR leave Delivery or should it stay there?

• Receive DTR from Delivery to Scheduler. Returned DTR indicates outcome of processing

– Positive

– Partially positive (partial data delivered)

– Redirection

– Failure - includes description of encountered problems and level of severity

• Get information about bandwidth currently used by Delivery

• Modify assigned bandwidth

– May be used to free some bandwidth for urgent transfers

242 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.4: Example of communication session between DTR Scheduler and DTR preprocessor.

6.1. ARC Data Services Technical Description 243

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.5: Example of communiction session between DTR Scheduler and DTR Delivery.

244 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Component Workflows

Generator

The Generator is an integral part of the a-rex process. Internally it performs 4 tasks in following order:

• Makes DTRs out of existing job descriptions also assigning priorities and grouping information and makes
them available to the Scheduler.

• Communicates immediate requests like DTR cancel or suspend to the Scheduler.

• Monitors DTR states as reported by the Scheduler (and possibly by other modules) in order to provide feed-
back to client tools of A-REX asking for job state.

• Receives finished/failed DTRs from the Scheduler and initiates job processing continuation. Note: This part
may be merged with previous one.

Scheduler

“Queues” are queues of DTRs waiting to enter pre/post-processing or delivery. They are kept internal to the
scheduler. The scheduler is the only place with complete knowledge of the system and the only place where
priorities are controlled and error conditions are handled. When an event is received and involves sending the
DTR to a queue, the DTR is put at a certain position in the queue. Depending on the DTR priority, other DTRs in
the queue may be moved, paused or stopped to allow higher priority DTRs to proceed quicker or consume more
resources. On receiving an event, the relevant queue is examined and action taken (eg if a delivery finished start a
new one).

Reactions to new events

For simplicity error conditions are not included in the workflow here but described separately on the Detailed
description of DTRs. They are examined by the scheduler, which will decide the workflow - do any necessary post-
processing, decide whether to retry (immediately or after some delay) or to report back to the generator that the
DTR definitively failed. DTR state transitions are also described in more detail and with diagrams on the Detailed
description of DTRs.

• New DTR from generator

– if cacheable or meta-protocol:

∗ add to pre-processor queue (for cache check, replica resolution etc)

– else if ready to be delivered (base protocol for src and dest):

∗ add to delivery queue

• DTR returned from pre-processor

– if cached:

∗ send to post-processor to be linked

– else if need more pre-processing:

∗ add to pre-processing queue

– else:

∗ add to delivery queue

• DTR returned from delivery

– if post-processing required (index registration, cache linking, release request):

∗ put in post-processor queue

6.1. ARC Data Services Technical Description 245

NorduGrid ARC 7 Documentation, Release ARC7

– else:

∗ return to generator

• DTR returned from post-processor:

– Return to generator

• DTR cancel notification from generator

– if before pre-processing:

∗ return to generator

– else if in post-processing:

∗ wait until finished and then send back to clean up

– else:

∗ cancel immediately and add to post-processing queue for clean up

• DTR modify notification from generator

– change request immediately, and modify queue if appropriate

Processor

The processor is divided into two logical parts: the pre-processor and the post-processor. Either part is invoked
by the scheduler as a process/thread and has the DTR to process. Therefore, the pre- or post-processor can be a
straightforward function, performing the next steps:

The pre-processor:

• check endpoint for its presence in cache

– if successful, mark DTR as BYPASS_TRANSFER, return the DTR to the scheduler

– if file is not in cache, construct cache endpoint for DTR destination and return to scheduler

• resolve the replicas of the file, if needed

– return the DTR with a failure if no locations have been found

– return the list of replicas found to scheduler

– Note: The pre-processor doesn’t care if the resolved locations represent meta-protocols themselves, it’s
the scheduler’s job to determine it and possibly send this DTR for the pre-processing once again.

• query an endpoint

– supply information on size, checksum, creation date, access latency as available according to protocol

• If an asynchronous request needs to be performed, for example SRM prepareToGet

– Start request, mark DTR as STAGING_PREPARING_WAIT, return to the scheduler. An estimated
wait time may be set by the pre-processor from information supplied from the remote service.

• If a polling request arrives from the scheduler

– Check state of asynchronous request and report back to scheduler success, wait more, or error.

• If the cancellation request arrives from the scheduler

– interrupt the operation, mark the DTR as PREPROCESSING_CANCELLED, return to the scheduler

• If the preprocessor hits the timeout during performing these tasks

– interrupt the operation, mark the DTR as PREPROCESSING_NOT_FINISHED, return to the sched-
uler.

Possible features of the pre-processor in the future

246 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

• for each of resolved locations:

– check options one by one (we still have to define transfer options, below is the example), mark in the
list to which extent it satisfies the option

∗ can the location provide a required bandwidth

∗ other options, specified for the user

∗ keep processing all the options even if some of them are not satisfied – the scheduler may later
review the options and start the processing again

– request the file size (if possible) and compute estimated transfer time, mark it in the list for this location

• if there are in the list locations that satisfied all the checks

– return the DTR as TRANSFER_READY to the scheduler with the list of these locations and their
estimated transfer times

• if there are no locations in the list that satisfied all the checks

– return the DTR with the least severe encountered failure (from most severe to least severe, Location
is dead - Location is not authorized - Location doesn’t satisfy the options), so the scheduler can either
drop the DTR (in case of dead/non-authorized storages) or review transfer options and try again (in
case of unsatisfied options)

The Post-processor:

• release stage requests;

• register a replica in an index service;

• release cache locks;

Delivery

Delivery is a component where the transfer orders are handled. Delivery process is listening to the Scheduler
to receive the ready DTRs for transferring or any other events such as decreasing the bandwidth or suspending
and canceling the ongoing jobs. Delivery process, reports the status of the DTRs and events to the scheduler
periodically.

• Transfer request delivery

– Pick up a DTR from delivery queue.

– Check the source and destination, set the bandwidth, timeout and etc.

– Start transferring by placing the received data in a buffer.

– Periodically report the status of DTR such as transfered bytes, used bandwidth to Scheduler.

– By finishing the data transfer do a checksum

∗ if checksum is correct return a SUCCESS status to the Scheduler

∗ else retry transfer again

• High priority transfer request event

– Change the DTR to use max bandwidth n

• Job suspension

– Suspend a transfer request

– Keep the transfered data information in the delivery process

– Release the used bandwidth

– Report the status of suspended DTR to Scheduler

• Transferring cancel

6.1. ARC Data Services Technical Description 247

NorduGrid ARC 7 Documentation, Release ARC7

– Stop transferring

– Release the resources if any is in use

– Clean up the buffer

• Status report to Scheduler

– Periodically collect the information of the DTRs in progress.

– Calculate used bandwidth, transfered data bytes, status

– Report the status to the Scheduler

Protocol Interfaces

Current Interface

The following interface is defined for each protocol through the DataPoint class:

• StartReading - Start reading data from the source

• StopReading - Stop reading data from the source

• StartWriting - Start writing data to destination

• StopWriting - Stop writing data to destination

• Resolve - Find physical replicas from an indexing service

• Check - Verify that the current credentials have access

• ListFiles - Find metadata

• Remove - Delete

• (Pre)Register and (Pre)Unregister - add and delete in indexing service

These do not fulfil all the requirements of the DTR interfaces described above.

New Interface

The main limitation of the current interface is that it does not handle efficiently those protocols such as SRM which
involve asynchronous preparation steps. In the new framework, having to wait for a file to be prepared should not
block other activities. Therefore the proposal is to split protocols as now into meta and direct protocols, but
introduce a third class of stageable protocols and appropriate extra methods to handle them. A stageable protocol
could also be a meta protocol or a direct protocol. Extra methods are also needed to handle pausing and cancellation
of transfers.

For Meta Protocols (eg LFC, RLS)

• Resolve - Resolve replicas in an indexing service

• (Pre)Register and (Pre)Unregister - add and delete in indexing service

248 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

For Stageable Protocols (eg SRM, Chelonia)

• PrepareReading - Prepare the storage service for reading. This may involve preparation of Transport URLs
(TURLs) which should then be used for physical data transfer, or operations like reading data from tape to
disk. If the protocol’s implementation is asynchronous then this method may return a status that tells the
caller to wait and poll later. The caller should call this method again after some period of time (the remote
service may provide an estimate of the preparation time).

• PrepareWriting - Prepare the storage service for writing. Works similarly to PrepareReading.

• FinishReading - Release or abort requests made during PrepareReading, usually called after physical transfer
has completed.

• FinishWriting - Release or abort requests made during PrepareWriting, usually called after physical transfer
has completed.

• Suspend - Pause current preparation of transfer

• Resume - Resume suspended preparation of transfer (Note: depending on the protocol, suspend and resume
may be implemented as stop current request and start new request)

• Cancel - Stop preparation of transfer

For Direct Protocols (eg FTP, HTTP)

• StartReading - Start reading data from the source

• StopReading - Stop reading data from the source

• StartWriting - Start writing data to destination

• StopWriting - Stop writing data to destination

• Modify - Change parameters of transfer such as bandwidth limits

• Suspend - Pause current transfer

• Resume - Resume suspended transfer

• Cancel - Stop current transfer

For All Protocols

• Check - Verify that the current credentials have access

• List - Find metadata

• Remove - Delete

Existing ARC Code

We should aim to re-use as much as possible of the existing ARC code. The arc1 code base will be used for all
developments. Code for job description handling and interfacing with the LRMS can remain unchanged, all that
concerns us is the code handling the PREPARING and FINISHING states. Job state handling is done in states.cpp.
This code can remain largely unchanged but in the ActJobPreparing/Finishing methods the job enters the new
system at the upper layer.

The lower level code for data transfer for each protocol is handled in the DMCs. These can largely remain unchanged
except for the extra methods in the meta-protocols above.

Caching code can remain unchanged.

6.1. ARC Data Services Technical Description 249

NorduGrid ARC 7 Documentation, Release ARC7

PREPARING/FINISHING State Semantics

The semantics of these states may need to be changed - at the moment PREPARING/FINISHING means that the
job is transferring data and PENDING those states means a job cannot enter the state due to some limit. In our new
system there is less of a distinction between jobs waiting and jobs transferring data, also some files within the job
may be transferring while some are waiting. Once the job enters the upper layer of the new system it will be in a
staging state even though it may have to wait a long time before any data is transferred.

Processes and Threads

In the current architecture a persistent A-REX thread is spawned by HED. A new data staging process (down-
loader/uploader) is forked for each job to stage its input or output files. Within each process a thread is created per
file. The status of each thread is reported back to the loader process through callbacks and the process exit code
tells the A-REX the status of all transfers. There are some problems with this approach:

• The A-REX knows nothing about what happens inside the loader until the process exits and cannot commu-
nicate with the loader

• It is not possible to change the uid of each thread individually so they all run under the uid of the down-
loader/uploader. The uid of the downloader/uploader depends on configuration. If possible uid of mapped
user is used. But if there is cache shared among users that uid will be root or uid of A-REX.

To solve this last problem, processes in the delivery layer writing to or from the session dir must run under the
locally mapped uid. Writing to the cache must always be done as root and so cache and non-cache downloads must
be done in different processes. This leads to the conclusion that the delivery layer must be separate processes from
the scheduling layer. Then to solve the first problem there needs to be a method of communication between the
delivery and scheduling layers, which must be two way, so that the scheduler can modify on-going transfers and
the transfer can report its status back to the scheduler.

Notes on running processes under mapping uid:

• It is only open() operation which needs to be run under special uid. If we follow convention that all open()
operations in an executable are called through single wrapper function and put global lock around it, then
we can have filesystem access under selected uid inside multi-threaded application. Unfortunately for NFS
the process needs to maintain the uid throughout the whole transfer.

• This may introduce performance issue if open() operation takes too long, like in case of remote file system.

• open() may be called by an external library which we have no control over

• according to ‘man open’ “UID mapping is performed by the server upon read and write requests” and hence
suggested approach will fail on NFS.

Operations carried out by the pre- and post-processor require access to the filesystem in the following steps

• Cache preparation - locking the cache file and checking its existence. This must be done as root.

• Cache finalisation - copying or linking the cached file to the session directory. The hard link to the per-job
dir must be done as root but the soft linking or copying to the session dir must be done as the mapped user.

– Last is rather “must” than “may” to make it work on NFS with root_squash=on. The situation may
exist where cache is on NFS and then process copying file must switch uid while accessing file and its
copy.

• Access to proxy - the proxy is needed when contacting secure remote services. The proxy in the control dir
is owned by the mapped user. Therefore either we have to:

– Make a copy of the proxy owned by root - this does not fit our security requirements above

∗ Note1: This is how it is done in current implementation. There is no security hole here because
this is same proxy which was obtained by A-REX and written to control directory under root uid.
So this proxy already belonged to root and making belong to root again makes little difference.

∗ Note2: Because as a rule proxy is stored on local file system it is always accessible by root. Copy-
ing of proxy was needed in current implementation due to limitation of Globus libraries - those

250 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

were able to accept proxy only from file and were checking if proxy belonged to current uid. Be-
cause ARC data library allows assigning credentials to communication directly (at least it should,
but may be not implemented for some protocols, needs checking) and because proxy is readable
by root such trick is not needed anymore.

– Use processes rather than threads for the pre- and post-processor, changing the uid of the process to
the mapped user

∗ This approach is most probablty not needed for this purpose but may be very much desirable for
fighting NFS.

– As suggested above, use global open() function to open with mapped id then switch back to root - this
suffers the same problems mentioned above

∗ There is no need to do that for proxy because root can always open files belonging to other users

The generator will be a thin layer between the main A-REX process which moves jobs from state to state and the
scheduler which processes DTRs - when a job enters the PREPARING or FINISHING state the generator will
create DTRs and send them to the scheduler. For the scheduler to be efficient it should run as a separate process (or
thread). Each pre-processing step such as resolving replicas in a catalog or a cache permission check should be fast
(< few seconds) but should be run asynchronously in order not to block the scheduler if something bad happens.

In summary we have the following processes corresponding to the three layers:

• Persistent main A-REX process (thread of HED) and persistent generator thread

• Persistent scheduler process (or thread) with temporary threads for pre-processing

• Temporary delivery processes created per file transfer

Using processes vs threads should add no more CPU load, however more memory is required. For increasing
performance it should be possible to reuse processes in a way similar to how threads are reused.

Implementation Choices

The current system uses files in the control directory for all communication. We may need something more so-
phisticated for this more complex system, either internal to the new system or also to replace the current files in
control dir method. Possibilities:

• Files

• Sockets

• Database

• RPC

• Libevent - http://en.wikipedia.org/wiki/Libevent

• Pipes

• Message passing

– DBus - http://www.freedesktop.org/wiki/Software/dbus

– ActiveMQ - http://activemq.apache.org/

• . . .

6.1. ARC Data Services Technical Description 251

http://en.wikipedia.org/wiki/Libevent
http://www.freedesktop.org/wiki/Software/dbus
http://activemq.apache.org/

NorduGrid ARC 7 Documentation, Release ARC7

Suggestion 1

• Use persistent object - file, database record - for storing DTRs. Each object includes:

– Description of DTR

– Owner of DTR

– Last requested action

– Current state inside owner (or maybe inside every module).

• Each DTR has own ID - may be just file name or record key

• Keep simple communication channels between modules - like 2 pipes for example

– Whenever DTR is changed its ID is sent over communication channel to module which is supposed to
react

– As backup modules can scan modification timestamps of objects periodically

Pros:

• Simple

• Persistency

Cons:

• Monitoring of ever changing state - like bandwidth usage - would require constant modification of
files/records.

– This problem could be solved by providing information which needs no persistency through commu-
nication channel. But that would make communication more complex.

– Another possible solution is to mmap (should work well with files) objects and flush them to persistent
store only if persistent part of information is modified.

Suggestion 2 (used in current implementation)

• DTR objects can be rather complicated, so keep them only in memory

• In case of process failure all DTRs are reconstructed from control files into initial NEW state

• DTRs are passed as objects between threads

– Separate threads run for A-REX (including the Generator), Scheduler, and Delivery components

– Delivery thread starts new processes for each transfer

∗ These communicate simple status messages (“heartbeats”) through pipes to main delivery thread

• Communication between threads through callbacks

Pros:

• Simplifies development - no need for complex persistency layer or serialisation code

• Fast communication through thread callbacks

Cons:

• Having lots of threads increases risks of deadlocks and race conditions

• No persistency

• No way to communicate from scheduler to transfer processes

– If the only communication required is to pause/resume/cancel a transfer it can be done through signals
eg SIGSTOP/SIGCONT/SIGTERM

252 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Implementation idea for Suggestion 2

• Generator, Scheduler, Delivery processes are singletons and run as persistent threads. The Processor is a
singleton.

– Note: C++-wise it would be probably more correct to use static methods instead of singletons. With
such approach where would be no need to handle singletons outside of class itself hence simplifying
interface. Although inside class there may be singleton.

• A-REX initiates a request to the data staging system by calling Generator::receiveJob()

– Generator creates DTRs and after they finish it modifies the job state directly

– A-REX can query job status from Scheduler via Generator

• Generator communicates with scheduler by calling Scheduler::receive_dtr method

– There is also a Scheduler::cancel_dtrs method which is called by the Generator to cancel DTRs

• Scheduler has an instance of DTRList class, which is the storage for all the DTRs in the system.

• Scheduler communicates (passes a DTR) to any other process by calling DTR::push() method

• Pre-, post-processor and delivery communicate with scheduler by simply changing the status of DTR and
changing the owner to “SCHEDULER”. Scheduler will pick up DTRs with changed statuses automatically
during next iteration.

• When DTR goes from the scheduler to the pre or post-processor, it calls the processDTR() method of the
singleton processor within push(). The processor then spawns a thread and returns.

• When DTR goes from the scheduler to delivery, within push() it calls the processDTR() method of the
singleton delivery. The delivery then spawns a process and returns.

– The delivery singleton receives messages through pipes from the transfer processes and reports infor-
mation in the DTR object.

Detailed description of DTRs

DTR stands for Data Transfer Request. This is the structure that contains several fields that fully describe the file
transfer to be performed. One DTR is generated by the generator per each file transfer.

Fields of the DTR

More or less required:

• DTR ID

• source endpoint

• destination endpoint

– for source and destination, a list of metadata such as file size, checksum, creation date etc

– for source and destination (if applicable) a list of replicas

– for source and destination (if applicable) current replica

– for source and destination (if applicable) TURL or delivery-level URL used for transfer

– for source and destination (if applicable) request ID (in the case of asynchronous requests to remote
storage services)

• credentials

• cache information

– if the file is cacheable, the filename in cache

6.1. ARC Data Services Technical Description 253

NorduGrid ARC 7 Documentation, Release ARC7

– cache directories configuration

– caching state (already in cache, cache currently locked etc)

• local user information (uid/gid)

• Job ID this transfer belongs to

• priority of the transfer - a number set by the generator which flattens priorities

• transfer share this DTR belongs to

• sub-share the DTR belongs to - may be set by the Generator

• tries left

• flags to handle properties and strategies when dealing with index servers

– flag to say whether DTR is replicating inside the same logical filename

– flag to say whether DTR should force registration to an existing logical filename, if the source is dif-
ferent

• mapping info - mapping information of local files to which remote files may be mapped to in the configuration
(copyurl/linkurl)

• status of the DTR

• error status

– type of error

– location of error

– text description of error detail

• number of bytes transferred/offset

• timing properties

– timeout - time which DTR is allowed to remain in current state

– creation time

– last modification time

– process time - wait until this time to do further processing

• cancel (set to true if request is to be cancelled)

• bulk operation flags to combine several DTRs in a bulk request

• delivery endpoint, whether Delivery is to be carried out by a local process or remote service

• current owner - who is in charge for this DTR right now

• logger object, so each DTR can have its own log

• lock, since DTRs can be modified by several processes, for avoiding writing collisions

Possible

• affiliation (if we use the affiliation of multiple DTRs, see right below).

• history of states

Multiple DTRs may be affiliated together. Possible reasons and uses:

• Belong to same job

• Belong to bunch of jobs which user indicated as preferably processed together

• Belong to same VO and assigned priorities to be applied within group

• Failure of one DTR in group may cancel processing of other DTRs (should be implemented in Generator)

254 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

State transitions of DTR

All possible states of a DTR, with arrows indicating the normal flow of DTRs between states. Each state is explained
in detail below. Error conditions are not included here but are shown in another diagram further down.

Status codes

The following table describes all non-error status codes, and also the action taken in the event of a cancellation
request being received while in that state. In general if all of the data transfer has been completed before receiving
a cancellation request, the destination file is not deleted. The main reason for this is to preserve cache files, as the
user may wish to run the same job soon after cancelling it.

Table 6.1: Statuses of the DTR

Status Code Text Description Action on cancel
Statuses set by the generator
NEW The DTR has just been built by the generator Return to generator
CANCEL A request has been made to cancel the DTR n/a
Statuses set by the scheduler
CHECK_CACHE The DTR destination is cacheable and the cache should be checked for the file’s existence Return to generator
RESOLVE The DTR source is a meta-protocol and should be resolved Set to PROCESS_CACHE to remove any cache locks
QUERY_REPLICA The DTR source should be queried to check existence, check file size, checksum etc. Set to REGISTER_REPLICA to remove pre-registered destination
PRE_CLEAN The destination in the DTR should be deleted before writing Set to REGISTER_REPLICA to remove pre-registered destination
STAGE_PREPARE_SOURCE The DTR source is a meta-protocol which must be prepared or staged Set to REGISTER_REPLICA to remove pre-registered destination
STAGE_PREPARE_DESTINA TION The DTR destination is a meta-protocol which must be prepared or staged Set to REGISTER_REPLICA to remove pre-registered destination
TRANSFER_WAIT The DTR is ready to be sent to delivery but must wait due to transfer limits or priority settings Set to RELEASE_REQUEST
TRANSFER The DTR should be transferred immediately Set to RELEASE_REQUEST
RELEASE_REQUEST The DTR transfer has finished and any requests made on remote storage should be released Abort request and delete destination, set to REGISTER_REPLICA
REGISTER_REPLICA The DTR destination is a meta-protocol and the new replica should be registered Delete destination and set to PROCESS_CACHE
PROCESS_CACHE The DTR destination is cacheable and the cached file should be unlocked and linked/copied to the session dir Delete cache file
DONE The DTR completed successfully Do nothing
CANCELLED The DTR has been cancelled succesfully n/a
ERROR An error occurred with the DTR Do nothing
Statuses set by the pre-processor
CHECKING_CACHE The pre-processor is checking the cache Wait until complete, then set to CACHE_CHECKED. The scheduler will then set to PROCESS_CACHE
CACHE_WAIT The cache file is locked and the scheduler should wait before trying to obtain the lock Scheduler will return to generator
CACHE_CHECKED The cache check is complete Scheduler will set to PROCESS_CACHE
RESOLVING The pre-processor is resolving replicas Wait until complete, then set to RESOLVED. The scheduler will then set to REGISTER_REPLICA
RESOLVED The replica resolution is complete Scheduler will set to REGISTER_REPLICA
QUERYING_REPLICA The pre-processor is querying a replica Wait until complete, then set to REPLICA_QUERIED. The scheduler will then set to REGISTER_REPLICA
REPLICA_QUERIED The replica querying is complete Scheduler will set to REGISTER_REPLICA
PRE_CLEANING The pre-processor is deleting the destination file Wait until complete, then set to PRE_CLEANED. The scheduler will set to REGISTER_REPLICA
PRE_CLEANED The destination file has been deleted The scheduler will set to REGISTER_REPLICA
STAGING_PREPARING The pre-processor is making a staging or preparing request Wait until complete, then scheduler will set to RELEASE_REQUEST so it can be aborted
STAGING_PREPARING_WAI T The staging or preparing request is not ready and the scheduler should wait before polling the status of the request Scheduler will set to RELEASE_REQUEST so it can be aborted
STAGED_PREPARED The staging or preparing request is complete Scheduler will set to RELEASE_REQUEST so it can be aborted
Statuses set by the delivery
TRANSFERRING The transfer of the DTR is on-going Stop transfer and set to RELEASE_REQUEST. Delivery will delete the incomplete file and the request will be aborted
TRANSFERRED The transfer completed successfully Scheduler will abort the request
Statuses set by the post-processor
RELEASING_REQUEST The post-processor is releasing a stage or prepare request Wait until finished, then set to REGISTER_REPLICA to unregister the file
REQUEST_RELEASED The release of stage or prepare request is complete Set to REGISTER_REPLICA to unregister the file
REGISTERING_REPLICA The post-processor is registering a replica in an index service Continue as normal
REPLICA_REGISTERED Replica registration is complete Continue as normal
PROCESSING_CACHE The post-processor is releasing locks and copying/linking the cached file to the session dir Continue as normal

continues on next page

6.1. ARC Data Services Technical Description 255

NorduGrid ARC 7 Documentation, Release ARC7

Table 6.1 – continued from previous page
Status Code Text Description Action on cancel
CACHE_PROCESSED Cache processing is complete Continue as normal

Error Conditions of DTRs

The following diagram shows possible error conditions and actions taken. For simplicity and because all error
handling logic takes place within the scheduler, the pre- and post-processor and the delivery layers are not shown.

Errors are categorised into the following types:

Error Explanation Retryable?Action
INTER-
NAL_LOGIC_
ERROR

Internal error in
data staging logic

No Stop processing and report back to generator

INTER-
NAL_PROCES
S_ERROR

Internal error like
losing contact
with an external
process

Yes Clean if necessary and retry

SELF_REPLICATIO
N_ERROR

Attempt to copy a
file to itself

No Return to generator

CACHE_ERRORA problem oc-
curred in cache
handling

Yes Retry without caching

TEMPO-
RARY_REMOT
E_ERROR

Error such as con-
nection timeout on
remote service

Yes Retry with an increasing back-off

PERMA-
NENT_REMOT
E_ERROR

Error such as file
not existing, per-
mission denied etc
on remote service

No Follow cancellation steps and return failed DTR to generator

LO-
CAL_FILE_ERRO
R

Error with a local
file

No Follow cancellation steps and return to generator

TRANS-
FER_SPEED_
ERROR

Transfer rate was
below specified
limits

Yes Retry transfer. If all retries fail, report back to generator - it will make
the decision on whether to cancel other related DTRs. (Future work:
make decision on whether other transfers caused slow transfer and
whether cancelling others would help or should be done)

STAG-
ING_TIMEOUT
_ERROR

The staging pro-
cess took too long

No Try a different replica - if none available, cancel and report back to
generator

256 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.6: DTR State Diagram

6.1. ARC Data Services Technical Description 257

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.7: DTR Error State Diagram

258 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Methods of DTRs

DTR::push (DTR, receiver) – pass the DTR from one process to another, e.g. DTR::push (dtr, preprocessor)

Implementation

Within Data Staging framework there is a global list of DTRs. Pointers to the DTRs are passed around between
components, which can modify them directly and push them between each other.

DTR priority and shares system

Here we describe the priority and shares system for the new data staging framework. During the design stage there
were several ideas taken from other research in the field and the first implementation of the transfer shares model
in ARC.

Ideas behind priorities and fair-share in data staging

The initial idea was giving every DTR that comes into the system a fixed priority, then sorting the queue according
to priorities and launching the first N DTRs with the highest priorities. This scheme also allows easy incorporation
of pre-emption: if the job with higher priority appears it just pushes other DTRs out of the front of the queue and
then during the next scheduler loop we can start these DTRs and suspend the pushed ones.

However, this idea can potentially lead to the situation that demanded the implementation of transfer shares in
ARC. If a user or VO with the highest priority submits bunch of jobs at once all the other will be blocked, because
DTRs from this bunch will occupy the front of the queue for a long time.

The idea of transfer shares comes in handy now. The available transfer slots should be shared among different
VOs/Users, so nobody would be blocked. VOs/Users with higher priority get more transfer slots than the other.
However, strict limits on the number of slots per share are not flexible enough - if the transfer pattern changes then
strict limits could cause problems, squeezing lots of users/jobs into one share with a few slots and blocking others.
The User or VO must also be able to decide the relative priority of jobs within its own share.

Current Implementation

The ideas above led to the creation of two configurable properties: user-defined job priority and server-defined
share priority. Users may define a priority for their jobs in the job description (“priority” attribute in xrsl), and this
is a measure of the priority given to this job within the share it gets assigned to when submitted. On the server-side,
it is possible to define a share type, and priorities of certain shares. The share priority is used to determine the
number of transfer slots to assign to the share, taking into account which shares are currently active (active meaning
the share has at least one DTR in the system).

When the Scheduler receives a new DTR, it is placed into a transfer share, which is defined by a User DN, VO,
Group inside VO or role inside VO as it was in previous versions of ARC. Currently it’s possible to use only one
sharing criteria in the configuration, i.e. it’s not possible to use simultaneously sharing by User and VO.

Priority is defined as a number between 1 and 100 inclusive - a higher number is a higher priority. In the A-REX
configuration it is possible to specify a base priority for certain shares. If the DTR doesn’t belong to any of these
specified shares, it is placed in a “_default” share with default base priority (50). The scheduler sets the priority
of the DTR to the base priority of the share multiplied by the user priority from the job description (default 50)
divided by 100, therefore default priority of a DTR is 25. In this system the priority set in the job description
effectively defines a percentage of the base priority. Thus service administrators can set maximum priority limits
for certain shares, but users or VOs have full control of their jobs’ priority within the share.

While revising the Delivery and Processor queues, the scheduler separates DTRs according to the shares they
belong to. Inside every share DTRs are sorted according to their priorities. Then the scheduler determines the
number of transfer slots that every active share can grab. The number is determined dynamically depending on

6.1. ARC Data Services Technical Description 259

NorduGrid ARC 7 Documentation, Release ARC7

priorities of active shares. Each share receives the number of slots which corresponds to the weight of its priority
in the summed priority of all active shares. After the number of slots for each share is determined the scheduler
just launches N[i] highest priority DTRs in each share, where N[i] is the number of transfer slots for i-th share.

The reason for weighting the DTR priority by the share priority is for occasions when the Scheduler considers the
entire queue of DTRs, for example when allowing highest priority DTRs to pass certain limits.

Example: there are two active shares, one has base priority 60, the other 40. The summarized priority is 100 (60
+ 40). The first share has a weight of 60%, the second 40%. So the first will grab 60% of configured transfer slots,
and the second – 40%. If the system is configured with 5 Delivery slots, then the first share will take 3 slots and
the second 2 slots. The 3 highest priority DTRs from the first share and 2 highest priority from the second share
will be assigned to those slots.

Emergency Shares

To avoid the situation where a fixed limit of slots are used up by slow transfers and a new high priority transfer has
to wait for a slot, we have “emergency” transfer slots. If there are transfers in the queue from a particular share,
but all slots are filled with transfers from other shares, one emergency slot can be assigned to this share to allow
transfers to start immediately. The share may use an emergency slot until any other transfer finishes, at which point
the emergency slot becomes a regular slot and a new transfer does not start from the queue.

Sub-shares

The Generator can assign DTRs to “sub-shares” to give a higher granularity than the standard criteria and when
assigning transfer slots. Sub-shares are treated as separate shares. In A-REX, different sub-shares are assigned to
downloads and uploads, and in this case emergency transfer slots prove useful for preventing jobs not being able
to finish because all transfer slots are taken by downloaders. If this happens then emergency slots can be used for
uploads.

Potential Problems

• Within a share, high priority jobs block low priority jobs. Thus if there is a constant stream of high priority
jobs in a share, then some low priority jobs in the same share may never run. Possible solutions:

– Increasing the priority as the time spent in the queue increases (returning to previous priority after
leaving the queue). This is currently implemented as increasing the priority by 1 every 5 minutes after
the DTR’s timeout has passed.

– Changing simple highest-priority-first to a random algorithm where higher priorities are weighted
higher

– Making a higher granularity of shares by splitting each priority or priority range into its own share -
this is probably too complicated

A-REX Configuration

The configuration varies depending on the ARC version. In the examples below VO roles are used to assign shares,
the atlas slow_prod role is assigned a low priority share and the atlas validation role is assigned a higher priority
share.

[arex/data-staging]
sharepolicy=voms:role
sharepriority=atlas:slow-prod 20
sharepriority=atlas:validation 80

260 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

If both shares are active and there are 10 slots available, then DTRs in the slow-prod share will get 2 slots and those
in the validation share get 8 slots, and so the jobs in the validation share will have a higher throughput (assuming
similar numbers of files and file sizes in each type of job).

Example

A user wants their job to be high (but not top) priority and specifies (“priority” = “80”) in the job description. The
user has a VOMS proxy with no role defined and submits the job to a site with the above configuration. The job is
assigned to the default share and DTRs have priority 40 (50 x 80 / 100). The user then creates a VOMS proxy with
the ATLAS validation role and submits another job with the same priority to the same site. This time the job goes
to the configured atlas:validation share and the DTRs have priority 64 (80 x 80 / 100). Note that the priority of a
DTR only affects the its position within a share and does not influence the distribution of slots between shares.

Dynamically modifying priorties

From version 6.2 ARC supports dynamically adjusting priorities of active DTRs for example to push certain trans-
fers to the front of the queue.

This can be done by creating a file in the same location as the dtr.state file (by default the control dir) with the name
dtr.state.prio. This contains lines of DTR ID and priority, eg:

c3e12bfa-ba9a-4a45-be73-0b3b2a206e1c 90
ff2d5329-5440-49aa-83cb-72daeb5e3e59 95

This file is read by the DTR system before it sorts the queue by priority and it changes any DTRs found in the file
to the given priority. Then it renames the file to dtr.state.prio.read.

6.1.3 ARC Data Delivery Service Technical Description

This page describes how to set up DTR over multiple hosts.

Introduction

In DTR the transfers can be split over multiple hosts to scale up the data transfer throughput. Remote hosts only
perform simple point-to-point transfers between physical endpoints and all the logic is kept in the main A-REX
host. This has many advantages:

• Keeping all the high-level logic in one place allows intelligent load balancing.

• The remote hosts do not do submission to the batch system and so all LRMS configuration only needs to be
done in one place.

• A problem with a remote host does not mean a lost job - the transfer can simply be retried on another host.

• The setup and configuration of a remote host is very simple.

The datadelivery service has been developed within HED and can be deployed on one or many remote hosts. Once
a DTR has passed all the pre-processing steps and is ready for transfer, the Scheduler can send it to a remote datade-
livery service to execute the transfer. The Scheduler will then poll the request until it has completed. The Scheduler
spreads randomly the total number of transfers (up to the configured limit and depending on the configured access
rights of each service) between all the staging hosts.

The architecture is shown in the figure below. The datadelivery service on the remote host acts as a very simple
Scheduler which sends all transfer requests it receives straight to Delivery.

6.1. ARC Data Services Technical Description 261

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.8: Multi-host datastaging

262 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Installation

No extra components are necessary on the A-REX host.

For the remote staging hosts, the package nordugrid-arc-datadelivery-service can be found in the usual EPEL or
NorduGrid repositories, or is built automatically when building the source tree. This package should be installed on
each remote host. It depends on some core ARC packages and the usual external packages that an ARC installation
requires. Note that it is not necessary to install A-REX on the staging hosts.

IMPORTANT If support for transfer protocols that are not included in the nordugrid-arc-plugins-base package
(e.g. GridFTP or Xrootd) is required then the corresponding plugins packages must also be installed.

CA certificates are required on each remote host to authenticate connections with storage services. Depending on
the local set up, each host may also require a host certificate (more info below).

To start|stop the service (as superuser):

systemctl start|stop arc-datadelivery-service

The log file for the service can be found at /var/log/arc/datadelivery-service.log (configurable - see below). If
logrotate is running, this log will be rotated every day.

Configuration

Remote Hosts

The datadelivery service uses the [datadelivery-service] section of the arc.conf configuration file.

By default the datadelivery service runs with TLS enabled and a host certificate is required for each host. The path
to the host credentials may be specified by the usual x509 options. Host certificates are not a strict requirement
and it is possible to run without TLS using the secure=no option. This means that A-REX can no longer verify
the authenticity of the remote hosts and so the decision to run with or without host certificates should be based on
local site policy.

The following configuration options are supported:

Parameter Explanation Default Value
x509_host_keyPath to host key /etc/grid-security/hostkey.pem
x509_host_certPath to host cert /etc/grid-security/hostcert.pem
x509_cert_dir Path to CA certificates /etc/grid-security/certificates
hostname Hostname of service host localhost
port Port on which service runs 443
pidfile pid file /var/run/arched-datadelivery-

service.pid
logfile Log file /var/log/arc/datadelivery-

service.log
loglevel Logging level (0 (FATAL) to 5 (DEBUG)) 2 (WARNING)
user User under which service runs (should only be changed in

special cases)
root

secure Set to “no” if the service should run without a host certifi-
cate

yes

allowed_ip IP address authorized to access service (can be specified
multiple times)

No default, must be specified

allowed_dn DN authorized to access service (can be specified multiple
times)

No default

transfer_dir Path the service is allowed to read/write to (can be speci-
fied multiple times)

No default, must be specified must
be specified

6.1. ARC Data Services Technical Description 263

NorduGrid ARC 7 Documentation, Release ARC7

At least one allowed_ip and at least one transfer_dir are the only mandatory parameters, but it can be useful to
change interface, port and loglevel from the default.

Since the service can copy files to and from the service host, it is dangerous to allow open access to any clients.
Usually allowed_ip is set to the IP address of the A-REX host since this is the only host which should have access
to the service. The service can be further locked down by specifying authorized DNs so that only certain users
are allowed to have their jobs’ files staged by the service. Note that DN filtering is not possible if secure=no is
specified.

It is also dangerous to allow requests which can copy to or from anywhere on the host filesystem, so filesystem
access is restricted through the transfer_dir parameter, which specifies the path(s) that requests are allowed to use.
The service is able to read and write to any path matching transfer_dir. transfer_dir(s) should be specified which
match every cache and session dir. In some situations it may be desirable to set for example one cache per remote
host where the cache is local to the host. A-REX checks on start-up which dirs are accessible by which remote
hosts and uses that info to direct the DTRs to the right hosts.

Configuration example:

[datadelivery-service]
loglevel = 3
hostname = delivery.host.1
port = 60002
allowed_ip = 1.2.3.4
transfer_dir = /var/arc/session
transfer_dir = /var/arc/cache

If the site has multiple caches like /var/arc/cache-01, /var/arc/cache-02 etc, then this configuration will allow the
delivery service to write to all of them.

It is vital that the cache and session file systems are mounted on the same path on the A-REX and each remote host,
as the system assumes that a transfer to the cache or session directory can be done using the same path on all hosts.
It is also vital that user accounts are in sync across all hosts, so that a user represented by a uid on the A-REX host
maps to the same account on all the remote hosts. No mapping of DN to local user is done on the remote hosts,
and so no mapping infrastructure like gridmap files is required. The local user id of the user owning the transfer
is passed in the request to the service and the transfer process is executed under that uid (except when writing to
cache, when the root account is used).

The service is started and stopped by the arc-datadelivery-service systemd unit:

systemctl start arc-datadelivery-service

A-REX Host

The configuration for setting up A-REX to use remote datadelivery services uses options in the [arex/data-staging]
section of the regular arc.conf.

Param-
eter

Explanation Default
Value

delivery-
service

URL of remote host which can perform data delivery. Hostname and port must match
those specified in the datadelivery service configuration.

None

localde-
livery

Whether local delivery should also be done no

remote-
sizelimit

File size limit (in bytes) below which local transfer is always used 0

use-
hostcert

Whether the host certificate should be used in communication with remote datadelivery
services instead of the user’s proxy

no

Example:

264 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

[arex/data-staging]
deliveryservice = https://delivery.host.1:60002/datadeliveryservice
deliveryservice = https://delivery.host.2:60002/datadeliveryservice
localdelivery = yes
remotesizelimit = 1000000

Multiple remote datadelivery services can be specified, and the Scheduler will randomly divide DTRs between
those services where the transfer is allowed (according to transfer_dir configuration on each service). The presence
of a datadeliveryservice option turns off the regular “local” delivery on the A-REX host so only the remote service
will be used. If it is desired to also do transfers on the A-REX host, localdelivery = yes must be used. If no remote
services are specified then local delivery is always enabled.

If the datadelivery service is running with secure=no then https should be replaced by http in the deliveryservice
URLs.

Normally the credentials of the user who submitted the job are used for communication between A-REX and remote
datadelivery services, however for extra security it is possible to use the A-REX host certificate for this instead, by
specifying usehostcert = yes. In this case the host cert is only used for establishing the secure connection with the
remote service, it is still the user’s credentials which are delegated and used for the transfer. The host cert must
also be able to be used as a client certificate, in other words must have the X509 extension “X509v3 Extended
Key Usage: TLS Web Client Authentication”. This option has no effect if the datadelivery service is running with
secure=no.

Communication with remote services involves some degree of overhead such as the SSL handshake, delegating
credentials etc, and when transferring small files this overhead can become a significant fraction of the transfer
time. Therefore it is possible to specify a file size limit (in bytes) with remotesizelimit. Any files smaller than this
limit will use local transfer, even if local transfer is disabled through localdelivery = no.

Deployment Scenarios

Several ways of deploying multi-host data staging are possible, using any number of remote hosts. Two examples
are shown here.

Shared Storage

The cache and session directories are on a storage system such as Lustre or GPFS, which is mounted on all hosts.
All hosts can access the cache and session directory and so DTRs will be split randomly between them. No transfer
is done on the A-REX host.

Local Caches

Each remote host has its own local disk as a cache and these caches are mounted on the A-REX host. DTRs will
be sent to the host corresponding to the cache chosen for the DTR so that all cache transfers are to local disks.
The session directory is not available on the remote hosts so all uploads and non-cache downloads will run on the
A-REX host.

6.1. ARC Data Services Technical Description 265

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.9: DDS deployment: shared storage

266 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.10: DDS deployment: local disk for cache on DDS nodes

Security

The remote datadelivery service may require a host certificate (see above) and allow incoming connections from the
A-REX host, but no other incoming connections are required. It must have outbound connectivity to the world to
perform the transfers. As explained above, access is normally restricted to the A-REX host and transfers restricted
to the cache and session directories. For each transfer A-REX delegates the credentials of the user who submitted
the job to the remote service, which creates a temporary file containing the credentials. This file is deleted when
the transfer finishes. Creating a file should become unnecessary if pure in-memory credentials are fully supported
by ARC and all transfer protocols.

The transfer process itself is executed under the uid of the session directory owner, unless the transfer is to cache in
which case it is executed by root. It is therefore important that user accounts are synchronised across all hosts. The
file systems with the cache and session directories must be mounted on the same paths with the same user access
rights on all hosts.

6.1. ARC Data Services Technical Description 267

NorduGrid ARC 7 Documentation, Release ARC7

Proxies

HED services do not support legacy proxies such as those generated by default by voms-proxy-init. In order to use
remote datadelivery services, the jobs must be submitted to A-REX using RFC proxies, which can be generated by
arcproxy or giving the option -rfc to voms-proxy-init. If a legacy proxy is used, local transfer will be used even if
it is disabled in the configuration.

Monitoring Remote Hosts

When the first DTR is received by the Scheduler, it pings all the configured remote datadelivery services to check
that they are running and to get the list of allowed directories from each one. If a service is unreachable it will not be
used. If all services are unreachable then local delivery will be used even if it is turned off in the configuration. The
allowed directories information is used to direct DTRs to services where the transfer is allowed. This procedure
is repeated every 5 minutes (for the first DTR received after the 5 minute limit), and only the successful services
are used until the next check (unless none are successful, in which case the check is done for every DTR until one
succeeds). This means that configuration changes in the remote hosts will be picked up automatically after some
time. However any changes in A-REX’s configuration, such as adding a new remote host, require an A-REX restart
to be effective.

If remote datadelivery services are enabled, the number of DTRs assigned to each one can be seen on separate
plots in Gangliarc.

268 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

6.1.4 CandyPond technical description

This page describes technical details of CandyPond, which stands for “Cache and deliver your pilot on-demand
data”.

Description and Purpose

The ARC caching system automatically saves to local disk job input files for use with future jobs. The cache is
completely internal to the computing element and cannot be accessed or manipulated from the outside. CandyPond
exposes various operations of the cache to the outside and can be useful in a pilot job model where input data for
jobs is not known until the job is running on the worker node. When the pilot picks its payload it can contact
CandyPond to gain access to a file that is already cached, or if it is not cached ask CandyPond to download the file
to cache.

Installation and Configuration

CandyPond is an integral part of A-REX and is available as part of the nordugrid-arc-arex package.

It is enabled in A-REX by adding the block [arex/ws/candypond] to arc.conf. The [arex], [arex/ws] and
[arex/data-staging] blocks are also required.

Runtime Environment Configuration

A runtime environment ENV/CANDYPOND exists to provide a convenient python module arccandypond to the job
running on the worker node. This can either be used as a command line interface or as a python API.

Note that the ENV/PROXY runtime environment is also needed in order to have access to the proxy on the worker
node.

ENV/CANDYPOND will automatically detect the correct URL of the CandyPond service, but if it is desired to use a
different URL then it can be set with

arcctl rte params-set ENV/CANDYPOND CANDYPOND_URL <url>

Command Line Interface

arccandypond get <url> <file> can be used in place of whatever usual command the job would use to down-
load input data. This command asks Candypond to download the url to cache if not already present, and link to the
file specified in the job’s working directory.

arccandypond check <url> can be used to check if the given url already exists in the cache. It will exit with 0
if the file is present, 1 if not, or 2 if an error occurred.

Python API

The job can import the module and use the CacheLink and CacheCheck methods to perform the equivalent of
get and check commands.

6.1. ARC Data Services Technical Description 269

NorduGrid ARC 7 Documentation, Release ARC7

Example Use Case

In this example a job is submitted which uses arccandypond to download input data to cache and have it available
to the job.

The xrsl file defines the required runtime environments. Note that no input files are specified.

$ cat candypond.xrsl
&
("executable" = "candypond.sh")
("runtimeenvironment" = "ENV/CANDYPOND")
("runtimeenvironment" = "ENV/PROXY")
("jobname" = "candypond_test")
("walltime" = "3600")
("cputime" = "3600")
("stderr" = "stderr")
("stdout" = "stdout")
("gmlog" = "gmlog")
("outputfiles" =

("stdout" "")
("stderr" "")
("gmlog" "")

)

The job script uses candypond to download the input file to cache and link to the job’s working directory:

$ cat candypond.sh
#!/bin/sh
arccandypond get http://www.nordugrid.org:80/data/run.sh run.sh
ls -lrt
echo
cat run.sh

Submit the job:

$ arcsub candypond.xrsl
Job submitted with jobid: https://...

Check the output:

$ arccat https://...
{'http://www.nordugrid.org:80/data/run.sh': ('0', 'Success')}
total 28
-rwx------ 1 dcameron dcameron 257 Apr 10 20:23 candypond.sh
drwx------ 4 dcameron dcameron 4096 Apr 10 20:23 arc
-rw------- 1 dcameron dcameron 10662 Apr 10 20:23 user.proxy
-rw------- 1 dcameron dcameron 0 Apr 10 20:23 stderr
lrwxrwxrwx 1 dcameron dcameron 89 Apr 10 20:23 run.sh -> /opt/var/arc/cache/
↪→joblinks/eOGODmV3WYunPSAtDmVmuSEmABFKDmABFKDmJSFKDmGBFKDm5lgA5m/run.sh
-rw------- 1 dcameron dcameron 62 Apr 10 20:23 stdout

#!/bin/sh

GCC=`which g++ 2>/dev/null`
echo $GCC
if [-z $GCC]; then
echo "Could not find the g++-compiler!"
exit 0

fi
(continues on next page)

270 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

make
chmod 755 prime
./prime $1

Note the symbolic link to the cache.

Issues and Notes

• Calls to arccandypond get may block for a long time if the file needs to be downloaded to cache and
A-REX is already busy with data staging or the file is very large. A timeout option will be added in the
future.

• CandyPond (like the A-REX web service interface it is part of) does not accept legacy proxies. This type of
proxy is created by default with older versions of grid/voms-proxy-init, but an RFC-compliant proxy can be
generated using the -rfc option.

• CandyPond links files to the session dir. If a scratch directory is used for executing the job, the cache files are
moved there from the session directory. This requires that the scratch dir is accessible from the CanyPond
host, so it cannot be used in situations where the scratch directory can only be accessed by the underlying
LRMS.

6.2 ARC Accounting Technical Details

New in version 6.4.

Changed in version 6.12.

Warning: Information in this chapter is relevant only for 6.4+ ARC releases.

Moreover ARC 6.12 get accounting changes to address the APEL move to ARGO messaging service protocol.
If you are publishing to APEL you must update to 6.12+ ARC release.

Note: If you are looking for the information about the technical details of legacy accounting subsystem in 6.0-6.3
ARC releases please read Legacy JURA Accounting Technical Details but it is highly recommended to update to
recent release.

General accounting configuration and operations flows are described in Accounting Subsystem. This section con-
tains more technical details about implementation of each component of accounting subsystem.

6.2.1 Job accounting information processing workflow

Collecting the accounting information

The A-REX Accounting subsystem is part of the core A-REX functionality starting from the 6.4 release. The main
functionality of A-REX Accounting subsystem is to handle the data writing to local SQLite accounting database
for the every job state change.

The data sources of the Accounting data are per-job files in the control directory:

• .local file contains general information associated with the job. All IDs, ownership, authtokenattributes
are taken from this file. The data in .local are written and updated by the A-REX JobControl modules.

6.2. ARC Accounting Technical Details 271

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.11: Technical details of ARC CE accounting workflow: information collection, AAR creation, querying and
publishing

• .statistics file is a dedicated file written by the DTR data transfer framework that contains data transfer
measurements.

• .diag file is written by the LRMS Scripts: initially by submit-<lrms>-job.sh, than JobScript during
the job execution on the Worker Node and finally by scan-<lrms>-job.sh that adds extract from LRMS
accounting data. It contains but is not limited to resource usage and worker node environment data.

The local SQLite accounting database contains all the A-Rex Accounting Record (AAR) data for every ARC CE
job.

The initial record about the job is created based on the first ACCEPTED job event. The ID, ownership and sub-
mission time is recorded during this step and accounting job status is marked as in-progress.

Any subsequent job events triggers event data recording in the database, and allow to track data staging time, lrms
enqueueing time, etc.

When the FINISHED job event occurs (execution is completed) the A-REX Accounting subsystem updates
all AAR metrics in the database, storing resource usage, endtime, etc. Such a state is indicated by the
status={completed|failed|aborted}.

Using the local accounting database

Using the accounting data for statistics lookup and/or publishing to external services is accomplished via the de-
veloped arc.control Python modules.

The AccountingDBSQLite module is responsible for handling all low-level database operations and it hides SQL
queries under the API needed for other workflows.

In particular the accounting subsystem of ARC Control Tool provides a command line interface to the typical
queries that can get you the accounting data in a flexible manner.

The records publishing is carried out by the AccountingPublishing Python module that includes:

272 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

• classes for generating usage records in OGF.98 UR, EMI CAR 1.2, APEL Summaries and APEL Sync
formats

• classes that handle the records POST-ing to SGAS endpoint

• classes that handle the records sending to APEL via AMS protocol

• general wrapping classes to handle regular publishing and republishing of the data

Both the arcctl accounting reublish tool and the jura-ng tool (that runs regularly by A-REX) use the same
AccountingPublishing Python module.

The regular publishing process stores the last published record endtime in the dedicated Publishing database.
The next round of regular publishing queries the stored time and query the records since then.

6.2.2 Accounting data publishing details

Reporting to SGAS

SGAS has a simple custom web service interface loosely based on WS-ResourceProperties.

AccountingPublishing Python module uses the insertion method of this interface to report URs directly to the
Python httplib library with SSL context wrapping.

To increase communication efficiency the AccountingPublishing SGASSender class sends URs in batches.
SGAS accepts a batch of URs in a single request. The batch is an XML element called UsageRecords, containing
elements representing URs. The maximal number of URs in a batch can be set as a urbatchsize configuration
parameter of SGAS target.

Reporting to APEL

Changed in version 6.12.

APEL curently uses AMS REST protocol for records sending.

The AccountingPublishing APELAMSDirectSender class implements the AMS REST communication without
external dependencies.

Communication code relies on the same Python httplib library with SSL context wrapping.

It connects to AMS endpoint with valid SSL context with client certificate authentication and obtains AMS au-
thentication token.

Messages sent to APEL are S/MIME signed using openssl binary tool and than sent to the endpoint using AMS
authentication token.

Reporting to APEL also works with sending records in batches. The default urbatchsize value is set to 500 accord-
ing to APEL recommendations but can be lowered if you run into message size issues (e.g. sending large individual
records).

Republishing

Republishing simply triggers the same AccountingPublishing classes for the defined timeframe that comes
from the command line.

All records are regenerated from accounting database data and sent to the target.

6.2. ARC Accounting Technical Details 273

NorduGrid ARC 7 Documentation, Release ARC7

6.2.3 Security

The accounting directory <controldir>/acconting is by default accessible only by the user running A-REX
(root in most cases).

All usage records are submitted with use of the X.509 credentials specified by the value of x509_ set of configu-
ration options of arc.conf. No proxies are used for communication with accounting services.

The only access restriction made by a SGAS service is matching the Distinguished Name of the client (in this
context ARC CE) with a set of trusted DNs. When access is granted, policies are then applied by SGAS, allowing
either publishing and/or querying rights. Clients with publishing rights can insert any UR, regardless of content.
By default, querying rights only allows retrieving URs pertaining to jobs submitted by the querying entity.

Publishing records to APEL requires glite-APEL endpoint defined for the grid-site in the GOCDB. The ARC CE
certificate DN should be added to the glite-APEL endpoint.

6.2.4 Third-party accounting queries

The ARC Control Tool accounting stats interface is powerful enough to get custom information from the accounting
database as shown in examples.

However if you want to get a specific report or integrate ARC accounting database with third-party software you
can of cause use SQLite directly.

The SQLite database file location is: <controldir>/accounting/accounting.db.

It is worth to be aware of the ARC Accounting Database Schema to develop third-party queries.

6.2.5 Definition of the A-REX Accounting Record including attribute mappings
to SGAS and APEL

ARC CE is measuring and collecting a lot of accounting information needed but not limited to the data required
by common aggregated accounting SGAS and APEL services.

All accounting information stored about a job is defined by what we called A-REX Accounting Record (AAR).

AARs has a representation inside the local accounting database according to schema and representations inside
A-REX and Python modules.

Local stats are generated based on the stored AARs information and provides the way for on-site CE operations
analyses.

The following tables include a flat list of the properties (NOT the database rendering) included into the AAR:

Table 6.2: Attributes used in current implementation

A-REX Accounting
Record (AAR)

SGAS OGF-UR APEL CAR Content description

jobid JobIdentity.
GlobalJobId,
RecordIdentity is
composed of jobid and
hostname taken from the
endpointurl.

JobIdentity.
GlobalJobId,
RecordIdentity is
composed of jobid and
hostname taken from the
endpointurl.

The global unique jobid
assigned by AREX.

localid JobIdentity.
LocalJobId

JobIdentity.
LocalJobId

LRMS job ID

jobname JobName JobName User specified job name
endpointurl MachineName MachineName,

SubmitHost, Site
The A-REX job submis-
sion endpoint URL used
for this job
continues on next page

274 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Table 6.2 – continued from previous page
A-REX Accounting
Record (AAR)

SGAS OGF-UR APEL CAR Content description

endpointtype not used not used The A-REX job submis-
sion endpoint type used
for this job

lrms not used Infrastructure (used
as a part of it)

The LRMS behind A-
REX

queue Queue Queue The name of the LRMS
queue of the job

nodename Host Host WN name(s) as given by
LRMS separated by :

clienthost SubmitHost (port
removed)

not used Client connection socket
from the client to A-REX

usersn UserIdentity.
GobalUserName

UserIdentity.
GobalUserName

The global user identity,
at the moment it is the SN
from the certificate

localuser UserIdentity.
LocalUserId

UserIdentity.
LocalUserId

The mapped local userid

authtokenattributes UserIdentity.VO and
child structures

UserIdentity.Group
and UserIdentity.
GroupAttribute

contains the attributes
of auth token (VOMS
FAQNs in currect imple-
mentation)

projectname ProjectName UserIdentity.
GroupAttribute

User-defined name of the
project the job belongs to

status Status Status The terminal state of an
A-REX job: aborted,
failed, completed

exitcode not used ExitStatus The exit code of the pay-
load in the LRMS

submissiontime StartTime StartTime The timestamp of job ac-
ceptance at A-REX

endtime EndTime EndTime The timestamp when the
job reached the terminal
state in A-REX

nodecount NodeCount NodeCount Number of allocated
worker nodes

inputfile FileTransfers not used Details of downloaded
inputfile: url, size, trans-
fer start, transfer end,
downloaded from cache

outputfile FileTransfers not used Details of uploaded out-
puttfile: url, size, transfer
start, transfer end

usedmemory Memory Memory Maximum virtual mem-
ory used by the job

usedmaxresident Memory Memory Maximum resident mem-
ory used by the job

usedaverageresident Memory Memory To be dropped from the
AAR schema

usedwalltime WallDuration WallDuration The measured clocktime
ellapsed during the exe-
cution of the job in the
LRMS. No matter on how
many cores, processors,
nodes the user job ran on.
continues on next page

6.2. ARC Accounting Technical Details 275

NorduGrid ARC 7 Documentation, Release ARC7

Table 6.2 – continued from previous page
A-REX Accounting
Record (AAR)

SGAS OGF-UR APEL CAR Content description

usedcputime CpuDuration CpuDuration (with type
all)

The total CPU time
consumed by the job.
If the job ran on many
cores/processors/nodes,
all separate consump-
tions shall be aggregated
in this value.

usedusercputime CpuDuration (with type
user but should not be
there)

CpuDuration (with type
user)

The user part of the used-
cputime

usedkernelcputime CpuDuration (with type
system but should not be
there)

CpuDuration (with type
system)

The kernel part of the
usedcputime

cores Processors Processors The number of cores allo-
cated to the job

usedscratchspace StorageUsageBlock The used size of scratch
dir at the end of the job
termination in the LRMS.

systemsoftware The type and version of
the system software (i.e.
opsys, glibc, compiler, or
the entire container wrap-
ping the system software)

wninstance ServiceLevel Coarse-grain characteri-
zation tag for the Work-
erNode, e.g. BigMemory
or t2.micro (aka Amazon
instance type)

RTEs List of used RTEs, in-
cluding default ones as
well.

data-stagein-volume Network class has some-
thing similar

The total volume of
downloaded job input
data in GBs

data-stagein-time The time spent by the
DTR sysem to download
input data for the job

data-stageout-volume Network class has some-
thing similar

The total volume of up-
loaded job output data in
GBs

data-stageout-time The time spent by the
DTR sysem to upload
output data of the job

lrms-submission-time The timestamp when the
job was handed over to
the LRMS system

lrmstarttime The timestamp when
the payload starts in the
LRMS

lrmsendtime The timestamp when the
payload completed in the
LRMS
continues on next page

276 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Table 6.2 – continued from previous page
A-REX Accounting
Record (AAR)

SGAS OGF-UR APEL CAR Content description

benchmark Benchmark ServiceLevel The type and the cor-
responding benchmark
value of the assigned
WN

Table 6.3: NOT USED SGAS or APEL attributes

SGAS OGF-UR APEL CAR
ProcessID
Charge Charge
Swap Swap

6.3 ARC CE REST interface specification

Note: The current interface version is 1.1

6.3.1 The REST API endpoint

The various functionalities of the service are accessible through HTTP(S) URL built upon following pattern:

<service endpoint URL>/rest/<version>/<functionality>

• <service endpoint URL> represents mounting point of the service and may look like https://arc.
example.org:443/arex.

• <version> is two parts number separated by dot. Current version is 1.1.

• <functionality> is one of keywords defined below.

Further the part <service endpoint URL>/rest/<version> is referred as <base URL>.

All parts of URL to the right of hostname are case-sensitive.

Depending on Accept header in HTTP request (Accept: application/json, Accept: text/xml or
Accept: application/xml), information in the response rendered in either JSON or XML format. If not
specified it defaults to text/html and output is compatible with ordinary web browser.

In the HTTP response headers the HTTP Status-Code (RFC7231) indicates the status of the overal request (e.g.
403 corresponds to the forbidden).

For the operations that support multiple (bulk) requests per single API call, in addition to the Status-Code in HTTP
header, the per-request Status-Codes are returned. They are included as a part of the response array in HTTP body
using the same RFC2731 values following the syntax defined below.

6.3. ARC CE REST interface specification 277

NorduGrid ARC 7 Documentation, Release ARC7

6.3.2 Description of functionalities and operations

Requesting supported versions

GET <service endpoint URL>/rest

Operations:

• GET - returns list of supported REST API versions

• POST, PUT, DELETE - not supported

Example response:

The XML response is like:

<versions>
<version>1.0</version>
<version>1.1</version>
<version>1.2</version>

</versions>

The JSON is:

{version: ["1.0", "1.1", "1.2"]}

or

{version: "1.0"}

Obtaining CE resource information

GET <base URL>/info[?schema=glue2]

Operations:

• GET - retrieve generic information about cluster properties. It accepts the optional schema parameter. The
default and only supported value in the currect ARC release is glue2. The CRR rendering might be added
in the future ARC releases. XML or JSON returned according to request headers.

• HEAD - supported

• PUT, POST, DELETE - not supported.

Example QUERY:

GET https://host.domain.org:443/arex/rest/1.0/info?schema=glue2 HTTP/1.1
Accept: application/xml

The XML response is:

<InfoRoot>
<Domains xmlns="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1"␣

↪→xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
↪→"https://raw.github.com/OGF-GLUE/XSD/master/schema/GLUE2.xsd">
<AdminDomain BaseType="Domain" CreationTime="2018-11-06T20:26:46Z"␣

↪→Validity="10800">
<ID>urn:ad:UNDEFINEDVALUE</ID>
<Name>UNDEFINEDVALUE</Name>
<Distributed>false</Distributed>
<Services>
<ComputingService BaseType="Service" CreationTime="2018-11-

(continues on next page)

278 Chapter 6. Technical Documents Describing ARC Components

https://docs.google.com/document/d/1t9Hs25B0X7ruhRs4IbdAZ1qDEpBKg2RXBFL9kIesGC0/edit

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

↪→06T20:26:46Z" Validity="10800">
<ID>urn:ogf:ComputingService:arc.zero:arex</ID>
<Capability>data.transfer.cepush.srm</Capability>
<Capability>executionmanagement.jobmanager</Capability>

... output omitted ...

Operating jobs

GET <base URL>/jobs[?state=<state1>[,<state2>[. . .]]]

POST <base URL>/jobs?action=new[&queue=<name>][&delegation_id=<id>]

POST <base URL>/jobs?action={info|status|kill|clean|restart|delegations}

Operations:

• GET - get list of jobs

• HEAD - supported

• POST - job submission and management

• PUT, DELETE - not supported

Get list of jobs

GET <base URL>/jobs retrieves list of jobs belonging to authenticated user as application/xml or
application/json. Returned document contains list of job IDs.

It accepts the optional state parameters. When defined the returned document contains only jobs in the requested
state(s).

Example QUERY:

GET https://host.domain.org:443/arex/rest/1.0/jobs HTTP/1.1
Accept: application/xml

The XML response is:

<jobs>
<job>
<id>1234567890abcdef</id>

</job>
<job>
<id>fedcba0987654321</id>

</job>
</jobs>

The JSON is:

{
"job":[
{"id":"1234567890abcdef"},
{"id":"fedcba0987654321"}

]
}

6.3. ARC CE REST interface specification 279

NorduGrid ARC 7 Documentation, Release ARC7

Job submission (create a new job)

POST <base URL>/jobs?action=new initiates creation of a new job instance or multiple jobs.

Request body contains job description(s), in one of the supported formats: ADL as Content-type:
application/xml or xRSL as Content-type: applicaton/rsl.

The optional queue parameter defines the default value for the computing element queue. The value has same
effect as xRLS xrsl_queue (or ADL QueueName) and applied to all job descriptions that does not have it specified.
If xRSL/ADL already contains queue the value from xRLS/ADL is used instaed.

The optional delegation_id parameter defines the default value for the delegation ID for data staging. The value
has same effect as xRLS xrsl_delagationid (or ADL DelegationID) and applied to all job descriptions that does
not have it specified. If xRSL/ADL already contains delegationid the value from xRLS/ADL is used instaed.

To pass multiple job descriptions in document body of the same type:

• ADL descriptions are enclosed in <ActivityDescriptions> element

• XRSL uses + to merge multiple jobs.

Response contains 201 code. Response body contains an array of elements corresponding to the sequence of the
job descriptions in the requests in the same order. The elemenets of the array in the response contains:

• status-code: a 3-digit integer result code of the attempt to understand and satisfy the request
(according to RFC7231)

• reason: a short textual description of the Status-Code

• id: job UUID or None if not assigned (non-successfull submission)

• state: the job state according to state model or None if not available (non-successfull submis-
sion)

The XML response is:

<jobs>
<job>
<status-code>201</status-code>
<reason>Created</reason>
<id>1234567890abcdef</id>
<state>ACCEPTING</state>

</job>
<job>
<status-code>500</status-code>
<reason>Requested RTE is missing</reason>

</job>
</jobs>

The JSON is:

{
"job":[

{
"status-code":"201",
"reason":"Created",
"id":"1234567890abcdef",
"state":"ACCEPTING"

},
{
"status-code":"500",
"reason":"Requested RTE is missing",

}
(continues on next page)

280 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

]
}

Jobs management

POST <base URL>/jobs?action={info|status|kill|clean|restart|delegations} - job management
operations supporting arrays of jobs.

Request body contains list of jobids as JSON/XML (e.g. output of GET <base URL>/jobs can be reused).

Example of the body in XML:

<jobs>
<job>
<id>1234567890abcdef</id>

</job>
<job>
<id>fedcba0987654321</id>

</job>
</jobs>

And in JSON:

{
"job":[
{"id":"1234567890abcdef"},
{"id":"fedcba0987654321"}

]
}

Response depends on the requested action:

Job info
POST <base URL>/jobs?action=info retrieves full information about job(s) according to the GLUE2
activity information XML document, or in JSON format.

Response contains 201 code. Response body contains an array of elements corresponding to the job IDs in the
requests. The elemenets of the array in the response contains:

• status-code: a 3-digit integer result code of the attempt to understand and satisfy the request (according
to RFC7231). The 200 is only positive response.

• reason: a short textual description of the Status-Code

• id: job UUID

• info_document: GLUE2 activity information about the job or empty documents if not available (request
if not satisfiable)

Job status
POST <base URL>/jobs?action=status retrieves information about job(s) current state.

Response body contains an array of elements corresponding to the job IDs in the requests. The elemenets of the
array in the response contains:

• status-code: a 3-digit integer result code of the attempt to understand and satisfy the request (according
to RFC7231). The 200 is only positive response.

• reason: a short textual description of the Status-Code

• id: job UUID

• state: the job state according to state model or None if not available

6.3. ARC CE REST interface specification 281

NorduGrid ARC 7 Documentation, Release ARC7

Killing jobs
POST <base URL>/jobs?action=kill send a request to kill job(s).

Response body contains an array of elements corresponding to the job IDs in the requests. The elemenets of the
array in the response contains:

• status-code: a 3-digit integer result code of the attempt to understand and satisfy the request (according
to RFC7231). The response code is 202 to indicate request is queued for later execution and is only positive
response.

• reason: a short textual description of the Status-Code

• id: job UUID

Clean job files
POST <base URL>/jobs?action=clean send a request to clean job(s) files.

Response body contains an array of elements corresponding to the job IDs in the requests. The elemenets of the
array in the response contains:

• status-code: a 3-digit integer result code of the attempt to understand and satisfy the request (according
to RFC7231). The response code is 202 to indicate request is queued for later execution and is only positive
response.

• reason: a short textual description of the Status-Code

• id: job UUID

Restart job
POST <base URL>/jobs?action=restart send a request to restart job(s).

Response body contains an array of elements corresponding to the job IDs in the requests. The elemenets of the
array in the response contains:

• status-code: a 3-digit integer result code of the attempt to understand and satisfy the request (according
to RFC7231). The response code is 202 to indicate request is queued for later execution.

• reason: a short textual description of the Status-Code

• id: job UUID

Job delegations
POST <base URL>/jobs?action=delegations - retrieves list of delegations associated with the job.

Response body contains an array of elements corresponding to the job IDs in the requests. The elemenets of the
array in the response contains:

• status-code: a 3-digit integer result code of the attempt to understand and satisfy the request (according
to RFC7231), 200 is only positive response

• reason: a short textual description of the Status-Code

• id: job UUID

• delegation_id: an array of assigned delegation IDs

File operations

Files belonging to specific job are operated using <base URL>/jobs/<job id> URL.

282 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Working with session directory

GET <base URL>/jobs/<job id>/session/<path>

DELETE <base URL>/jobs/<job id>/session/<path>

PUT <base URL>/jobs/<job id>/session/<path>

Operations:

• GET, HEAD, PUT, DELETE - supported for files stored in job’s session directory and perform usual actions.

• GET, HEAD - for directories retrieves list of stored files (consider WebDAV for format)

• DELETE - for directories removes whole directory

• PUT - for directory not supported.

• POST - not supported.

Delegation functionality

GET <base URL>/delegations[?type={x509|jwt}]

POST <base URL>/delegations?action=new[&type={x509|jwt}]

Operations:

• GET - retrieves list of delegations belonging to authenticated user

• HEAD - supported

• POST - create new delegation

• PUT, DELETE - not supported

POST <base URL>/delegations/<delegation id>?action=get,renew,delete

PUT <base URL>/delegations/<delegation id>

Operations:

• GET, HEAD - not supported

• POST - manage particular delegation ID

• PUT - store x509 delegation public part for particular delegation ID

Get list of delegations

GET <base URL>/delegations[&type={x509|jwt}] - retrieves list of delegations belonging to authenticated
user. It accepts the optional type parameter that allowes to filter delegations based on the type. By default all
types are returned. Supported values are: x509 for proxy-certificate delegation and jwt for data staging token
delegation.

QUERY:

GET https://host.domain.org:443/arex/rest/1.0/delegations HTTP/1.1
Accept: application/xml

The XML response is:

<delegations>
<delegation>
<id>1234567890abcdef</id>
<type>x509</type>

(continues on next page)

6.3. ARC CE REST interface specification 283

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

</delegation>
<delegation>
<id>fedcba0987654321</id>
<type>jwt</type>

</delegation>
</delegations>

The JSON formatted response (make consistent across specification):

{
delegation: [
{ "id":"1234567890abcdef", "type": "x509"},
{ "id":"fedcba0987654321", "type": "jwt"}

]
}

New delegation

Delegation protocol depends on the delegation type (x509 or jwt) specified with an optional type parameter. If
not explicitly specified the default delegation type is x509 for backward compatibility with REST API 1.0.

X.509 delegation

X.509 delegation is a 2-step process:

1. Step 1 generates pair of private/public keys on server side and communicates X.509 certificate request to the
client.

2. Client sings public key and stores delegated certificate to finish delegation procedure.

Corresponding REST API calls:

1 step
POST <base URL>/delegations?action=new&type=x509 starts a new delegation process. Response
is 201 and contains certificate request of application/x-pem-file type and URL of delegation in
Location HTTP header with assigned delegation id.

2 step
PUT <base URL>/delegations/<delegation id> stores public part (2nd step). Request body contains
signed certificate (Content-type: application/x-pem-file). Response is 200 on success.

JWT delegation

JWT delegation is a single API request.

POST <base URL>/delegations?action=new&type=jwt stores provided JWT token in the ARC CE delega-
tion database. Request should contain the X-Delegation header that provides bearer token. No verification of
the delegation token is performed on ARC CE side. It will be passed as it is via Authorization header to the end-
points supporting JWT. Response is 200 and contains URL of delegation in Location HTTP header with assigned
delegation id.

QUERY:

POST https://host.domain.org:443/arex/rest/1.0/delegations?
↪→action=new&type=jwt HTTP/1.1
X-Delegation: bearer␣

(continues on next page)

284 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

↪→eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICI3ZzZGSzBPam43YW.
↪→....

Delegations management

Delegations are managed one-by-one. The same delegation ID can be re-used for multiple jobs (submitted sepa-
rately or in batch).

The delegation ID to be used in the job context required to be either explicitely specified as a part of the job
description in a description language defined way (e.g. DelegationID in ADL and xrsl_delagationid in xRSL) or
passed as delegation_id parameter during job submission.

POST <base URL>/delegations/<delegation id>?action=get,renew,delete used to manage delega-
tion.

Request body is empty and action is defined by action value.

Response is structured depending on the action:

Get delegation

POST <base URL>/delegations/<delegation id>?action=get depending on delegation type
returns:

• for x509 public part of the stored delegation (application/x-pem-file content type)

• for JWT stored delegation token (application/jwt content type)

Delete delegation
POST <base URL>/delegations/<delegation id>?action=delete removes delegation. Response
is 200 with no body expected.

Renew delegation
The process is similar to creation of the new delegation and depends on delegation type (x509 or jwt).

For x509 the POST <base URL>/delegations/<delegation id>?action=renewAPI call initiates re-
newal of delegation. Response is 201 with certificate request of application/x-pem-file type that
should be followed bu the PUT <base URL>/delegations/<delegation id> call for signed certificate
upload.

For jwt the token stored in the ARC CE delegation database will be replaced by the new one supplied via
X-Delegation header. Response is 200 on success.

A-REX control directory files access for debugging purposes

GET <base URL>/jobs/<job id>/diagnose/<file type>

Operations:

• GET - return the content of file in A-REX control directory for requested jobID

• HEAD - supported

• POST, PUT, DELETE - not supported

The <file type> matches the controldir file suffix and can be one of the following:

• failed

• local

• errors

• description

• diag

6.3. ARC CE REST interface specification 285

NorduGrid ARC 7 Documentation, Release ARC7

• comment

• status

• acl

• xml

• input

• output

• input_status

• output_status

• statistics

286 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

6.3.3 REST Interface Job States

Table 6.4: State identifiers used with ARC REST API

REST API
State Name

Description A-REX Inter-
nal State

ACCEPT-
ING

This is the initial job state. The job has reached the cluster, a session directory
was created, the submission client can optionally upload files to the sessiondir.
The job waits to be detected by the A-REX, the job processing on the CE
hasn’t started yet

ACCEPTED

ACCEPTED In the ACCEPTED state the newly created job has been detected by A-REX
but can’t go to the next state due to an internal A-REX limit. The submission
client can optionally upload files to the sessiondir.

PEND-
ING:ACCEPTED

PREPAR-
ING

The job is undergoing the data stage-in process, input data is being gathered
into the session directory (via external downloads or making cached copies
available). During this state the submission client still can upload files to the
session directory. This is an I/O heavy job state.

PREPARING

PREPARED The job successfully completed the data stage-in process and is being held
waiting in A-REX’s internal queue before it can be passed over to the batch
system

PEND-
ING:PREPARING

SUBMIT-
TING

The job environment (via using RTEs) and the job batch submission script is
being prepared to be followed by the submission to the batch system via using
the available batch submission client interface

SUBMIT

QUEUING The job is under the control of the local batch system and is “queuing in the
batch system”, waiting for a node/available slot

INLRMS

RUNNING The job is under the control of the local batch system and is “running in the
batch system”, executing on an allocated node under the control of the batch
system

INLRMS

HELD The job is under the control of the local batch system and is being put on hold
or being suspended, for some reason the job is in a “pending state” of the
batch system

INLRMS

EXIT-
INGLRMS

The job is under the control of the local batch system and is finishing its
execution on the worker node, the job is “exiting” from the batch system either
because the job is completed or because it was terminated

INLRMS

OTHER The job is under the control of the local batch system and is in some “other”
native batch system state which can not be mapped to any of the previously
described batch systems states.

INLRMS

EXECUTED The job has successfully completed in the batch system. The job is waiting to
be picked up by the A-REX for further processing or waiting for an available
data stage-out slot.

PEND-
ING:INLRMS

FINISHING The job is undergoing the data stage-out process, A-REX is moving out-
put data to the specified output file locations, the session directory is being
cleaned up. Note that failed or terminated jobs can also undergo the FIN-
ISHING state. This is an I/O heavy job state

FINISHING

FINISHED Successful completion of the job on the cluster. The job has finished ALL its
activity on the cluster AND no errors occurred during the job’s lifetime.

FINISHED

FAILED Unsuccessful completion of the job. The job failed during one of the pro-
cessing stages. The job has finished ALL its activity on the cluster and there
occurred some problems during the lifetime of the job.

FINISHED

KILLING The job was requested to be terminated by an authorized user and as a result
it is being killed. A-REX is terminating any active process related to the job,
e.g. it interacts with the LRMS by running the job-cancel script or stops data
staging processes. Once the job has finished ALL its activity on the cluster it
will be moved to the KILLED state.

CAN-
CELLING

KILLED The job was terminated as a result of an authorized user request. The job has
finished ALL its activity on the cluster.

FINISHED

WIPED The generated result of jobs are kept available in the session directory on the
cluster for a while after the job reaches its final state (FINISHED, FAILED or
KILLED). Later, the job’s session directory and most of the job related data
are going to be deleted from the cluster when an expiration time is exceeded.
Jobs with expired session directory lifetime are “deleted” from the cluster in
the sense that only a minimal set of info is kept about such a job and their
state is changed to WIPED

DELETED

6.3. ARC CE REST interface specification 287

NorduGrid ARC 7 Documentation, Release ARC7

6.3.4 Status of This Document

This document provides normative specificsation for the ARC REST Interface version 1.1.

This specification was designed by the requirements listed below:

1. Support for versioning: via URL paths like https://arc.zero:443/arex/rest/1.1/jobs

2. Usable with simple tools (wget, curl)

3. Friendly to common HTTP REST frameworks

4. Interactive access to session directory content

5. Machine readable error/result codes/messages

6. No drastic changes to information representation and jobs handling

7. Support for different response formats: xml, json

Plans for functionality extension post version 1.1:

1. More effective bulk operations: with HTTP v2, will require HTTP v2 development for HED, this feature is
postponed till next versions

2. Resource information functionality: consider filtering through URL options, consider supporting references
(relative URLs) to underlying resources.

3. Scalability for many jobs and delegations: consider filtering through URL options

4. Jobs: consider a way to provide list of all jobs per site or per VO to special monitoring agents

5. For sessiondir access add PATCH for files to modifies part of files. Body format need to be defined, all files
treated as binary, currently support only non-standard PUT with ranges.

6.4 ARCHERY data model and DNS records rendering

ARCHERY implies a minimalistic data model that is targeting mostly static information to address the distributed
e-Infrastructure resource grouping, software environments provisioning and service discovery needs.

The ARCHERY objects and their releations are embedded into the DNS infrastructure as a dedicated Resource
Record sets according to the rendering described below.

6.4.1 ARCHERY objects

To represent the distributed e-infrastructure concept the ARCHERY data model defines three type of objects: the
Endpoint Object, the Service Object and the Group Object.

To represent the community software environments in the e-infrastructure two additional type of objects are defined
in the ARCHERY data model: the Software Object and the RTE Object.

Endpoint object

Endpoint object is used to capture information about a network location that can be used to access specific ser-
vice functionality, including accessing information within ARCHERY registry service itself. For the later special
endpoint types were defined (see below). The Endpoint object is described with the following set of attributes:

• Endpoint URL - defines the network location by which the service functionality is accessible;

• Endpoint Type - contains the value from the Endpoint type enumeration defined by the e-Infrastructure
operators1. In addition to ordinary service endpoint types two special ARCHERY endpoint types archery.
group and archery.service had been introduced for accessing the ARCHERY Group and Service objects

1 The org.ogf.glue.emies.activiticreation, org.nordugrid.ldapglue2, org.nordugrid.gridftpd are examples of endpoint
types used in NorduGrid infrastructure.

288 Chapter 6. Technical Documents Describing ARC Components

https://arc.zero:443/arex/rest/1.1/jobs

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.12: ARCHERY e-Infrastructure topology bjects, their attributes and relations in the data model.

Fig. 6.13: ARCHERY software environment objects, their attributes and relations in the data model.

6.4. ARCHERY data model and DNS records rendering 289

NorduGrid ARC 7 Documentation, Release ARC7

within the registry. Another special types includes archery.software and archery.rte that used to
access ARCHERY Software and RTE objects respectively when community software registry is embedded
into the DNS.

• Endpoint State (optional) - Boolean value that indicates the endpoint availability. In case of an ARCHERY
service endpoint, if the endpoint state is false (unavailable) it is still used to represent e-Infrastructure topol-
ogy, but should not be used during service endpoints discovery. Missing attribute is interpreted as true i.e.
the endpoint is available.

Service object

Service object represents an e-Infrastructure service, like Computing Element, Storage Element, etc. The Service
object is described with the following set of attributes:

• Service ID - holds the service identifier as an arbitrary string. For example the ID can be derived from the
hostname;

• Service Type - contains the value from the Service type enumeration defined by the e-Infrastructure opera-
tors;

• Service Endpoints - an array of Endpoint objects associated with the Service.

Group object

Group object is used to organize other objects such as ARCHERY Service or Group. The grouping was introduced
to the data model so that infrastructure topologies (i.e. hierarchies or federations) can be represented inside the
registry in a flexible way. The Group object is described with the following set of attributes:

• Group ID (optional) - holds the group identifier as an arbitrary string.

• Group Type (optional) - defines the grouping type based on organizational structure; example values could
be: Site, Country, Tier, etc.

• ARCHERY Endpoints - an array of Endpoint objects of special defined ARCHERY endpoint types
(archery.group, archery.service or archery.software). These Endpoint objects describe the op-
tional state and URL of the ARCHERY objects inside the registry.

Software object

Software objects are used to represent a community-defined RTEs regisry instances. The Software object provides
community public key data and enumerates the available RTEs. It is described with the following set of attributes:

• Registry ID (optional) - holds the software registry identifier as an arbitrary string.

• PubKey Endpoint - and Endpoint object that contains URL to the public key location. It can points to
external URLs or raw data inside the DNS. Technical implementation uses gpg.pubkey and gpg.pubkey.
base64 endpoint types depending on Base64 encoding usage.

• RTEs Endpoints - and array of Endpoint objects of special defined ARCHERY endpoint type archery.
rte. These Endpoint objects describe the optional state and URL of the ARCHERY RTE objects inside the
registry.

290 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

RTE Object

RTE Object is used to represent a particular community-defined RTE script. It encapsulates the RTE ID (according
to the naming and versioning convention), optional RTE description and contains Endpoints to signed RTE scripts.
It is described with the following set of attributes:

• RTE ID - holds the RTE identifier according to naming and versioning scheme

• RTE Description (optional) - an arbitrary string that contains the human-readable description of RTE

• RTE Data Endpoints - and array of Endpoint objects that points to signed RTE data. It can points to external
URLs or raw data inside the DNS. Technical implementation uses gpg.signed and gpg.signed.base64
endpoint types depending on Base64 encoding usage.

Entry point group object

Following the data model the service endpoint discovery process can start from the entry point Group Object and
recursively contacting all the ARCHERY Endpoints.

The Sotfware objects can be attached to any parent Group Object and discovered using the same recursive traversal
of the e-Infrastructure topology.

ARCHERY object attributes allow taking into account group, service and/or endpoint types as well as availability
status during the recursive discovery process to query only the subset of objects.

6.4.2 DNS Resource Records rendering

Rendering ARCHERY objects

ARCHERY objects are rendered using TXT resource records (RRs). These TXT RRs contain the space separated
key=value pairs where keys correspond to the data model object attributes. Boolean object attributes have values
specified as 0 or 1.

The Endpoint Object is rendered with a single TXT RR where Endpoint Object attributes – Endpoint URL, End-
point Type and optional Endpoint State are represented by the u, t, s keys in this specific order within the space
separated key-value pairs.

The Service Object of the ARCHERY data model is rendered by a dedicated RRSet identified by unique domain
name that can be used to access this object inside the registry.

The service RRSet is composed of single service object identity RR and one RR for every Endpoint objects as-
sociated with the service. The service object identity RR has the format of o=service followed by t=<Service
Type> and id=<Service ID>:

<DNS name> TXT "o=service t=<Service Type> id=<Service ID>"
<DNS name> TXT "u=<Endpoint URL> t=<Endpoint Type> [s={0|1}]"
<DNS name> TXT ...
<DNS name> TXT "u=<Endpoint URL> t=<Endpoint Type> [s={0|1}]"

The Group Object of is rendered by a dedicated RRSet identified by unique domain name that can be used to
access this object inside the registry.

The Group RRSet is composed of single Group object identity RR and one RR for every ARCHERY Endpoint
objects pointing to other Service or Group objects that are part of this specific Group. The Group object identity
RR has the format of o=group followed by optional t=<Group Type> and optional id=<Group ID>:

<DNS name> TXT "o=group [t=<Group Type>] [id=<Group ID>]"
<DNS name> TXT "u=<DNS URL> t=archery.{group|service} [s={0|1}]"
<DNS name> TXT ...
<DNS name> TXT "u=<DNS URL> t=archery.{group|service} [s={0|1}]"

6.4. ARCHERY data model and DNS records rendering 291

NorduGrid ARC 7 Documentation, Release ARC7

The Software Object of the ARCHERY data model is rendered by a dedicated RRSet identified by unique domain
name that can be used to access this object inside the registry.

The software object RRSet is composed of single object identity RR, PubKey Endpoint object RR and one RR
for every RTEs Endpoint objects associated with the registry. The software object identity RR has the format of
o=software followed by optional id=<Registry ID>:

<DNS name> TXT "o=software [id=<Registry ID>]"
<DNS name> TXT "u=<PubKey URL> t=gpg.pubkey[.base64]"
<DNS name> TXT "u=<DNS URL> t=archery.rte [s={0|1}]"
<DNS name> TXT ...
<DNS name> TXT "u=<DNS URL> t=archery.rte [s={0|1}]"

The RTE Object of the ARCHERY data model is rendered by a dedicated RRSet identified by unique domain
name that can be used to access this object inside the registry.

The RTE object RRSet is composed of single object identity RR, and one RR for every RTE Data Endpoint object
pointing to signed RTE data location. The RTE object identity RR has the format of o=rte followed by id=<RTE
ID> and optional d=<RTE Descition>. The description should be encoded to eliminate spaces, using the UR-
LEncode is advised. Typicaly there is only one RTE Data Endpoint object that point to either DNS or external
URL. Several RTE Data Endpoints imply external URL redundancy:

<DNS name> TXT "o=rte id=<RTE ID> [d=<RTE Description>]"
<DNS name> TXT "u=<RTE Data URL> t=gpg.singed[.base64] [s={0|1}]"

Embedding ARCHERY object relations

In the registry rendering the entry point Group Object is distinguished by the predefined RRSet DNS name starting
with the mandatory _archery. Any other objects may have arbitrary RRSet name in any DNS zone. Exact
RRSets naming scheme does not affect service discovery process, but should be consistent and transparent from
the operational point of view.

The child-parent Endpoint Object to Service Object relation is implicitly defined by means of grouping within the
same RRSet. The same applies to “RTE Data Endpoint Object to RTE Object” and “PubKey Endpoint object to
Software Object” relations.

The ARCHERY Data model allows grouping of Service, Group and Software Objects into Group objects via the
intermediate Endpoint objects. This grouping in the DNS rendering is implemented by using dedicated ARCHERY
Endpoint types that are contained as RR text inside the Group object’s RRSet. The same applies to “RTEs Endpoint
Object to Software Object” relations.

Both Group Object to Group Object, Group Object to Service Object, Group Object to Software Object and Soft-
ware Object to RTE Object relations rest upon the unique DNS name of the RRSet of the pointed object.

6.5 A-REX Technical Description

6.5.1 Internal files of the A-REX

A-REX stores information about jobs in files in the control directory. Information is stored in files to make it easier
to recover in case of failure, but for faster processing job state is also held in memory while A-REX is running.

The files and sub-directories in the control directory and their formats are described below:

• accounting - sub-directory containing accounting related information (typicaly sqlite database with account-
ing records)

• delegations – sub-directory containing collection of delegated credentials and sqlite database for associating
them to submitted jobs.

• logs – sub-directory with information prepared for reporting plugins.

292 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

• dhparam.pem - file with Diffie-Hellman parameters for establishing TLS connection with A-REX server.This
file is generated first time A-REX is started and it may take some time till it is populated.

• dtr.state - file with current state of data statging functionality

• gm-heartbeat - modification time of this file is continuosly updated by A-REX to indicate it’s main processing
loop is running

• gm.fifo - FIFO communication channel to A-REX mostly used by babckend scripts to indicate jobs whose
state have cahnged

• info.xml - file with current state of A-REX CE expresssed in GLUE2 XML

• ID.status – file with current state of the job. Here ID corresponds to arbitrary ASCII string assigned to
submitted job. Currenly ID is made of 12 lowercase hex symbols. But that may change without notice. This
is a plain text file containing a single word representing the internal name of current state of the job. Possible
values and corresponding external job states are:

– ACCEPTED

– PREPARING

– SUBMIT

– INLRMS

– FINISHING

– FINISHED

– CANCELING

– DELETED

See corresponding Section for a description of the various states. Additionally each value can be prepended
the prefix “PENDING:” (like PENDING:ACCEPTED, see corresponding Section). This is used to show
that a job is ready to be moved to the next state but it has to stay in it’s current state only because otherwise
some limits set in the configuration would be exceeded.

This file is not stored directly in the control directory but in the following sub-directories:

– accepting - for jobs in ACCEPTED state

– finished - for jobs in FINISHED and DELETED states

– processing - for other states

– restarting - temporary location for jobs being restarted on user request or after restart of A-REX

• description – file contains the description of the job (JD). This and all the following files are stored in hierar-
chy of subdirectories jobs/SUBID/SUBID/SUBID/SUBID. Here SUBID are aritrary ASCII string which if
put together form ID of the job. The files re store inside set of sub-directories to reduce load on filesystems
which typically suffer performance decrease when amount of files in directory increases. Currently each
SUBID consists of 3 lowercase hex symbols. But that may change.

• local – information about the job used by the A-REX. It consists of lines of format “name = value”. Not all
of them are always available. The following names are defined:

– globalid – job identifier as seen by user tools. Depending on used interface it is either BES ActivityI-
dentifier XML tree, GUID of EMI ES or GridFTP URL.

– headnode – URL of service interface used to submit this job.

– interface – name of interface used for jobs submission - org.nordugrid.xbes,
org.ogf.glue.emies.activitycreation or org.nordugrid.gridftpjob.

– lrms – name of the LRMS backend to be used for local submission

– queue – name of the queue to run the job at

– localid – job id in LRMS (appears only after the job reached state InLRMS)

6.5. A-REX Technical Description 293

NorduGrid ARC 7 Documentation, Release ARC7

– args – main executable name followed by a list of command-line arguments

– argscode – code which main executable returns in case of success

– pre – executable name followed by a list of command-line arguments for executable to run before main
executable. There maybe few of them

– precode – code which pre-executable returns in case of success

– post – executable name followed by a list of command-line arguments for executable to run after main
executable. There maybe few of them

– postcode – code which post-executable returns in case of success

– subject – user certificate’s subject, also known as the distinguished name (DN)

– starttime – GMT time when the job was accepted represented in the Generalized Time format of LDAP

– lifetime – time period to preserve the SD after the job has finished in seconds

– notify – email addresses and flags to send mail to about the job specified status changes

– processtime – GMT time when to start processing the job in Generalized Time format

– exectime – GMT time when to start job execution in Generalized Time format

– clientname – name (as provided by the user interface) and IP address:port of the submitting client
machine

– clientsoftware – version of software used to submit the job

– rerun – number of retries left to rerun the job

– priority – data staging priority (1 - 100)

– downloads – number of files to download into the SD before execution

– uploads – number of files to upload from the SD after execution

– jobname – name of the job as supplied by the user

– projectname – name of the project as supplied by the user. There may be few of them

– jobreport – URL of a user requested accounting service. The A-REX will also send job records to this
service in addition to the default accounting service configured in the configuration. There may be few
of them

– cleanuptime – GMT time when the job should be removed from the cluster and it’s SD deleted in
Generalized Time format

– expiretime – GMT time when the credentials delegated to the job expire in Generalized Time format

– gmlog – directory name which holds files containing information about the job when accessed through
GridFTP interface

– sessiondir – the job’s SD

– failedstate – state in which job failed (available only if it is possible to restart the job)

– failedcause – contains internal for jobs failed because of processing error and client if client requested
job cancellation.

– credentialserver – URL of MyProxy server to use for renewing credentials.

– freestagein – yes if client is allowed to stage-in any file

– activityid – Job-id of previous job in case the job has been resubmitted or migrated. This value can
appear multiple times if a job has been resubmitted or migrate more than once.

– migrateactivityid –

– forcemigration – This boolean is only used for migration of jobs. It determines whether the job should
persist if the termination of the previous job fails.

294 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

– transfershare – name of share used in Preparing and Finishing states. This file is filled partially during
job submission and fully when the job moves from the Accepted to the Preparing state.

• input – list of input files. Each line contains 3 values separated by a space. First value contains name of the
file relative to the SD. Second value is a URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input 12378.dat

A URL represents a location from which a file can be downloaded. Each URL can contain additional options.

A file description refers to a file uploaded from the UI and consists of [size][.checksum] where

– size - size of the file in bytes.

– checksum - checksum of the file identical to the one produced by cksum (1).

These values are used to verify the transfer of the uploaded file. Both size and checksum can be left out. A
special kind of file description . is used to specify files which are not required to exist. The third optional
value is path to delegated credentials to be used for communication with remote server.

This file is used by the data staging subsystem of the A-REX. Files with URL will be downloaded to the SD
or cache and files with ’file description’ will simply be checked to exist. Each time a new valid file appears
in the SD it is removed from the list and input file is updated.

• input_status – contains list of files uploaded by client to the SD.

• output – list of output files. Each line contains 1, 2 or 3 values separated by a space. First value is the name
of the file relative to the SD. The second value, if present, is a URL. Supported URLs are the same as those
supported by input file. Optional 3rd value is path to delegated credentials to be used while accessing remote
server.

This file is used by the data staging subsystem of the A-REX. Files with URL will be uploaded to SE and
remaining files will be left in the SD. Each time a file is uploaded it is removed from the list and output file
is updated. Files not mentioned as output files are removed from the SD at the beginning of the Finishing
state.

• output_status – list of output files successfully pushed to remote locations.

• failed – the existence of this file marks the failure of the job. It can also contain one or more lines of text
describing the reason of failure. Failure includes the return code different from zero of the job itself.

• errors – this file contains the output produced by external utilities like data staging, script for job submission
to LRMS, etc on their stderr handle. Those are not necessarily errors, but can be just useful information
about actions taken during the job processing. In case of problem include content of that file while asking
for help.

• diag – information about resources used during execution of job and other information suitable for diagnostics
and statistics. It’s format is similar to that of local file. The following names are at least defined:

– nodename – name of computing node which was used to execute job,

– runtimeenvironments – used runtime environments separated by ’;’,

– exitcode – numerical exit code of job,

– frontend distribution – name and version of operating system distribution on frontend computer,

– frontend system – name of operating on frontend computer,

– frontend subject – subject (DN) of certificate representing frontend computer,

– frontend ca – subject (DN) of issuer of certificate representing frontend computer, and other information
provided by GNU time utility. Note that some implementations of time insert unrequested information
in their output. Hence some lines can have broken format.

• proxy – delegated X509 credentials or chain of public certificates.

• proxy.tmp – temporary X509 credentials with different UNIX ownership used by processes run with effective
user id different from job owner’s id.

• statistics – statistics on input and output data transfer

6.5. A-REX Technical Description 295

NorduGrid ARC 7 Documentation, Release ARC7

• xml - job’s current state expressed in GLUE2 XML rendering

There may be other files inside jobs/SUBID/SUBID/SUBID/SUBID sub-directories which are created and used
by different parts of the A-REX. Their presence can not be guaranteed and can change depending on changes in
the A-REX code.

6.6 ARC support for OIDC

6.6.1 Support level

Only tokens conforming to the WLCG profile have been tested. The current validation is not strict: the token
is parsed and the signature is checked if present, but no additional requirements are imposed. Tokens are only
accepted for client authentication during job submission through the EMI-ES and REST interfaces.

6.6.2 Obtaining and using tokens

The suggested way for obtaining a token is through the oidc-agent utility - https://indigo-dc.gitbook.io/oidc-agent/.
Install it following the instructions for your Linux distribution.

Point your browser to https://wlcg.cloud.cnaf.infn.it/ and create an account.

Start the oidc-agent. It will print few lines of shell commands. Copy them to the command line and execute. This
will set up environment variables for other oidc-* commands.

Start oidc-gen. It will guide you through the steps to register the OIDC client and create a profile for the oidc-agent.
When asked to select the issuer, select https://wlcg.cloud.cnaf.infn.it/. When asked about the scope,
write openid profile wlcg. You only need to run the oidc-gen once. Next time when you use the oidc-agent,
you can load an already created profile with the ‘oidc-add NAME_YOU_CHOOSE’ command.

When the oidc-gen command tells you “To continue and approve the registered client visit the following URL in a
Browser of your choice:” point your browser (which must be running on the same machine as the oidc tools do) to
the adress given.

Obtain the token and store it in the BEARER_TOKEN variable:

export BEARER_TOKEN=`oidc-token NAME_YOU_CHOOSE`

If the oidc tools were installed on a different machine than your ARC client, then first obtain the token on the oidc
tool machine:

oidc-token NAME_YOU_CHOOSE

Then copy the token string and on your ARC client machine do:

export BEARER_TOKEN=<token-string>

Now submit the job to an ARC CE with arcsub through the REST interface. For that, use the option ‘-T arcrest’.
The token stored in the BEARER_TOKEN variable will be used instead of the X.509 certificate for authenticating
the user to the ARC CE server. Note that arcsub still requires an X.509 proxy which will be delegated to the CE.
Data staging currently will also still use the X.509 proxy credentials.

Note: You can use any other method for obtaining a WLCG compliant OIDC token. Just store it in the
BEARER_TOKEN variable before calling arcsub.

296 Chapter 6. Technical Documents Describing ARC Components

https://indigo-dc.gitbook.io/oidc-agent/
https://wlcg.cloud.cnaf.infn.it/

NorduGrid ARC 7 Documentation, Release ARC7

6.6.3 Configuring authorization on server

Token processing is enabled by the presence of the [authtokens] configuration block.

The user can be authorized on the server by adding a dedicated command to the authgroup block:

authtokens=subject issuer audience scope group

The specified parameters must match those in the provided token. Parameters can be ‘*’ to match any value, for
example

authtokens=e83eec5a-e2e3-43c6-bb67-df8f5ec3e8d0 https://wlcg.cloud.cnaf.infn.it/ * * *

matches a user with subject e83eec5a-e2e3-43c6-bb67-df8f5ec3e8d0 in token issued by https://wlcg.cloud.cnaf.
infn.it/ .

Note: Until handling of authtokens is integrated with arcproxy you will have to find the subject of the token using
a tool like e.g. https://jwt.io/ . Alternatively you can install flaat (https://pypi.org/project/flaat/).

A full example configuration could look like

[authtokens]

[authgroup: wlcg_iam]
authtokens = * https://wlcg.cloud.cnaf.infn.it/ * compute.create /wlcg/pilots
authtokens = * https://wlcg.cloud.cnaf.infn.it/ * compute.read /wlcg/pilots
authtokens = * https://wlcg.cloud.cnaf.infn.it/ * compute.modify /wlcg/pilots
authtokens = * https://wlcg.cloud.cnaf.infn.it/ * compute.cancel /wlcg/pilots

[mapping]
map_to_user = wlcg_iam wlcg:wlcg
policy_on_nomap=stop

[arex/ws/jobs]
allowaccess=wlcg_iam

User mapping to a local account is implemented using a simulated X.509 user subject. The subject provided by an
OIDC token is unique only in scope of the identity provider. To generate a globally unique user-identifier, the issuer
and the subject are cocatenated as “issuer/subject” to provide an identifier suitable for user mapping. For example,
a user with subject e83eec5a-e2e3-43c6-bb67-df8f5ec3e8d0 in the token issued by https://wlcg.cloud.cnaf.infn.it/
is represented by a simulated identifier https://wlcg.cloud.cnaf.infn.it//e83eec5a-e2e3-43c6-bb67-df8f5ec3e8d0

6.7 Old Relevant Technical Documents

Note: Many of the technical documents exists for ARC5 only. Those that are verified to be relevant for ARC6 will
be listed below

6.7. Old Relevant Technical Documents 297

https://wlcg.cloud.cnaf.infn.it/
https://wlcg.cloud.cnaf.infn.it/
https://jwt.io/
https://pypi.org/project/flaat/
https://wlcg.cloud.cnaf.infn.it/
https://wlcg.cloud.cnaf.infn.it//e83eec5a-e2e3-43c6-bb67-df8f5ec3e8d0
http://www.nordugrid.org/documents/

NorduGrid ARC 7 Documentation, Release ARC7

6.7.1 Hosting Environment of the Advanced Resource Connector middleware

Document gives a deep technical description of the HED service container.

298 Chapter 6. Technical Documents Describing ARC Components

http://www.nordugrid.org/documents/ARCHED_article.pdf

NorduGrid ARC 7 Documentation, Release ARC7

6.7.2 A Client Library for ARC

Document describes from a technical viewpoint the plugin-based client library of ARC.

6.8 Legacy JURA Accounting Technical Details

WARNING: This component was deprecated in ARC 6.4 and completely removed in ARC 6.8!

Warning: Information in this chapter is relevant only for 6.0-6.3 ARC releases.

Starting from ARC 6.4 release the next generation accounting subsystem with local accounting database will
be introduced. Make sure you are reading the documentation that match your ARC CE release version.

General accounting configuration and operations flows are described in Accounting with legacy JURA. This section
contains more technical details about implementation of each component of accounting subsystem.

6.8. Legacy JURA Accounting Technical Details 299

http://www.nordugrid.org/documents/client_technical.pdf

NorduGrid ARC 7 Documentation, Release ARC7

6.8.1 Records processing and publishing

Fig. 6.14: ARC CE accounting: records creation, processing and publishing

AREX Accounting Records (AAR job log files)

The A-REX Accounting Records (AAR) are job log files generated by A-REX. AAR is the only source of account-
ing information for JURA. AARs are written by A-REX based on job data available, including .diag files that
backend scripts creates based on batch system data and/or GNU time utility measurements. These job log files
reside under the <control_dir>/logs directory. The name of the AAR job log files consist of the ID of the job
and a random string to avoid collision of multiple job log files for the same job: <jobid>.<random>.

The AAR job log file consists of name=value lines, where value is either a job-related resource consumption
data or a static info like name, ID or proxy certificate.

A-REX generates at least two job log files for each job: one at the time of job submission, another one after the job
finishes, and possibly others at various job events. Please note JURA makes use only one of the AREX generated
files belonging to the same job: the one that corresponds to the FINISHED job event (such state is indicated by the
status={completed|failed|aborted}).

JURA initial AAR processing

A-REX periodically runs jura that loop over available A-REX job log records in the <control_dir>/logs.
JURA opens all the files and processes only those that corresponds to a FINISHED job state.

JURA converts AARs to per-job per-destnation extended AARs that contains the target information from arc.
conf as well. One extended AAR is generated per accounting target. The extended AAR job log files named
<jobid>.<random>_<random2> where first <random> is taken from original AAR.

The original AAR <jobid>.<random> file is deleted once per-destination extended AAR logs are created by
JURA.

Note: JURA as part of the initial processing deletes all files corresponding to non-finished job states.

300 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

JURA Publihsing loop

JURA publishing subsystem loop over extended AAR logs in the A-REX <control_dir>/logs directory. JURA
generates records in the Usage Record (UR) format proposed by the Open Grid Forum (OGF) for SGAS or Compute
Accounting Record (CAR) XML for APEL.

The extended AAR job log file is deleted once record is successfully submitted, thus preventing multiple insertion
of same usage records. If submission to destination fails, the extended AAR log files are kept, so another attempt is
made upon a subsequent run of JURA. This mechanism will be repeated until the expiration time passes at which
point the next execution of JURA removes the file without processing.

Please note that the JURA publishing loop is backward compatible with ARC 5 implementation.

Reporting to SGAS

SGAS has a simple custom web service interface loosely based on WS-ResourceProperties. JURA uses the inser-
tion method of this interface to report URs directly using ARC HTTP client implementation. The corresponding
processed extended AAR job log files are deleted after receiving a non-fault response from the service.

To increase communication efficiency JURA sends URs in batches. SGAS accepts a batch of URs in a single
request. The batch is an XML element called UsageRecords, containing elements representing URs.

The process of handling batches is the following: JURA does not send all usage records immediately after gen-
eration, but instead collects them in a batch until reaching the maximal number of records or until running out of
job log files. The maximal number of URs in a batch can be set as a urbatchsize configuration parameter of SGAS
target.

Reporting to APEL

APEL uses the SSM framework for communication.

JURA send records to APEL by means of invoking helper ssmsend process that uses SSM python librarires de-
veloped by APEL.

ARC ships minimal set of SSM libraries along with A-REX binary packages to allow SSM usage. If SSM binary
packages from APEL are availble for your OS (e.g. EL6), you can install this packages and they will be used instead
of those shipped with ARC automatically.

JURA prepares the messages to be sent by ssmsend and puts them info SSM Outgoing directory located in
the /var/spool/arc/ssm/<destination hostname>/outgoing/00000000/. Generated messages are XML
based CAR records with file name format <YYYYMMDDhhmmss>.

Reporting to APEL also works with sending records in batches. The default urbatchsize value is set to 1000
according to APEL recommendatations.

6.8.2 Accounting archive

After records are archived by jura a dedicated jura-archive-manager process manages the archive layout and
archive database.

6.8. Legacy JURA Accounting Technical Details 301

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.15: ARC CE accounting: records archiving

6.8.3 Republishing process

Republihsing is a complex workflow that involves:

• archive database to find out which subset of records should be republished

• exporting necessary records from archive structure to temporary flat directory

• trigering jura with corresponding configuration to grab records from temporary directory and send them to
target

• cleanup after republihsing

This chain is controlled from arcctl code.

6.8.4 Security

The JURA executable runs with the same user privileges as the A-REX. The owner of a job log file is the local
user mapped for the submitter entity of the corresponding job. Since these files contain confidential data, A-REX
restricts access to them allowing only read access for the job owner, thus when JURA is executed by A-REX it is
allowed to read and delete job log files.

All usage records are submitted using the X.509 credentials specified by the value of x509_ set of confiurartion
options of arc.conf. No proxies are used for communcation with accouting services.

The only access restriction made by a SGAS service is matching the Distinguished Name of the client (in this
context JURA) with a set of trusted DNs. When access is granted, policies are then applied by SGAS, allowing
either publishing and/or querying rights. Clients with publishing right can insert any UR, regardless of content.
By default, querying right only allows retrieving URs pertaining to jobs submitted by the querying entity.

302 Chapter 6. Technical Documents Describing ARC Components

NorduGrid ARC 7 Documentation, Release ARC7

Fig. 6.16: ARC CE accounting: records republishing

6.8.5 Implementation and API

JURA as part of the ARC software stack is written in C++, and utilizes the functionality provided by the ARC
libraries, including secure HTTPS communication provided by the ARC plugable TLS and HTTP modules.

The modular design is also present in the usage reporting part of the JURA code, making it possible to extend
JURAs support of accounting services. To create a JURA module one should simply write a C++ class which
inherits from the abstract Arc::Destination class, and it must extend the two methods:

• static Arc::Destination* Arc::Destination::createDestination(Arc::JobLogFile&)

• void Arc::Destination::report(Arc::JobLogFile&)

The static createDestination method should initialize a object of the specialized class, using the configuration
options specified in the passed Arc::LogFile object, and the memory allocated by the method should be freed
by the caller. Then the report method should carry out the transfer of the UR, represented by the JobLogfile
object, to the accounting service.

JURA archive manager is written in Python and share the classes for managing ARC components with ARC Control
Tool.

6.8. Legacy JURA Accounting Technical Details 303

NorduGrid ARC 7 Documentation, Release ARC7

6.8.6 Limitations

In the following list some issues which limits the functionality of JURA is described:

• The current implementation of JURA and A-REX supports only one expiration time for all the reporting
destinations. Even though the configuration enables the specification of different expiration values per re-
porting destination, it is not taken into account by the system, the last value is used as the common expiration
time value.

• It is not possible to use different credentials per destinations.

• If you are updating from ARC5 with an old jura accounting archive already containing records, the conversion
process to index the archive structure will be initiated and will cause serious system load until finished. To
avoid old archive conversion, you can move records before update.

• Some optional UR properties are not supported.

• Memory can be reported incorrectly with buggy GNU “time” results.

6.9 ARC Accounting Database Schema

304 Chapter 6. Technical Documents Describing ARC Components

CHAPTER

SEVEN

DOCUMENTATION FOR DEVELOPERS

If you are looking for development internal details of ARC (like how some stuff was coded) this part of documen-
tation is for you. Mainly for those who want to contribute to the project development, advanced troubleshooters or
just interested.

7.1 Implementation Details for Developers

7.1.1 General arc.conf python configuration parser

Parsing configuration

Initial configuration parsing

The latest version of arcconfig-parser designed to operate with defaults file that holds default values for all
possible parameters.

At the time of initial parsing the following chain is executed:

• All blocks and options are parsed from arc.conf

• For all blocks defined in arc.conf missing options are added from defaults file

• Special constructs in values are substituted (see Special constructs can be used as values)

Optional by design parameters that does not have default value (specified with not set value) are not included to
the parsed configuration.

Runtime configuration

Configuration that includes both arc.conf and defaults config called runtime configuration.

In some cases it is useful to save and load runtime configuration:

• To supply C++ services (a-rex, gridftpd) with configuration that includes defaults from common place

• For repetitive operations on config to eliminate full-chain processing of each invocation

To save runtime configuration to the default location (/var/run/arc/):

arcconfig-parser --save

To save runtime configuration to specified location:

arcconfig-parser --save -r /var/run/arc/arex.arc.conf

To load runtime configuration instead of full-chain processing and e.g. get the value of x509_host_key in
[common] block:

305

NorduGrid ARC 7 Documentation, Release ARC7

arcconfig-parser --load -b common -o x509_host_key

Special constructs can be used as values

Defaults includes references to another config parts to be consistent with the implied arc.conf structure.

The most obvious example is if x509_host_key not found in e.g. [arex/jura] block it should be taken from
[common].

Config parser is following this logic (especially in respect to defaults) and use special constructs to accomplish this
behaviour.

Command substitutions

Configuration option values can contain the construct $EXEC{<command>} that substituted to the stdout of
<command>.

For example:

hostname=$EXEC{hostname -f}

Option values substitutions

The construct $VAR{[block]option} can be used to substitute the values of another option value.

If option is in the same block as referencing option block name can be omitted - $VAR{option}.

For example:

x509_host_key=$VAR{[common]x509_host_key}
bdii_update_cmd=$VAR{bdii_location}/sbin/bdii-update

Evaluation of simple code

For limited number of cases arc.conf default values relies on arithmetic operations. For this purpose the
$EVAL{string} special construct had been introduced.

For example:

bdii_read_timeout=$EVAL{$VAR{bdii_provider_timeout} + $VAR{[arex]infoproviders_
↪→timelimit} + $VAR{[arex]wakeupperiod}}

Getting the configuration values

If --option argument is passed to arcconfig-parser parser returns the value of the specified option to stdout.

Without --option arcconfig-parser can be used to operate with configuration blocks:

• check blocks existance (exit code used to indicate the status of the check)

• return the list of subblocks

With the --export option arcconfig-parser allows to export config in the following formats:

• json - returns entire configuration or subset of blocks as-is in JSON to stdout

306 Chapter 7. Documentation for Developers

NorduGrid ARC 7 Documentation, Release ARC7

• bash - for [common] block or specified configuration subset returns CONFIG_option_name=value
pairs to stdout. Block names ARE NOT included in the exports and option values precedence will be
used in the order of passed blocks. If automatic subblocks expansion used with bash export, for every
block in sequence - it’s subblocks are processed first (in arc.conf defined order). It is possible to filter
the options that will be exported with additional --filter option that can be specified several times.

Common configuration parsing sequence

Binary Distribution

Startup scripts

arc.conf.reference

Developers entry-point to put info

Substitution syntax

arc.parser.defaults

buildtime

/usr/share/doc

/usr/share/arc/parser.defaults

/etc/arc.conf

arcconfig-parser

1. parse, get defined blocks

2. add defaults for defined blocks

runtime configuration

3. evaluate substitutions

export JSON export BASH get value /var/run/arc/arc.conf

dump config

define ENV variables

start a-rex

Options reference

The full list of available options of arcconfig-parser is available instantly using --help option. Online version
is available here.

Examples

Get value of option in block:

arcconfig-parser --block infosys --option logfile
/var/log/arc/infoprovider.log

Get value of option in blocks in order they are specified (e.g. if not found in [gridftpd] look in the [common]
block1):

1 Block dependencies are now implied by defaults file, so for most cases it is enough to specify only block in question

7.1. Implementation Details for Developers 307

NorduGrid ARC 7 Documentation, Release ARC7

arcconfig-parser --block gridftpd --block common --option x509_host_key
/etc/grid-security/hostkey.pem

Export entire configuration to JSON2:

arcconfig-parser --export json

Export [infosys] block options to JSON (for Perl):

arcconfig-parser --block infosys --export json
{"infosys": {"loglevel": "5"},...

Export [infosys] block and all their subblocks options to JSON:

arcconfig-parser --block infosys --subblocks --export json
{"infosys/glue2/ldap": {"showactivities": "no"},...

Export for BASH (compatible with config representation in shell-based LRMS backends):

arcconfig-parser --block infosys --block arex --block common --export bash
CONFIG_controldir="/var/spool/arc/jobstatus"
CONFIG_defaultttl="1210000"
CONFIG_delegationdb="sqlite"
CONFIG_hostname="ce01.example.org"
CONFIG_maaxrerun="5"
CONFIG_maxjobs="10000 -1"
CONFIG_runtimedir="/home/grid/arc/runtime"
CONFIG_sessiondir="__array__" # <= NEW define for multivalued values that indicate␣
↪→indexed vars
CONFIG_sessiondir_0="/mnt/scratch/grid/arc/session"
CONFIG_sessiondir_1="/home/grid/arc/session drain"
...

Export for BASH with exported options filtering:

arcconfig-parser -b common -f hostname -f x509_cert_dir -e bash
CONFIG_hostname="ce01.example.org"
CONFIG_x509_cert_dir="/etc/grid-security/certificates"

Using BASH export:

eval "$(arcconfig-parser --block infosys --block arex --block common --export bash␣
↪→)"
echo "$CONFIG_gridmap"

Check block(s) exists ([common/perflog] does not exists in the example):

arcconfig-parser --block common/perflog --block arex
echo $?
1

List block subblocks:

arcconfig-parser --block infosys --subblocks
infosys
infosys/ldap
infosys/nordugrid

(continues on next page)

2 HINT: use arcconfig-parser --export json | jq . to view highlighted JSON structure in shell

308 Chapter 7. Documentation for Developers

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

infosys/glue2
infosys/glue2/ldap
infosys/cluster

Using parser as Python module:

from arc.utils import config

initial parsing with defaults
config.parse_arc_conf('/etc/arc.conf', '/usr/share/arc/arc.parser.defaults')

get parsed dictionary and list of blocks in the arc.conf order
>>> confdict = config.get_config_dict()
>>> confblocks = config.get_config_blocks()

get list of all [queue] subblocks sorted by name
>>> sb = config.get_subblocks(['queue'], is_sorted=True)
>>> sb
['queue:grid', 'queue:grid_rt']

get value of 'x509_host_key' from [arex] block and than from [common] if not found␣
↪→in [arex]
>>> a = config.get_value('x509_host_key', ['arex', 'common'])
>>> a
'/etc/grid-security/hostkey.pem'

get value of 'allowactivedata' option from [gridftpd] block
>>> b = config.get_value('allowactivedata', 'gridftpd')
>>> b
'yes'

get value of 'allowactivedata' option from [gridftpd] block (always return list)
>>> c = config.get_value('allowactivedata', 'gridftpd', force_list=True)
>>> c
['yes']

get value of 'allowactivedata' option from [gridftpd] block (return boolean value)
>>> d = config.get_value('allowactivedata', 'gridftpd', bool_yesno=True)
>>> d
True

7.1.2 LRMS shell-backends overview for developers

CONFIG variables used in LRMS shell-backend:

lrms_common.sh:

$CONFIG_runtimedir [arex]
$CONFIG_shared_scratch [arex]
$CONFIG_shared_filesystem [arex]
$CONFIG_scratchdir [arex]
$CONFIG_gnu_time [lrms]
$CONFIG_nodename [lrms]
$CONFIG_enable_perflog_reporting [common]
$CONFIG_perflogdir [common]

7.1. Implementation Details for Developers 309

NorduGrid ARC 7 Documentation, Release ARC7

submit_common.sh:

$CONFIG_defaultmemory [queue] [lrms]
$CONFIG_hostname [common]
$CONFIG_controldir [arex]

lrms=boinc:

$CONFIG_boinc_app_id [lrms]
$CONFIG_boinc_db_host [lrms]
$CONFIG_boinc_db_port [lrms]
$CONFIG_boinc_db_user [lrms]
$CONFIG_boinc_db_pass [lrms]
$CONFIG_boinc_db_name [lrms]

lrms=condor3:

$CONFIG_enable_perflog_reporting [common] not in reference
$CONFIG_perflogdir [common] not in reference
$CONFIG_controldir [arex] (for perflog)

$CONFIG_condor_requirements [queue] [lrms]
$CONFIG_condor_rank [lrms]
$CONFIG_shared_filesystem [arex]
$CONFIG_condor_bin_path [lrms]
$CONFIG_condor_config [lrms]

lrms=fork:

no variables

lrms=ll:

$CONFIG_enable_perflog_reporting [common] not in reference
$CONFIG_perflogdir [common] not in reference
$CONFIG_controldir [arex] (for perflog)

$CONFIG_ll_bin_path [lrms]
$CONFIG_ll_consumable_resources [lrms]
$CONFIG_ll_parallel_single_jobs *not in reference
$CONFIG_scratchdir [arex]

lrms=lsf:

$CONFIG_enable_perflog_reporting [common] not in reference
$CONFIG_perflogdir [common] not in reference
$CONFIG_controldir [arex] (for perflog)

$CONFIG_lsf_architecture [lrms]
$CONFIG_lsf_bin_path [lrms]

lrms=pbs:

$CONFIG_enable_perflog_reporting [common] not in reference
$CONFIG_perflogdir [common] not in reference
$CONFIG_controldir [arex] (for perflog)

(continues on next page)

3 Here and following # prefix is for options and are used in *_common scripts and not unique to particular backend

310 Chapter 7. Documentation for Developers

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

$CONFIG_pbs_queue_node [queue]
$CONFIG_pbs_bin_path [lrms]
$CONFIG_nodememory [queue] ([infosys/cluster] parser substitution␣
↪→fallback only)
$CONFIG_pbs_log_path [lrms]
$CONFIG_shared_filesystem [arex]

lrms=sge:

$CONFIG_enable_perflog_reporting [common] not in reference
$CONFIG_perflogdir [common] not in reference
$CONFIG_controldir [arex] (for perflog)

$CONFIG_sge_root [lrms]
$CONFIG_sge_cell [lrms]
$CONFIG_sge_qmaster_port [lrms]
$CONFIG_sge_execd_port [lrms]
$CONFIG_sge_bin_path [lrms]
$CONFIG_sge_jobopts [queue] [lrms]
$CONFIG_scratchdir [arex]

lrms=slurm:

$CONFIG_enable_perflog_reporting [common] not in reference
$CONFIG_perflogdir [common] not in reference
$CONFIG_controldir [arex] (for perflog)

$CONFIG_slurm_wakeupperiod [lrms]
$CONFIG_slurm_use_sacct [lrms]
$CONFIG_slurm_bin_path [lrms]
$CONFIG_shared_filesystem [arex]

Call graph

7.1. Implementation Details for Developers 311

NorduGrid ARC 7 Documentation, Release ARC7

Submitting jobs

sumbit_LRMS_job.sh

sumbit_common.sh

lrms_common.sh

configure_LRMS_env.sh

define joboption_lrms

source lrms_common.sh

source submit_common.sh

common_init

LRMS-specific submit

LRMS

common_init()RTEs()

Moving files()

I/O redicrection()

Defining user ENV()

Memory requirements()

packaging paths

set LRMS-specific ENV/fucntions

parse_arc_conf() parse_grami() init_lrms_env()

a-rex

arc.conf grami file

312 Chapter 7. Documentation for Developers

NorduGrid ARC 7 Documentation, Release ARC7

Scanning jobs

scan_LRMS_job.sh scan_common.sh

lrms_common.sh

configure_LRMS_env.sh

LRMS-specific scan

LRMS

define joboption_lrms

source lrms_common.sh

source scan_common.sh set LRMS-specific ENV/fucntions

common_init

common_init()

Timestamp convertion()

Owner UID()

Read/Write diag()

Save commentfile()

packaging paths parse_arc_conf()init_lrms_env()parse_grami()a-rex

arc.conf

controldir

7.1. Implementation Details for Developers 313

NorduGrid ARC 7 Documentation, Release ARC7

Canceling jobs

cancel_LRMS_job.sh

cancel_common.sh

lrms_common.sh

configure_LRMS_env.sh

LRMS-specific cancel

LRMS

define joboption_lrms

source lrms_common.sh

source scan_common.sh set LRMS-specific ENV/fucntions

common_init

common_init()

packaging paths parse_arc_conf()init_lrms_env() parse_grami()

a-rex arc.conf grami file

Changes in ARC6 memory limits processing:

Current logic of memory limits processing:

• nodememory - advertise memory for matchmaking: max memory on the nodes (in [infosys/cluster]
block or per-queue)

• defaultmemory - enforce during submission if no memory limit specified in the job description (in [lrms]
block or per-queue)

The ARC6 logic is no enforcement = no limit1

Backends behaviour with no memory enforcement limit:

• boinc - set to hardcoded 2GB

• condor - no enforcement

• form - no memory handling at all

• ll - no enforcement

• lsf - no enforcement

• pbs - no enforcement2

• sge - no enforcement

• slurm - no enforcement
1 ARC5 logic was no enforcement = max node memory or 1GB if nodememory is not published (and not used for matchmaking)
2 exclusivenode is memory-based and nodememory value is used in this case

314 Chapter 7. Documentation for Developers

NorduGrid ARC 7 Documentation, Release ARC7

7.2 Contributing to Documentation

NorduGrid ARC6 documentation is mainly written in reStructuredText and build with Sphinx to HTML pages,
LaTeX (for printable PDF versions) and ePub.

Recent source tree (master branch) build is available instantly via Coderefinery GitLab Pages and deployed to the
nordugrid.org on nightly basis.

Everyone is welcome to contribute. For trivial fixes just click on the “Edit in GitLab” button and commmit the
changes.

You need to have an account in the Coderefinery GitLab and be a member of the project to be allowed to edit.
Contact us if you want to contribute, but are not a member yet.

7.2.1 Commiting and reviewing changes

Contribution is possible by direct push to the repo, no need for merge requests if you are fixing typos or other
content that does not requires review!

Note: In the renderend HTML version there is a link at the bottom of each page labeled Edit page source on
GitLab. Using this link you can edit the page source in your web-browser without the need to checkout source tree

In case you want to add something new that requires the review process:

• create the new branch (in the same repository, no need to fork)

• open a merge request to master branch

• in-line and general discussion of the particular contribution is inside merge request.

7.2.2 Documentation structure

As reflected in the main index page, the documentation logically divided into the following groups:

• Documentation for Infrastructure Users

• Documentation for Infrastructure Admins

• Documentation for Developers

• Technical Documents Describing ARC Components

Admins documentation is the most developed part for ARC6. We aimed to have dedicated documents for each
particular topic and then bound them in the following way:

• The introductory /admins/try_arc6 that contains a zero-configuration case hands-on instruction to help new
users and admins getting started with ARC CE.

• Main /admins/arc6_install_guide that contains general installation and configuration flow for production
Computing Element deployment. The guide itself should be brief enough and holds only main examples. All
detailed instruction for each particular subsystem configuration should be written in the dedicated document
that linked to this guide.

• ARC Configuration Reference Document automatically rendered from text version in the code source tree.
Targeted for web-search. The ultimate configuration options description we have.

• All other dedicated documents goes to Operating ARC CE Subsystems section in case someone wants to
access them directly instead of following installation guides links.

7.2. Contributing to Documentation 315

http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/master/
http://nordugrid.pages.coderefinery.org/doc/
http://www.nordugrid.org/arc/arc6/
https://source.coderefinery.org/
mailto:nordugrid-discuss@nordugrid.org

NorduGrid ARC 7 Documentation, Release ARC7

7.2.3 Source tree directory structure

Sources of documents in rST format are placed into the source directory that contains the following structure:

• _static - logo and CSS files1

• _templates - Sphinx HTML theme layout tuningPage 316, 1

• _extensions - Custom sphinx extensions developed for ARC1

• common - directory used to store common for all ARC customers documentation, including admins,
users and developes. This documents are hidden in the main TOC tree, instead they are linked from
other various documents when needed.

– repos - this directory holds repository configuration instructions for release, nightlies, etc. Main
index page have repos pointers as well as Try ARC6 and Install Guide.

– changelog - documents that describe changes between ARC versions.

• admins - directory used to store Documentation for Infrastructure Admins. The main documents that
represent the entry points to ARC Computing Element installation and configuration resides directly
in this directory.

– details - this subdirectory designed to hold detailed configuration instructions for ARC CE sub-
systems, like RunTime Environments in ARC that describe all aspects of RTEs in-depth. This
documents intentionally moved deeper in the main TOC tree to prevent first levels flooding. If you
can find a chapter in main install guide that cat point to the in-depth document in question - this is
a right place to store it.

– commands - place for automatically generated command line option reference for ARC tools. At
the time of writing the Python tools represented there.

– archery - for the documents that not related to Computing Element another subdirectory should
be created. At the time of writing only ARCHERY documentation of that kind is available.

• developers - directory used to store Documentation for Developers. As long as we don’t have many of this
kind of documents everything that contains implementation details (how stuff coded, which variable used,
etc) should go there.

• tech - directory used to store Technical Documents Describing ARC Components. Now it holds only index
document that contains references to the available PDFs that is verified to be applicable to ARC6 release. To
add more, use template inside the index file.

• users - directory used to store Documentation for Infrastructure Users. If document is user-oriented - place
it here.

• sdk - place for Doxygen SDK documentation integration to Sphinx build1

• testing - directory used to store the documents for ARC 7 Testing Area.

• wip - “work in progress” area hidden in the TOC tree. You can use it for incomplete documents that should
not be publicly advertised yet, but still will be built and available via /wip/ URL in produced HTML files.

Index files

Each directory in the source tree contains index.rst file that is used to link other documents in the same TOC
tree. Upper-level index.rst file contains references to index.rst files in the subdirectories, that in turns contains
pointers to the other documents.

Note: When you add a new document, add a reference to the index.rst in the same directory

Just follow the index.rst chain (look for toctree keyword) starting from the source directory to get familiar
with TOC linking structure.

1 Do not touch unless you are modifying the Sphinx build itself. Nothing there affects documentation writting process.

316 Chapter 7. Documentation for Developers

NorduGrid ARC 7 Documentation, Release ARC7

Storing images

When you need to add images to your document you should upload the image file itself and refer to it from the
.rst.

ARC6 documentation structure implies that image files are stored inside the images subdirectory in the document
location. Then referencing is done by relative path, e.g:

.. figure:: images/shared_sessiondir_yes.svg

7.2.4 Building the docs

The top directory in the source tree contains build.sh script that:

• checkout the ARC source code tree and configures it with packaging-like paths

• builds Doxygen SDK documentation

• converts arc.conf.reference to rST

• copies documentation parts from ARC source code tree (for developers section)

• prepare automatically generated documentation for CLI commands

• builds HTML

• builds PDF (with LaTeX)

• builds ePub

On commit the GitLab CI configured to automatically invoke the build.sh to produce rendered documentation.
Documentation archive is avaiable as CI job artifacts and for master branch is deployed to GitLab Pages.

To build the docs on your local machine you should have at least Sphinx installed. Additionally you should be able
to configure ARC source tree and ARC Python command dependencies for auto-generated parts.

Complete and up-to-date list of dependencies defined for CI build and can be found in .gitlab-ci.yml.

PDF builds with LaTeX is the most heavy part from the both time and needed additional packages perspective. For
HTML rendering local debugging it is recommended to use the html script argument the skips PDF and ePUB:

[user@localhost doc]$./build.sh html

Point your browser to file:///path/to/doc/build/html/index.html to view the HTML rendering locally.

7.2.5 Writing Documentation in reStructuredText

reStructuredText (reST) is the default plaintext markup language used by Sphinx. There is possible to render
other markups but for consistency and better cross-referencing NorduGrid ARC6 documentation written solely in
reStructuredText.

General Syntax

reStructuredText markup specification is well documented in the several sources and was designed to be a simple
and readable in plain-text. Common text editors (including vim and emacs) recognize reST markup and provide
syntax highlighting out of the box.

Start with reStructuredText Primer on Sphinx docs.

Complete reST Markup Syntax can be found on Docutils starting with Quick reStructuredText document.

Sphinx also uses interpreted text roles to insert semantic markup (cross-referencing, etc) into docuemnts. To get
familiar read this document.

7.2. Contributing to Documentation 317

http://nordugrid.pages.coderefinery.org/doc/
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html

NorduGrid ARC 7 Documentation, Release ARC7

Just study the markup following the documentation and readinig the already written documents just here.

Code snippets

There are different options for representing the code, starting with the simple literal blocks identified with ::.

It is advised to use code-block:: directive to enable syntax highlighted rendering:

.. code-block:: ini

[gridftpd/jobs]
allowaccess = staticdn dnfromfile

In this example, the ini tag represents the syntax highlighting lexer identfier for Pygments. Look for available
lexers to serve your needs. The most common for our docs are: console, bash, ini and cfg.

References

Referencing another parts of documentation is necessary to achive usability. The typical referencing cases are:

Using custom label

Create label just above any of the paragraph headers with. The following markup creates my_label label.

.. _my_label:

My Heading
==========

Refering to a lable is possible from any other doument with:

read the :ref:`my_label`

In this case paragraph heading will be used for hyperlink text. If you want some custom text for hyperlink text use
the following syntax:

read this :ref:`text <my_label>`

Referring arc.conf.reference

Autogenerater reST rendering of arc.conf.reference already contains labels for all configuration options and
blocks that can be used.

The label name has the following structure:

• reference_<block name>[_<sub_block>...]_<option name> represents configration option
inside block

• reference_<block name>[_<sub_block>...] represents block itself

For example:

In the ``arc.conf`` there is a dedicated :ref:`[lrms] <reference_lrms>` block that␣
↪→defines the type of your LRMS.
Job session directory is configured with :ref:`reference_arex_sessiondir`␣
↪→configurration option.

318 Chapter 7. Documentation for Developers

http://pygments.org/docs/lexers/
http://pygments.org/docs/lexers/

NorduGrid ARC 7 Documentation, Release ARC7

Referring bugz

Custom Sphinx plugin for ARC documentation introduces new reST roles that can be used to mention bugs in
NorduGrid Bugzilla or GitLab Issues:

More details can be found in :bugz:`3802` and :issue:`57`.

Referencing docs

Referencing the the whole document is similar to using labels, but instead of label name the document name
(filename without extension) is used with :doc: keyword.

Example 1: Refer to the try_arc6.rst in the same source tree directory (relative path). Use the document header
as hyperlink text:

:doc:`try_arc6`

Example 2: Refer to the repository.rst by absolute path (starting from sources top directory). Use the custom
hyperlink text:

:doc:`NorduGrid Repositories </common/repos/repository>`

Adding notes

To highlight statement visually use notes and warnings:

.. note::
Zero configured A-REX comes with EMI-ES and REST interfaces enabled.

.. warning::
This information is valid for releases of ARC 6 starting from 6.0.

Adding images

In the ARC6 documentation images should be included with the caption. It is accomplished with the figure key-
word.

After storing image inside images subdirectory, include it in reST document as:

.. figure:: images/shared_sessiondir_yes.svg
:align: center
:alt: Sessiondir is shared between ARC CE and WNs

Sessiondir is shared between ARC CE and WNs. No local scratchdir defined.

Sphinx build had been configured with image format autocoversion feature. So you can use any image format,
including vector graphics.

7.2. Contributing to Documentation 319

http://docutils.sourceforge.net/docs/ref/rst/directives.html#figure

NorduGrid ARC 7 Documentation, Release ARC7

Graphviz

If you want to illustrate some process or structure that can be shown as graph, consider using built-in Graphviz
functionality.

Simple usage examples can be found in admins/details/rtes.rst document within ARC documentation. Give
it a try, it is easy.

Converting from other sources

Converting the old documentation parts from LaTeX or Mediawiki markdown to reST is not a magical process that
do everything automatically unfortunalely.

However you can get a good start with a pandoc tool that do the conversion.

E.g. to convert LaTeX source simply run:

[user ~]$ pandoc -f latex -t rst acix.tex > acix.rst

The ammount of efforts to edit the resulted .rst file and fix formatting issues is completely depends on the source
itself (e.g. how the console ouput was formatted in the origin document). Images and references in most cases
should be fixed separately after the pandoc.

320 Chapter 7. Documentation for Developers

https://www.graphviz.org/
https://pandoc.org/

CHAPTER

EIGHT

DOCUMENTATION FOR INFRASTRUCTURE USERS

This part of the documentation targeted to distributed computing infrastructure users that use either clients or SDK
to run jobs and handle data transfers.

8.1 Installing ARC Client Tools

Warning: Information in this document is fully applicable to ARC 6.5.0 and above only!

8.1.1 Step 1. Enable NorduGrid ARC6 repos

Prepare your system to install via the NorduGrid Repositories.

If you need the latest client tools that are not yet released, configure nightly builds repository following Using ARC
packages from nightly builds instructions.

Note: On the several operating systems you can install ARC without NorduGrid Repositories (e.g. using EPEL
for CentOS/RHEL). But even on that system you will benefit from NorduGrid Repositories as they contains IGTF
certificates and gets updated faster on new release.

8.1.2 Step 2. Install packages

Client tools

The main client tools package is nordugrid-arc-client. Install it using your OS packet manager1:

[root ~]# yum -y install nordugrid-arc-client

This package brings necessary plugins as dependency and allows you to submit jobs and perform data transfers in
the ARC ecosystem, e.g.:

• submit jobs via EMI-ES interface defined by XRSL or ADL descriptions

• query ARCHERY registry and LDAP information system

• support local and HTTP(S) data transfers

• support Rucio, SRM and ACIX

If you need more features, additional plugins are avaialable (see below).
1 Examples are shown for YUM-based systems. You can use APT or any other packet managers in the similar way.

321

NorduGrid ARC 7 Documentation, Release ARC7

ARCCTL

ARC Control Tool is one-stop-shop for sysadmins and users running ARC6 that automate many operations.

For the client side it will allows you to easiely deploy CA certificates and VOMS configuration:

[root ~]# yum -y install nordugrid-arc-arcctl

Warning: The ARC Control Tool is available for stand-alone usage without ARC CE since version 6.5. For
ealier ARC versions CA certificates and VOMS configuration should be installed manually. You can find some
hints in the old client installation instructions

Additional plugins

You can consider installing additional plugins for extra functionality:

• Job submission:

– arcrest - submit jobs via ARC REST interface

– gridftpjob - submit jobs via GRIDFTPJOB interface (installs gridftp as a dependency) [globus]

– internal - submit jobs via local filesystem Internal interface (requires A-REX on the same host)

• Data transfers:

– gridftp - support for gridftp data transfers [globus]

– xrootd - support for xroot protocol

– s3 - support for s3 protocol

– gfal - add support for numerous data transfer protocols and file catalogues via installed GFAL2 plugins

[root ~]# yum -y install nordugrid-arc-plugins-<PLUGIN NAME>

8.1.3 Step 3. Setting up credentials

Currently users authentication in e-Science distrbuted computing networks (grid) heavily relies on cryptography
and uses personal X.509 certificates/keys to identify entities and set of dedicated Certification Athorities (CA).

In the most common workflow you are also required to be a member of some Virtual Organization (VO) to get
access to infrastructure resources. On the technical level the VO membership is currently handled by infrastructure
VOMS services.

CA certificates bundle

CA certificates used to verify entities (e.g. users as well as compute and storage services) and should be installed
on the client host as well for infrastructure security reasons.

In the distributed grid environment set of dedicated CAs used as a part of IGTF.

IGFT CA certificates bundle can be easiely installed with ARC Control Tool2:

[root ~]# arcctl deploy igtf-ca classic

2 In case ARC is not installed from the NorduGrid repositories, use --installrepo argument to enable third-party repositories with IGTF
CA certificates

322 Chapter 8. Documentation for Infrastructure Users

http://www.nordugrid.org/documents/arc-client-install.html
https://www.igtf.net/

NorduGrid ARC 7 Documentation, Release ARC7

Personal X.509 certificate

For production infrastructure usage you shoud obtain a personal certificate signed by one of the IGTF accredited
CAs.

Typically there is at least one IGTF accreditage CA in each country that you can find on map.

Oganizational and technical procedures varies from CA to CA, so you should read the instructions on a choosen
CA web-site.

Once you get your certificte, install it to your client host and ensure the permissions are set correctly. For historical
reasons the default location for certificate and key is .globus unless redefined in client configuration file:

[user@client ~]$ ls -l ~/.globus/
total 12
-rw-r--r-- 1 user user 6353 Oct 1 11:55 usercert.pem
-r-------- 1 user user 1854 Oct 1 11:55 userkey.pem

Note: For testing and development purposes it is possible to use local testing CA. ARC Control Tool provides
built-in test CA capabilities that allows you to bootstrap own test CA and generate host and user certificates.

Virtual Organization memberhip

In most cases you do have some implicit VO affiliation on your workplace. If not, you can search for VOs using
e.g. EGI VO(s) search tool.

Every Virtual Organisation (VO) has own procedures and policies. Please contact VO support team for membership
instructions.

To prove that you are a member of the particular VO you need to obtain a special token from the VOMS server as
a part of your authentication process.

The arcproxy tool will get this token automatically, but requires VOMS server enpoint details to be configured.

With ARC Control Tool you only need to know the VO name (for VOs in EGI database) or VOMS URL3:

[root ~]# arcctl deploy vomses --egi-vo atlas
[root ~]# arcctl deploy vomses --voms https://voms.ndgf.org:8443 --use-client-cert␣
↪→nordugrid.org

8.1.4 Step 4. Try it out

When all is set, you can try to submit a job to the grid infrastructure.

Create proxy certificate

To submit a job, or perform any other action you need a so-called proxy-certificate which is a Single Sign-On token
for distributed grid-infrastructure. It is generated in the following way:

[user ~]$ arcproxy
Your identity: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith
Proxy generation succeeded
Your proxy is valid until: 2019-11-28 02:06:57

If you need to include you VO membership confirmation token (attribute certificate), specify the VO name as well:
3 Most of VOMS-Admin services by default prohibit access without client certificate even to configuration page. If this is your case, the

--use-client-cert option will instruct arcctl to use your personal certificate to establish connection.

8.1. Installing ARC Client Tools 323

https://www.igtf.net/
https://www.igtf.net/
https://www.igtf.net/pmamap
http://operations-portal.egi.eu/vo/search

NorduGrid ARC 7 Documentation, Release ARC7

[user ~]$ arcproxy -S area51
Your identity: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith
Contacting VOMS server (named area51): voms.example.org on port: 15001
Proxy generation succeeded
Your proxy is valid until: 2019-11-28 02:08:27

Submit test job

ARC client tools includes arctest utility that come with several test jobs on board. So you can try to submit job
without the need to write a job description.

You can use NorduGrid top-level ARCHERY service registry (nordugrid.org) to find available CEs automati-
cally4:

[user ~]$ arctest -J 2 --registry nordugrid.org
Submitting test-job 2:
&(executable = "/usr/bin/env")(stdout = "stdout")(stderr = "stdout")(gmlog =
↪→"gmlog")(jobname = "arctest2")(clientxrsl = "&(executable = ""/usr/bin/env""␣
↪→)(jobname = ""arctest2"")(stdout = ""stdout"")(join = ""yes"")(gmlog = "
↪→"gmlog"")")
Client version: nordugrid-arc-6.5.0
Test submitted with jobid: https://arc.example.org:443/arex/
↪→oIlKDmiOCuvnjwO5upha6lOqABFKDmABFKDmEFHKDmPBFKDmUYtvNo
Computing service: KNU ARC

The job status can be than checked with the arcstat tool:

[user ~]$ arcstat https://arc.example.org:443/arex/
↪→oIlKDmiOCuvnjwO5upha6lOqABFKDmABFKDmEFHKDmPBFKDmUYtvNo
Job: https://arc.example.org:443/arex/
↪→oIlKDmiOCuvnjwO5upha6lOqABFKDmABFKDmEFHKDmPBFKDmUYtvNo
Name: arctest2
State: Running

Status of 1 jobs was queried, 1 jobs returned information

To fetch the job’s stdout run arccat tool:

[user ~]$ arccat https://arc.example.org:443/arex/
↪→oIlKDmiOCuvnjwO5upha6lOqABFKDmABFKDmEFHKDmPBFKDmUYtvNo
GRIDMAP=/dev/null
HOSTNAME=arc.example.org
TMPDIR=/tmp
<output omitted>

4 HINT: you can add -d INFO to get mode dateails of CE selection process

324 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

8.2 Overview of ARC client tools

This document contains general overview of available ARC client tools. For more detailed information about
possible tool usage options, please refer to the --help messages and corresponding man pages.

8.2.1 Submission endpoint types

Table 8.1: The submission types short, long and legacy style

short long legacy
emies org.nordugrid.emies org.ogf.glue.emies.activitycreation
gridftpjob org.nordugrid.gridftpjob org.nordugrid.gridftpjob
arcrest org.nordugrid.arcrest N/A
internal org.nordugrid.internal org.nordugrid.internal

Example of use:

arcsub -T emies -C some-ce-endpoint

8.2.2 Credentials

arcproxy

The arcproxy command creates a proxy certificate from a key/certificate pair which can then be used to access
resources.

It is all-in-one tool for all kind of operations with proxy certificates, including VOMS extension generation and
communications with MyProxy services.

[user ~]$ arcproxy -S myVO
Enter pass phrase for private key:
Your identity: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith
Contacting VOMS server (named myVO): voms.example.org on port: 15004
Proxy generation succeeded
Your proxy is valid until: 2020-01-22 22:50:44

[user ~]$ arcproxy -I
Subject: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith/CN=2123720174
Issuer: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith
Identity: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith
Time left for proxy: 11 hours 56 minutes 45 seconds
Proxy path: /tmp/x509up_u1000
Proxy type: X.509 Proxy Certificate Profile RFC compliant impersonation proxy - RFC␣
↪→inheritAll proxy
Proxy key length: 2048
Proxy signature: sha256
====== AC extension information for VO myVO ======
VO : myVO
subject : /DC=org/DC=AccreditatedCA/O=people/CN=John Smith
issuer : /DC=org/DC=AccreditatedCA/O=hosts/CN=voms.example.org
uri : voms.example.org:15004
attribute : /myVO/Role=NULL/Capability=NULL
Time left for AC: 11 hours 56 minutes 47 seconds

(continues on next page)

8.2. Overview of ARC client tools 325

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

[user ~]$ arcproxy -L myproxy.example.org -M put -S myVO -U myproxyuser
Enter pass phrase for private key:
Your identity: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith
Contacting VOMS server (named myVO): voms.example.org on port: 15004
Proxy generation succeeded
Your proxy is valid until: 2020-01-29 10:51:52
Enter pass phrase for MyProxy server (new):
Verifying - Enter pass phrase for MyProxy server (new):
Succeeded to put a proxy onto MyProxy server

arcrenew

The arcrenew command is used for renewing the proxy of jobs that have been submitted to computing resources.

[user ~]$ arcrenew https://arc.example.org:443/arex/
↪→7LqLDmKESEwnf5481mks8bjnABFKDmABFKDmhNFKDmHGFKDm9BpmKn
Jobs processed: 1, renewed: 1

8.2.3 Job submission and management

arcsub

The arcsub command is used for submitting jobs to computing resources.

Note: Submission endpoint selection options are changed in ARC 6.5.0 release

[user ~]$ arcsub -T emies -C arc.example.org myJob.xrsl
Job submitted with jobid: https://arc.example.org:443/arex/
↪→5SwNDmmwREwnf5481mks8bjnABFKDmABFKDmhNFKDmKFFKDmNPeLgn

arcstat

The arcstat command is used for obtaining the status of jobs that have been submitted to computing resources.

[user ~]$ arcstat https://arc.example.org:443/arex/
↪→5SwNDmmwREwnf5481mks8bjnABFKDmABFKDmhNFKDmKFFKDmNPeLgn
Job: https://arc.example.org:443/arex/
↪→5SwNDmmwREwnf5481mks8bjnABFKDmABFKDmhNFKDmKFFKDmNPeLgn
Name: myJob
State: Running

Status of 1 jobs was queried, 1 jobs returned information

326 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

arccat

The arccat command performs the cat command on the stdout, stderr or A-REX error log of the job.

It can also show the specified file from job’s session directory.

[user ~]$ arccat https://arc.example.org:443/arex/
↪→5SwNDmmwREwnf5481mks8bjnABFKDmABFKDmhNFKDmKFFKDmNPeLgn
SHELL=/bin/bash
HISTSIZE=1000
<output omitted>

[user ~]$ arccat -l https://arc.example.org:443/arex/
↪→5SwNDmmwREwnf5481mks8bjnABFKDmABFKDmhNFKDmKFFKDmNPeLgn
2020-01-22T09:57:45Z Job state change UNDEFINED -> ACCEPTED Reason: (Re)Accepting␣
↪→new job
2020-01-22T09:57:45Z Job state change ACCEPTED -> PREPARING Reason: Starting job␣
↪→processing
2020-01-22T09:57:45Z Job state change PREPARING -> SUBMIT Reason: Pre-staging␣
↪→finished, passing job to LRMS
----- starting submit_pbs_job -----
PBS jobname: myJob
<output omitted>

arckill

The arckill command is used to kill running jobs.

[user ~]$ arckill https://arc.example.org:443/arex/
↪→wOOKDmT2REwnf5481mks8bjnABFKDmABFKDmhNFKDmWFFKDm1FSSRn
Jobs processed: 1, successfully killed: 1, successfully cleaned: 1

arcclean

The arcclean command removes a job from the computing resource.

[user ~]$ arckill --keep https://arc.example.org:443/arex/
↪→UcBLDm32REwnf5481mks8bjnABFKDmABFKDmhNFKDmiFFKDm0zk4un
Jobs processed: 1, successfully killed: 1

[user ~]$ arcclean https://arc.example.org:443/arex/
↪→UcBLDm32REwnf5481mks8bjnABFKDmABFKDmhNFKDmiFFKDm0zk4un
Jobs processed: 1, deleted: 1

arcresub

The arcresub allows to resubmit job to the same or other compute resources.

[user ~]$ arcresub --same https://arc.example.org:443/arex/
↪→5SwNDmmwREwnf5481mks8bjnABFKDmABFKDmhNFKDmKFFKDmNPeLgn
Job submitted with jobid: https://arc.example.org:443/arex/
↪→KSeNDmz5REwnf5481mks8bjnABFKDmABFKDmhNFKDmsFFKDmp4MPWn

8.2. Overview of ARC client tools 327

NorduGrid ARC 7 Documentation, Release ARC7

arcresume

The arcresume command is used for resuming a job that was submitted to compute resources and then subse-
quently failed. The job will be resumed at the last ok state reported by the cluster.

[user ~]$ arcresume https://arc.example.org:443/arex/
↪→vIGMDm58REwnf5481mks8bjnABFKDmABFKDmhNFKDm6FFKDmOBYWDm
Jobs processed: 1, resumed: 1

arcget

The arcget command is used for retrieving the results from a job.

[user ~]$ arcget --keep https://arc.example.org:443/arex/
↪→5SwNDmmwREwnf5481mks8bjnABFKDmABFKDmhNFKDmKFFKDmNPeLgn
Results stored at: 5SwNDmmwREwnf5481mks8bjnABFKDmABFKDmhNFKDmKFFKDmNPeLgn
Jobs processed: 1, successfully retrieved: 1

arctest

The arctest command is used for testing resources. It is able to:

• submit several test job

• prints info about installed user- and CA-certificates

Note: Submission endpoint selection options are changed in ARC 6.5.0 release

[user ~]$ arctest -J 2 -C arc.example.org
Job submitted with jobid: https://arc.example.org:443/arex/
↪→rRVLDmSBSEwnf5481mks8bjnABFKDmABFKDmhNFKDm8FFKDmGoZf3m

[user ~]$ arctest -E
Certificate information:
Certificate: /home/john/.globus/usercert.pem
Subject name: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith
Valid until: 2020-04-21 18:48:15

Proxy certificate information:
Proxy: /tmp/x509up_u1000
Proxy-subject: /DC=org/DC=AccreditatedCA/O=people/CN=John Smith/CN=2123720174
Valid for: 11 hours 37 minutes 33 seconds

Certificate issuer: /DC=org/DC=AccreditatedCA

CA-certificates installed:
/DC=org/DC=AccreditatedCA

<output omitted>

328 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

8.2.4 Data manipulation

arcls

The arcls command is used for listing files in storage elements and replica catalogs.

[user ~]$ arcls srm://se.example.org/dpm/example.org/home/myVO/
data.1
data.2

[user ~]$ arcls -lL rucio://rucio-lb-prod.cern.ch/replicas/mc15_13TeV/EVNT.19785567._
↪→000729.pool.root.1
<Name> <Type> <Size> <Modified> <CheckSum> ␣
↪→ <Latency>
EVNT.19785567._000729.pool.root.1 file 167468788 (n/a) ␣
↪→adler32:f7332aeb (n/a)

root://xrootd.lcg.triumf.ca:1094//atlas/atlasdatadisk/rucio/mc15_13TeV/ee/3b/
↪→EVNT.19785567._000729.pool.root.1

srm://srm.ndgf.org:8443/srm/managerv2?SFN=/atlas/disk/atlasdatadisk/rucio/mc15_
↪→13TeV/ee/3b/EVNT.19785567._000729.pool.root.1

gsiftp://gridftp.echo.stfc.ac.uk:2811/atlas:datadisk/rucio/mc15_13TeV/ee/3b/EVNT.
↪→19785567._000729.pool.root.1

arccp

The arccp command copies files to, from and between storage services.

[user ~]$ arccp /mnt/data/data.123 srm://se.example.org/dpm/example.org/home/myVO/
↪→data.123

[user ~]$ arccp rucio://rucio-lb-prod.cern.ch/replicas/mc15_13TeV/EVNT.19785567._
↪→000729.pool.root.1 /tmp/

arcmkdir

The arcmkdir command creates directories on storage elements and catalogs.

[user ~]$ arcmkdir srm://se.example.org/dpm/example.org/home/myVO/myData

arcrename

The arcrename command renames files on storage elements.

[user ~]$ arcrename srm://se.example.org/dpm/example.org/home/myVO/data.123 srm://se.
↪→example.org/dpm/example.org/home/myVO/data.124

8.2. Overview of ARC client tools 329

NorduGrid ARC 7 Documentation, Release ARC7

arcrm

The arcrm command deletes files on storage elements.

[user ~]$ arcrm srm://se.example.org/dpm/example.org/home/myVO/data.124

8.2.5 Information services

arcinfo

The arcinfo command is used for obtaining the status of computing resources and detailed information about the
resource according to published data in the information system.

The summary optput includes the information endpoint type starting from ARC 6.5.0.

[user ~]$ arcinfo arc.example.org
Computing service: (production)
Information endpoint: ldap://arc.example.org:2135/Mds-Vo-Name=local,o=grid (org.
↪→nordugrid.ldapng)
Information endpoint: ldap://arc.example.org:2135/o=glue (org.nordugrid.ldapglue2)
Information endpoint: https://arc.example.org:443/arex (org.nordugrid.arcrest)
Information endpoint: https://arc.example.org:443/arex (org.ogf.glue.emies.
↪→resourceinfo)
Submission endpoint: https://arc.example.org:443/arex (status: ok, interface: org.
↪→nordugrid.arcrest)
Submission endpoint: https://arc.example.org:443/arex (status: ok, interface: org.ogf.
↪→glue.emies.activitycreation)
Submission endpoint: gsiftp://arc.example.org:2811/jobs (status: ok, interface: org.
↪→nordugrid.gridftpjob)

[user ~]$ arcinfo -l arc.example.org | grep Implementation
Implementation name: nordugrid-arc-6.5.0

arcsync

The arcsync command synchronizes your local jobs database with the information at a given computing ele-
ment(s).

[user ~]$ $ arcsync -C arc.example.org
Synchronizing the local list of active jobs with the information in the
information system can result in some inconsistencies. Very recently submitted
jobs might not yet be present, whereas jobs very recently scheduled for
deletion can still be present.
Are you sure you want to synchronize your local job list? [y/n] y
Total number of new jobs found: 7

330 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

8.3 How to submit the job?

Warning: Information in this document is fully applicable to ARC 6.5.0 and above only!

The heterogeneous nature of the distributed computing requires the formal job description in order to match re-
sources and execution environment of the particular CE to job needs.

The client tools than, based on the job description, select submission endpoint and pass job to chosen CE for
processing.

8.3.1 Submission sequence

Make sure you have client tools installed and credentials configured first.

Than follow the sequence below.

Generate proxy-certificate

To submit a job, or perform any other action towards the ARC server you need a so-called proxy-certificate which
is a Single Sign-On token for distributed grid-infrastructure. It is generated using arcproxy tool.

Note: In most production cases you need to add VO affiliation information to proxy certificate with -S <VO>
option.

[user ~]$ arcproxy -S myVO
Your identity: /DC=org/DC=nordugrid/DC=ARC/O=TestCA/CN=My Cert
Contacting VOMS server (named myVO): voms.myvo.example.org on port: 15001
Proxy generation succeeded
Your proxy is valid until: 2020-02-29 06:31:54

Create job description

ARC supports the Extended Resource Specification Language (xRSL) and EMI Activity Description Language
(ADL)1 for specifying job descriptions.

According to the syntax you should write xRSL or ADL file, describing your job files and resource requirements.

For example, the xRSL job description for arctest -J 2 job is:

&(executable = "/usr/bin/env")(jobname = "arctest2")(stdout = "stdout")(join =
↪→"yes")(gmlog = "gmlog")

The same description in ADL:

<?xml version="1.0"?>
<ActivityDescription xmlns="http://www.eu-emi.eu/es/2010/12/adl" xmlns:emiestypes=
↪→"http://www.eu-emi.eu/es/2010/12/types" xmlns:nordugrid-adl="http://www.nordugrid.
↪→org/es/2011/12/nordugrid-adl">
<ActivityIdentification>
<Name>arctest2</Name>

</ActivityIdentification>
<Application>

(continues on next page)

1 See section 9.3 of EMI-ES document for complete ADL specification

8.3. How to submit the job? 331

http://www.nordugrid.org/documents/EMI-ES-Specification_v1.16.pdf
http://www.nordugrid.org/documents/EMI-ES-Specification_v1.16.pdf

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

<Executable>
<Path>/usr/bin/env</Path>

</Executable>
<Output>stdout</Output>
<Error>stdout</Error>
<LoggingDirectory>gmlog</LoggingDirectory>

</Application>
</ActivityDescription>

Run arcsub

The arcsub tool is responsible for job submission. This includes selecting (matchmaking) resources based on the
job description and sending the job description and all job files to selected submission endpoint.

In the simplest case you can use a top-level Nordugrid ARCHERY registry to find CE in entire e-Inftrastrucutre that
fits your job and allows you to use it resources:

[user ~]$ arcsub --registry nordugrid.org myjobdescription.xrsl
Job submitted with jobid: https://arc.example.org:443/arex/
↪→R7pMDmXI8Dwnf5481mks8bjnABFKDmABFKDmhNFKDmVEFKDmQ0taDn

To specify the CEs you are aiming to submit jobs to more precisely, please read the next section for details.

8.3.2 Specify CEs for job submission

The arcsub accepts a set of options that allow to select target CE for the job submission.

There CEs can be passed manually (using -C, --computing-element=ce option) or fetched from the registries
(-Y, --registry=registry).

The submission endpoint type (actual job submission interface) and information endpoint type (interface to query
the information for matchmaking and brokering) can be defined as well, if you want to use some interface explicitely.

Following is a detailed description of how options works together to select submission endpoint, including the
examples of usage.

Warning: It is not possible to mix old set of ARC5 options for CE selection with ARC6 options described
below

Computing Element

The Computing Element (-C, --computing-element=CE) used to specify computing element name or a a com-
plete endpoint URL directly.

Supported options:

• CE name (given as FQDN of the cluster frontend)

• URL of info or jobsubmission endpoint on the CE

The URL is one of the valid info or jobsubmission URLs of the computing element. The usage of URL is needed
when the services are ruining on non-default ports or path.

Except the case when info-endpoint-type is NONE, the URL is interpreted as info-endpoint URL. In case of
--info-endpoint-type=NONE, the URL represents the jobsubmission endpoint URL.

332 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

If only the --computing-element is specified without any preferred info-endpoint-type or submission-endpoint-
type then arcsub will fetch resource info from all the available info endpoints parallel AND select from the dis-
covered and supported (via available plugin) jobsubmission interfaces.

Examples:

[user ~]$ arcsub --computing-element my.cluster.org

will trigger a submission to a randomly selected jobsubmission-endpoint-type advertised via local infosys and
supported by installed submission plugins.

[user ~]$ arcsub --computing-element ldap://my.cluster.org:389/o=glue

will trigger a submission to a available jobsubmission endpoint discovered from the info interface running on the
ldap port 389.

[user ~]$ arcsub --submission-endpoint-type emies --computing-element https://my.
↪→cluster.org:60000/emies

will triger a submission to the emies jobsubmission endpoint after the infosys discovery completed against the
specified emies info endpoint URL. The URL above is interpreted as info URL.

[user ~]$ arcsub --submission-endpoint-type emies --info-endpoint-type NONE --
↪→computing-element https://my.cluster.org:60000/emies

will triger a submission to the emies jobsubmission endpoint specified via the given URL. Info discovery is turned
off. The URL is interpreted as jobsubmission endpoint URL.

Registry

The -Y, --registry=registry option used to specify service endpoint URL registries.

It takes FQDN’s of ARCHERY or EGIIS servers with optional specification of protocol.

Supported options:

• ARCHERY: arcsub --registry nordugrid.org or arcsub --registry dns://nordugrid.org

• EGIIS: arcsub --registry index1.nordugrid.org or arcsub --registry ldap://index1.
nordugrid.org:2135/mds-vo-name=ATLAS,o=grid

Support for EMIR and BDII service catalogues are REMOVED and the corresponding plugins are not part of
ARC6.

In case only a short hostname given with --registry without specifying the full protocol URL (ldap or dns), then
arcsub will attempt to contact both ldap://hostname and dns://hostname.

Examples using --registry together with --info-endpoint-type and --submission-endpoint-type:

[user ~]$ arcsub --submission-endpoint-type emies --registry dns://nordugrid.org

will fetch all information endpoint of emies info type (matching emies submission type) from the registry, query
these endpoints for available emies submission endpoints and choose one of them (via brokering, default is random)
to submit job.

[user ~]$ arcsub --info-endpoint-type ldap.nordugrid --registry dns://nordugrid.org

will fetch all information endpoint of specified ldap.nordugrid type from the registry, query them for available
submission endpoints and try to submit to one of them, prioritizing matching gridftpjob submission endpoint
type first.

[user ~]$ arcsub --info-endpoint-type ldap.glue2 --submission-endpoint-type emies --
↪→registry dns://nordugrid.org

8.3. How to submit the job? 333

ldap://hostname
dns://hostname

NorduGrid ARC 7 Documentation, Release ARC7

will fetch all information endpoint of specified ldap.glue2 type from the registry, query them for available sub-
mission endpoints of specified emies type and choose one of them (via brokering, default is random) to submit
job.

[user ~]$ arcsub --info-endpoint-type NONE --submission-endpoint-type emies --
↪→registry dns://nordugrid.org

will fetch all SUBMISSION endpoints of specified emies type from the registry and select one of them to directly
submit job without info endpoint querying. There are no other info to do matchmaking or prioritizing in this case,
so the random broker will be used to select one of the available submission endpoints.

Info endpoint type

Use the -Q, --info-endpoint-type=type for choosing the cluster/resource information retrieval interface
type.

Supported options:

org.nordugrid.internal
org.nordugrid.ldap.nordugrid
org.nordugrid.ldap.glue2
org.nordugrid.emies
org.nordugrid.arcrest
NONE

The special value NONE will disable the local infosys queries during job submission.

Support for BES, WSRFGLUE2, GLUE1 are REMOVED and the corresponding plugins deleted as of ARC6.

Note: org.nordugrid prefix can be omitted, e.g. both org.nordugrid.emies and emies should be accepted.

The arcsub client in case NO submission-endpoint-type is specified and ONLY the info-endpoint-type given will
first try to use a predefined submission-endpoint-type following the rules given below.

Table 8.2: The submission types to try corresponding to a given info-
endpoint-type

info-endpoint-type submission-endpoint-type
emies emies
arcrest arcrest
internal internal
ldap.nordugrid gridftpjob
ldap.glue2 first emies then gridftpjob
NONE first emies then gridftpjob

The arcsub command will guess the job submission endpoint URLs based on the default values corresponding to
a specific submission-endpoint-type.

Examples:

[user ~]$ arcsub --info-endpoint-type emies --computing-element my.cluster.org

will trigger a jobsubmission where cluster info is obtained from emies infosource and jobsubmission is done via
emies using a guessed submission URL of https://my.cluster.org:443/arex

[user ~]$ arcsub --info-endpoint-type NONE --computing-element my.cluster.org

334 Chapter 8. Documentation for Infrastructure Users

https://my.cluster.org:443/arex

NorduGrid ARC 7 Documentation, Release ARC7

will trigger a jobsubmission where cluster info is NOT collected, infosys is completely ignored and the client tries to
submit via emies submission-endpoint-type again guessing jobsubmision endpoint URLs (https://my.cluster.org:
443/arex). IN case emies submission failed the gridftpjob endpoint will be tried.

[user ~]$ arcsub --info-endpoint-type org.nordugrid.ldap.glue2 --computing-element my.
↪→glue2.cluster

will trigger a jobsubmission where cluster info containing jobsubmission URLs are obtained from GLUE2 ldap
rendering infosource (guessed as ldap://my.glue2.cluster:2135/o=glue) and jobsubmission is first tried via emies
jobinterface then gridftpjob (in case emies failed) URLS obtained from infosys query.

[user ~]$ arcsub -- info-endpoint-type org.nordugrid.ldap.glue2 --submission-endpoint-
↪→type gridftpjob --computing-element my.glue2.cluster

will trigger a jobsubmission where cluster info containing the jobsubmission URLs are obtained from GLUE2 ldap
rendering infosource and jobsubmission is performed via gridftpjobs channel.

Submission endpoint type

Use -T, --submission-endpoint-type=type for choosing the jobsubmission endpoint type.

Supported options:

org.nordugrid.internal
org.nordugrid.emies
org.nordugrid.gridftpjob
org.nordugrid.arcrest

Note: org.nordugrid prefix can be omitted, e.g. both org.nordugrid.emies and emies should be accepted.

Note: support for BES, CREAM, ARC1, unicore, ARC0 (now called gridftpjob) submission interface types are
REMOVED and the corresponding plugins deleted as of ARC6.

Proposed arc client behavior in case of ONLY submission-endpoint-type specified and NO info-endpoint-type is
given: the client USE ONLY the following matching info interfaces:

Table 8.3: The info-endpoint-type corresponding to a given submission-
endpoint-type

submission-endpoint-type info-endpoint-type
emies emies
arcrest arcrest
internal internal
gridftpjob both ldap.glue2 and ldap.nordugrid

Examples:

[user ~]$ arcsub --submission-endpoint-type emies --computing-element my.cluster.org

will trigger a jobsubmission where cluster info is obtained from emies infosource (via the guessed info endpoint
https://my.cluster.org:443/arex) and jobsubmission is done via emies jobsubmission interface

[user ~]$ arcsub --submission-endpoint-type emies --info-endpoint-type org.nordugrid.
↪→glue2 --computing-element my.emies.cluster.org

8.3. How to submit the job? 335

https://my.cluster.org:443/arex
https://my.cluster.org:443/arex
ldap://my.glue2.cluster:2135/o=glue
https://my.cluster.org:443/arex

NorduGrid ARC 7 Documentation, Release ARC7

will trigger a jobsubmission process where cluster info is obtained from glue2 ldap info endpoint guessed URL
(ldap://my.cluster.org:2135/o=glue) and job is submitted via emies

[user ~]$ arcsub --info-endpoint-type NONE --submission-endpoint-type gridftpjob --
↪→computing-element my.cluster.org

will trigger a direct jobsubmission via the gridftpjob submission interface without any query to the local LDAP or
whatever else infosys. The jobsubmission URL (gsiftp://my.cluster.org:2811/jobs) is guessed using defaults.

8.4 How to work with data?

ARC libraries are very flexible in terms of supported data transfer protocols. It is designed to be extendable via a
set of plugable Data Management Components (DMC).

The availble protocols to work with depends on the DMCs installed on the system (look for Additional plugins in
particular).

Note: Notice the special plugin to integrate GFAL2 aditional plugins for data transfer protocols in addition to
ARC native DMCs. For example, to add support for legacy LFC file catalogue protocol to ARC you have to install
nordugrid-arc-plugins-gfal and gfal2-plugin-lfc.

This applies both to client tools and ARC Data Staging.

8.4.1 Data transfer URLs

File locations in ARC can be specified both as local file names, and as Internet standard Uniform Resource Locators
(URL). There are also some additional URL options that can be used.

Depending on the installed ARC components some or all of the following transfer protocols and metadata services
are supported:

Table 8.4: List of main supported protocols

Protocol Description
ftp ordinary File Transfer Protocol (FTP)
gsiftp GridFTP, the Globus -enhanced FTP protocol with security, encryption, etc. developed

by The Globus Alliance
http ordinary Hyper-Text Transfer Protocol (HTTP) with PUT and GET methods using mul-

tiple streams
https HTTP with SSL
httpg HTTP with Globus GSI
dav WebDAV
davs WebDAV with SSL
ldap ordinary Lightweight Data Access Protocol (LDAP)
srm Storage Resource Manager (SRM) service
root Xrootd protocol
rucio Rucio – a data management system used by ATLAS and other scientific experiments
s3 Amazon S3
file local to the host file name with a full path

An URL can be used in a standard form, i.e.

protocol://[host[:port]]/file

Or, to enhance the performance or take advantage of various features, it can have additional options:

336 Chapter 8. Documentation for Infrastructure Users

ldap://my.cluster.org:2135/o=glue

NorduGrid ARC 7 Documentation, Release ARC7

protocol://[host[:port]][;option[;option[...]]]/file[:metadataoption[:metadataoption[.
↪→..]]

For a metadata service URL, construction is the following:

protocol://[url[|url[...]]@]host[:port][;option[;option[...]]]
/lfn[:metadataoption[:metadataoption[...]]]

where the nested URL(s) are physical replicas. Options are passed on to all replicas, but if it is desired to use
the same option with a different value for all replicas, the option can be specified as a common option using the
following syntax:

protocol://[;commonoption[;commonoption]|][url[|url[...]]@]host[:port]
[;option[;option[...]]/lfn[:metadataoption[:metadataoption[...]]]

In user-level tools, URLs may be expressed using this syntax, or there may be simpler ways to construct complex
URLs. In particular, command line tools such as arccp, and the xRSL languages provide methods to express
URLs and options in a simpler way.

For the SRM service, the syntax is:

srm://host[:port][;options]/[service_path?SFN=]file[:metadataoptions]

Versions 1.1 and 2.2 of the SRM protocol are supported. The default service_path is srm/managerv2 when the
server supports v2.2, srm/managerv1 otherwise.

For Rucio the following URL is used to look up replicas of the given scope and name:

rucio://rucio-lb-prod.cern.ch/replicas/scope/name

The Rucio authorisation URL can be specified with the environment variable $RUCIO_AUTH_URL. The Rucio ac-
count to use can be specified either through the rucioaccount URL option or $RUCIO_ACCOUNT environment
variable. If neither are specified the account is taken from the VOMS nickname attribute.

S3 authentication is done through keys which must be set by the environment variables $S3_ACCESS_KEY and
$S3_SECRET_KEY.

The URL components are:

host[:port] Hostname or IP address [and port] of a server
lfn Logical File Name
url URL of the file as registered in indexing service
service_path End-point path of the web service
file File name with full path
option URL option
commonoption URL option for all replicas
metadataoption Metadata option

The following URL options are supported:

8.4. How to work with data? 337

NorduGrid ARC 7 Documentation, Release ARC7

threads=<number> specifies number of parallel streams to be used by GridFTP or HTTP(s,g);
default value is 1, maximal value is 10

exec=yes|no means the file should be treated as executable
preserve=yes|no specify if file must be uploaded to this destination even if job processing failed

(default is no)
cache=yes|no|renew|copy|check|invariantindicates whether the file should be cached; default for input files in A-REX is

yes. renew forces a download of the file, even if the cached copy is still valid.
copy forces the cached file to be copied (rather than linked) to the session
directory, this is useful if for example the file is to be modified. check forces
a check of the permission and modification time against the original source.
invariant disables checking the original source modification time.

readonly=yes|no for transfers to file:// destinations, specifies whether the file should be
read-only (unmodifiable) or not; default is yes

secure=yes|no indicates whether the GridFTP data channel should be encrypted; default is
no

blocksize=<number> specifies size of chunks/blocks/buffers used in GridFTP or HTTP(s,g) trans-
actions; default is protocol dependent

checksum=cksum|md5|adler32|nospecifies the algorithm for checksum to be computed (for transfer verification
or provided to the indexing server). This is overridden by any metadata op-
tions specified (see below). If this option is not provided, the default for the
protocol is used. checksum=no disables checksum calculation.

overwrite=yes|no makes software trying (or not) to overwrite existing file(s); if yes, the tool
will try to remove any information/content associated with the specified URL
before writing to the destination.

protocol=gsi|gssapi|ssl|tls|ssl3distinguishes between different kinds of HTTPS/HTTPG and SRM protocols.
Here gssapi stands for HTTPG implementation using only GSSAPI functions
to wrap data and gsi uses additional headers as implemented in Globus IO.
The ssl and tls options stand for the usual HTTPS and are specifically usable
only if used with the SRM protocol. The ssl3 option is mostly the same as the
ssl one but uses SSLv3 handshakes while establishing HTTPS connections.
The default is gssapi for SRM connections, tls for HTTPS and``gssapi`` for
HTTPG. In the case of SRM, if default fails, gsi is tried.

spacetoken=<pattern> specifies a space token to be used for uploads to SRM storage elements sup-
porting SRM version 2.2 or higher

autodir=yes|no specifies whether before writing to the specified location the software should
try to create all directories mentioned in the specified URL. Currently this
applies to FTP and GridFTP only. Default value for these protocols is yes

tcpnodelay=yes|no controls the use of the TCP_NODELAY socket option (which disables Nagle’s
algorithm). Applies to HTTP(S) only. Default is no (supported only in arcls
and other arc* tools)

transferprotocol=protocolsspecifies transfer protocols for meta-URLs such as SRM. Multiple protocols
can be specified as a comma-separated list in order of preference.

rucioaccount=account specifies the Rucio account to use when authenticating with Rucio.
httpputpartial=yes|no while storing a file on a HTTP(S) server, the software will try to send it in

chunks/parts. If the server reports error for the partial PUT command, the
software will fall back to transferring the file in a single piece. This behavior
is non-standard and not all servers report errors properly. Hence the default
is a safer no.

httpgetpartial=yes|no while retrieving a file from a HTTP(S) server, the software will try to read it
in chunks/parts. If the server does not support the partial GET command, it
usually ignores requests for partial transfer range and the file is transfered in
one piece. Default is yes.

failureallowed=yes|no if set to yes for a job input or output file, then a failure to transfer this file will
not cause a failure of the job. Default is no.

relativeuri=yes|no if set to yes, HTTP operations will use the path instead of the full URL.
Default is no.

accesslatency=disk|tape filter replicas returned from an index service based on their access latency.
(available from version 6.12)

338 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

Local files are referred to by specifying either a location relative to the job submission working directory, or by an
absolute path (the one that starts with /), preceded with a file:// prefix.

URLs also support metadata options which can be used for registering additional metadata attributes or querying
the service using metadata attributes. These options are specified at the end of the LFN and consist of name and
value pairs separated by colons. The following attributes are supported:

checksumtype Type of checksum. Supported values are cksum (default), md5 and adler32
checksumvalue The checksum of the file

The checksum attributes may also be used to validate files that were uploaded to remote storage.

Examples of URLs are:

• http://grid.domain.org/dir/script.sh

• gsiftp://grid.domain.org:2811;threads=10;secure=yes/dir/input_12378.dat

• ldap://grid.domain.org:389/lc=collection1,rc=Nordugrid,dc=nordugrid,dc=org

• file:///home/auser/griddir/steer.cra

• srm://srm.domain.org/griddir/user/file1:checksumtype=adler32:checksumvalue=123456781

• srm://srm.domain.org;transferprotocol=https/data/file22

• rucio://rucio-lb-prod.cern.ch/replicas/user.grid/data.root

8.4.2 Stage-in during submission

During the job submission to computing element, data can be moved from the client machine along with the job
description.

The inputFiles directive of the job description automatically activates this kind of data movement if source of the
data is a local path or empty (""). An empty source value means that input filename is taken from the current
working directory on the submission machine.

For example:

(inputFiles=("data1" "/mnt/data/analyses/data11.22.33")
("data2" ""))

During the job submission process the /mnt/data/analyses/data11.22.33 file will be uploaded to the job
session directoty on the CE as data1. The data2 file from the current working directory will be uploaded as
data2.

8.4.3 Stage-in on ARC CE

Instead of copying data from submission machine ARC CE can download it from the available storage services
specified by URL in the inputFiles source value.

In this case all the power of the A-REX Data Caching can be used as well.

For example:

(inputfiles = "data.root.1" "srm://srm.mystorage.example.org/atlas/disk/data11_7TeV/
↪→data.root.1")

During job submission the data WILL NOT be uploaded. Instead, A-REX will analyze the job description and
starts a Stage-In process. During Stage-in the data.root.1 file will be downloaded from provided SRM URL.

1 This is a destination URL. The file will be copied to srm.domain.org at the path griddir/user/file1 and the checksum will be
compared to what is reported by the SRM service after the transfer.

2 This is a source or destination URL. When getting a transport URL from SRM, the HTTPS transfer protocol will be requested.

8.4. How to work with data? 339

NorduGrid ARC 7 Documentation, Release ARC7

8.4.4 Manual data movement with arc* tools

There is a set of data management tools that can be used to manipulate data manually, out of jobs processing
context.

arcls, arccp, arcrm and arcmkdir work similar to classic Unix data movement commands but accept local or
remote URLs.

Again, any URL supported by installed ARC data management plugins can be passed to the tools as an argument.

[user ~]$ arccp srm://srm.mystorage.example.org/atlas/disk/data11_7TeV/data.root.1 /
↪→mnt/data/data.root.1

[user ~]$ arcls http://download.nordugrid.org/repos/6
centos/
debian/
fedora/
ubuntu/

8.5 Job Description Language (xRSL)

In the distributed computing job are submitted to a large number of very different computing resources, which are
often widely distributed geographically.

In order to abstract from the heterogeneous nature of these resources, a high-level job description language is
necessary. This document introduces the xRSL job description language.

Note: The EMI Activity Description Language (ADL) is also supported by ARC (refer to section 9.3 of EMI-ES
document for complete ADL specification)

The diversity of resources implies special requirements for a proper description of a job, introducing many new
options as opposed to a conventional high-performance computing center use case.

The NorduGrid project introduced the extended Resource Specification Language (xRSL). xRSL adopts the gen-
eral syntax of RSL language developed by Globus Alliance but extend and redesign some attributes and introduce
the two levels of job option specifications:

• User-side xRSL, i.e., the set of attributes specified by a user in a job-specific file. This file is interpreted by
a Client and after the necessary modifications is passed to the ARC computing service – A-REX

• Server-side xRSL, i.e., the set of attributes pre-processed by a client, and ready to be interpreted by the
A-REX. Effectively, this is an internal job representation of ARC.

A user only has to know the user-side part, and utilize it to describe the grid jobs. A-REX, however, uses slightly
different notations, supplied by the client tools; therefore developers of such tools must take care of converting
user-submitted xRSL to the internal job description (Server-side xRSL).

In what follows, description of the xRSL is given, using the following notations:

<xxxx> parameter to be substituted with a corresponding string or a number
[xxxx] optional parameter
xxx|yyy|zzz list of possible values of a parameter
-"- same as above

340 Chapter 8. Documentation for Infrastructure Users

https://www.nordugrid.org/documents/EMI-ES-Specification_v1.16.pdf

NorduGrid ARC 7 Documentation, Release ARC7

8.5.1 xRSL syntax and rules

A job is described by means of xRSL attributes, which can be either passed via a command-line, or, more conve-
niently, be collected in a so-called xRSL-file (*.xrsl).

Such a file contains a plain list of attribute-value pairs and boolean operators & (for AND) and | (for OR). Attribute
names are case-insensitive.

If the attributes are specified from the command line, the entire description must be enclosed either in single or
in double quotes. Single quotes enclosure is completely analogous to xRSL-file usage, while double quotes imply
standard shell expansion of the enclosed string. This has implications when strings contain local shell variables:
they will not be expanded unless the task description is entered from the command line and is enclosed in double
quotes.

Attribute value

An attribute-value pair is a key element of specification. It consists of an expression that assigns one or more values
to an attribute, and is enclosed in round brackets:

(attribute="value")

For multi-valued attributes:

(attribute="value1" "value2")

List of values

Certain attributes do not have assigned value; instead, they contain a list of values that should be put in proper
correspondence with each other:

(attribute=("value1" "value2")("value3" "value4"))

In the example above, value1 and value3 are put in correspondence to value2 and value4 respectively, accord-
ing to the context of the attribute.

Quoting

Values should be enclosed in quotes if they contain blank spaces or special characters.

The special characters are:

+ & | () = < > ! " ' ^ # $

To quote a string containing special characters, you can use either single or double quotes. If your string, however,
contains both such quotes, you can define any character as an own delimiter, by preceding it with the “carat” (^)
character: attribute=^*My "good" value^* makes use of a carat-escaped asterisk as a delimiter.

8.5. Job Description Language (xRSL) 341

NorduGrid ARC 7 Documentation, Release ARC7

Implicit conjunction

An xRSL job description starts with an ampersand (&) , to indicate implicit conjunction of all the attributes:

&(attribute1=value1)(attribute2="value 2")...

Whenever a disjunct-request of two or more attributes is needed, the following construction can be used:

(|(attribute="value1")(attribute="value2")...)

Note: Only few selected attributes (indicated further in the document) can be requested by the user multiple
times, like in the disjunct request example above. Most attributes must be unique, i.e., appear only once in the job
description document.

Operators

In expressions, the following relational operators are allowed, in general:

= != > < >= <=

However, most attributes can only be used with equality operator =. For few attributes (as indicated in the docu-
ment), some other operators can be used in client-side job description as well.

Blank spaces

The xRSL attributes can be written in a single string, or split in lines arbitrary; blank spaces between and inside
(attribute="value") relations are ignored.

Comments

Commented lines should start with (* and be closed with *):

(*attribute="value1"*)

Comments can not be nested.

Multible jobs in one description

Multiple job description in one file can be specified via multi-request operator +, which should precede multiple
job descriptions:

+(&(...))(&(...))(&(...))

8.5.2 User-side xRSL attributes

The following attributes can be specified in a user’s xRSL script. Some have to be modified by the client tool before
being passed to the A-REX.

Attribute names are case-insensitive, although assigned values may well be case-sensitive, if they represent file
names, environment variables etc.

Note: It is possible to use unsupported attributes in job description. Standard ARC client submission commands
(arcsub and arcresub) must be used with a command line option -U in order to accept unknown attributes.

342 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

Without this command line option, the client tool will concider job description invalid if it contains unsupported
attributes.

executable

Unique: yes
Operators: =
User xRSL: (executable=<string>)
A-REX xRSL: -"-
Example: (executable="local_to_job.exe")

The executable to be submitted as a main task to a Local Resource Management System (LRMS).

• string - file name (including path), local to the computing element (CE)

Executable is a file that has to be executed as the main process of the task. It could be either a pre-compiled binary,
or a script. Users may transfer their own executables, or use the ones known to be already installed on the remote
system (CE).

If an executable has to be transferred to the destination site (CE) from some source, it has to be specified in the
inputFiles list. If it is not specified in inputFiles, the source is expected to be local to the user (client) and
will be added as such to the inputFiles list by the ARC Client.

If the file name starts with a leading slash (/), it is considered to be the full path to the executable at the desti-
nation site (CE); otherwise the location of the file is relative to the session directory (where job input and files
are stored).

If the xRSL string is entered from the command line and is enclosed in double quotes, standard shell expansion of
variables takes place. That is, if the file name contains an environment variable ($...), the value of this variable
is resolved locally, but if the name itself is also enclosed in double quotes, it will be resolved at the remote
computing element:
(executable=$ROOT_DIR/myprog.exe) – $ROOT_DIR is resolved locally (will cause errors if the path does
not exist at the execution machine)
(executable="$ROOT_DIR/myprog.exe") – $ROOT_DIR will be resolved remotely

arguments

Unique: yes
Operators: =
User xRSL: (arguments=<string> [string] ...)
A-REX xRSL: (arguments=<executable> <string> [string] ...)
Example: (arguments="10000" $(ATLAS)/input.dat)

List of the arguments for the executable.

• string - an argument

• executable - the executable to be run by LRMS, taken by the ARC Client from the user-specified
executable attribute

8.5. Job Description Language (xRSL) 343

NorduGrid ARC 7 Documentation, Release ARC7

inputFiles

Unique: yes
Operators: =
User xRSL: (inputFiles=(<filename> <source>

[option] ...) ...)

A-REX xRSL: (inputFiles=(<filename> <URL> [option]
...)

(<filename> [size][.checksum]) ...)

Example: (inputFiles=("local_to_job"
"gsiftp://se1.lu.se/p1/remote.1"
"threads=5")

("local_to_job.dat"
"/scratch/local_to_me.dat")

("same_name_as_in_my_current_dir"
""))

List of files to be copied to the computing element before job execution.

• filename - destination file name, local to the computing element and always relative to the session directory

• source - source of the file: (remote URLs, or a path, local to the submission node). If void ("", use the
quotes!), the input file is taken from the submission directory.

• option - URL options for source. The ARC Client converts source and any options given here to a URL
with the syntax described here. Additionally delegationid=<id> can be specified here to assign X.509
delegation identifier to be used for corresponding URL.

• URL - URL of the file

• size - file size in bytes

• checksum - file checksum (as returned by cksum)

If the inputFiles list does not contain the standard input file (as specified by stdin) and/or the executable file
(as specified by executable), an ARC client must append these files to the list. If the <source> is a URL, any
options given by option are added to it, then it is passed by the ARC Client to the A-REX as shown in the example
above. A-REX recognizes all URLs except file:///.

Internally, the client must forward the (<filename> <source> [option] ...) request to the execution service
without changes, unless <source> is a local path, void ("") or file:///. In case <source> is a local path,
void ("") or file:///, the client must extract file size and checksum, and substitute the <source> string with
[size][.checksum]. In the unlikely case when it is impossible to extract file size, the <source> string must be
substituted by a void one ("").

Note: Please note that the inputFiles attribute is not meant to operate with directories, for reasons of access
control and checksum verifications. You must specify a pair ("<local_to_job>" "<source>") for each file.

344 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

executables

Unique: yes
Operators: =
User xRSL: (executables=<string> [string] ...)
A-REX xRSL: -"-
Example: (executables="myscript.sh" "myjob.exe")

List of files from the inputFiles set, which will be given executable permissions.

• string - file name, local to the computing element and relative to the session directory

If the executable file (as specified in executable and if relative to the session directory) is not in the executables
list, it will be added to the list by the ARC Client.

cache

Unique: yes
Operators: =
User xRSL: (cache="yes"|"no")
A-REX xRSL: -"-
Example: (cache="yes")

Specifies whether input files specified in the inputFiles should be placed by default in the cache or not. This
affects all input files, even those described by executables.

If not specified, default value is yes.

Note: Cached files can not be modified by jobs by default. If your job has to modify input files, please use the
(readonly=no) URL option for those files. This option does not affect whether or not the file is cached.

outputFiles

Unique: yes
Operators: =
User xRSL: (outputFiles=(<string> <URL> [option]

...) ...)
A-REX xRSL: (outputFiles=(<string> <URL>) ...)

Example:

(outputFiles=("local_to_job.dat"
"gsiftp://se1.uio.no/stored.dat")
("local_to_job_dir/" ""))

List of files to be retrieved by the user or uploaded by the A-REX and optionally indexed (registered) in a data
indexing service.

• string - file name, local to the Computing Element (CE). If this string ends with a backslash / and <URL>
is empty, the entire directory will be kept at the execution site. If however this string ends with a backslash
/ but the <URL> is a remote location, the contents of the directory are transferred to the destination.

• URL - destination URL of the remote file; if void ("", use the quotes!), the file is kept for manual retrieval.
Note that this can not be a local file:// URL.

8.5. Job Description Language (xRSL) 345

NorduGrid ARC 7 Documentation, Release ARC7

• option - URL options for destination URL. See URL Options for possible values. When the destination
is an indexing service, a physical file location may be specified by the additional option location. This
option can be given multiple times. The CE will attempt to upload the file to the specified locations in the
order they are given until one succeeds. Options specified after a location option only affect that location.
Another additional delegationid=<id> option can be specified here to assign X.509 delegation identifier
to be used for corresponding URL.Before passing to the A-REX, the ARC Client adds to URL any options
and locations given here, using the syntax described in URL Options.

If the list does not contain standard output, standard error file names and A-REX log-files directory name (as
specified by stdout, stderr and gmlog), the ARC Client appends these items to the outputFiles list. If the
<URL> is not specified (void, "", use the quotes!), files will be kept on the CE and should be downloaded by the
user via the ARC Client. If specified name of file ends with /, the entire directory is kept.

A convenient way to keep the entire job directory at the remote site for a manual retrieval is to specify
(outputfiles=(/)).

In some cases, the list of output files may only be known after the job has completed. ARC allows a user to specify
a list of output files dynamically in a file or files in the session directory as part of their job. The file(s) containing
the output file information can be defined in the xRSL script as the path to the file relative to the session directory
preceeded by ’@’. The format of these files is lines of 2 values separated by a space. The first value contains name
of the output file relative to the session directory and the second value is a URL to which the file will be uploaded.

Example: (outputFiles=("@output.files" "")

output.files is generated by the user and contains
file1 gsiftp://grid.domain.org/file1

file2 gsiftp://grid.domain.org/file2

After the job completes, the file output.files in the session directory will be read and any files described within will
be uploaded to the given URLs.

cpuTime

Unique: yes
Operators: =
User xRSL: (cpuTime=<time>)
A-REX xRSL: (cpuTime=<tttt>)
Example: (cpuTime="240")

Maximal CPU time request for the job. For a multi-processor job, this is a sum over all requested processors.

• time - time (in minutes if no unit is specified)

• tttt - time converted by the ARC Client from time to seconds.

The client converts time specified in the user-side XRSL file to seconds. If no time unit is specified, the client
assumes the time given in minutes. Otherwise, a text format is accepted, i.e., any of the following will be
interpreted properly (make sure to enclose such strings in quotes!):

1 week

3 days

2 days, 12 hours

1 hour, 30 minutes

36 hours

9 days

346 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

240 minutes

If both cpuTime and wallTime are specified, the ARC Client converts them both. cpuTime can not be specified
together with gridTime or benchmarks.

Note: This attribute should be used to direct the job to a system with sufficient CPU resources, typically, a batch
queue with the sufficient upper time limit. Jobs exceeding this maximum most likely will be terminated by remote
systems! If time limits are not specified, the limit is not set and jobs can run as long as the system settings allow
(note that in this case you can not avoid queues with too short time limits).

wallTime

Unique: yes
Operators: =
User xRSL: (wallTime=<time>)
A-REX xRSL: (wallTime=<tttt>)
Example: (wallTime="240")

Maximal wall clock time request for the job.

• time - time (in minutes if no unit is specified)

• tttt - time converted by the ARC Client to seconds

The client converts time specified in the user-side XRSL file seconds. If no time unit is specified, the client
assumes the time given in minutes. Otherwise, a text format is accepted, i.e., any of the following will be
interpreted properly (make sure to enclose such strings in quotes!):

1 week

3 days

2 days, 12 hours

1 hour, 30 minutes

36 hours

9 days

240 minutes

If both cpuTime and wallTime are specified, the ARC Client converts them both. wallTime can not be specified
together with gridTime or benchmarks. If only wallTime is specified, but not cpuTime, the corresponding
cpuTime value is evaluated by the ARC Client and added to the job description.

Note: This attribute should be used to direct the job to a system with sufficient CPU resources, typically, a batch
queue with the sufficient upper time limit. Jobs exceeding this maximum most likely will be terminated by remote
systems! If time limits are not specified, the limit is not set and jobs can run as long as the system settings allow
(note that in this case you can not avoid queues with too short time limits).

8.5. Job Description Language (xRSL) 347

NorduGrid ARC 7 Documentation, Release ARC7

gridTime

Unique: yes
Operators: =
User xRSL: (gridTime=<time>)
A-REX xRSL: none
Example: (gridTime="2 h")

Maximal CPU time request for the job scaled to the 2.8 GHz Intel Pentium 4 processor.

• time - time (in minutes if no unit is specified)

The attribute is completely analogous to cpuTime, except that it will be recalculated to the actual CPU time request
for each queue, depending on the published processor clock speed.

gridTime can not be specified together with cpuTime or wallTime. If only gridTime is specified, but not
cpuTime, the corresponding cpuTime value is evaluated by the ARC Client and added to the job description.

benchmarks

Unique: yes
Operators: =
User xRSL: (benchmarks=(<string> <value> <time>) ...)
A-REX xRSL:
Example: (benchmarks=("mybenchmark" "10" "1 hour, 30 minutes"))

Evaluate a job’s cpuTime based on benchmark values.

• string - benchmark name

• value - benchmark value of reference machine

• time - the cpuTime the job requires on the reference machine

benchmarks can not be specified together with cpuTime or wallTime. If only benchmarks is specified, but not
cpuTime, the corresponding cpuTime value is evaluated by the ARC Client and added to the job description.

memory

Unique: yes
Operators: =
User xRSL: (memory=<integer>)
A-REX xRSL: -"-
Example: (memory>="500")

Memory required for the job, per count for parallel jobs.

• integer - size (Mbytes)

Note: Similarly to cpuTime, this attribute should be used to direct a job to a resource with a sufficient capacity.
Jobs exceeding this memory limit will most likely be terminated by the remote system.

348 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

disk

Unique: no
Operators: = != > < >= <=
User xRSL: (disk=<integer>)
A-REX xRSL: none
Example: (disk="500")

Disk space required for the job.

• integer - disk space, Mbytes

Note: This attribute is used at the job submission time to find a system with sufficient disk space. However, it
does not guarantee that this space will be available at the end of the job, as most known systems do not allow for
disk space allocation. Eventually, a remote system can terminate a job that exceeds the requested disk space.

runTimeEnvironment

Unique: no
Operators: = != > < >= <=
User xRSL: (runTimeEnvironment=<string> [argument] ...)(runTimeEnvironment=<string>

[argument] ...)
A-REX
xRSL:

only = is allowed

Example: (runTimeEnvironment>="APPS/HEP/ATLAS-10.0.1" "find" "HIGGS")

Required runtime environment.

• string - environment name

The site to submit the job to will be chosen by the ARC Client among those advertising specified runtime en-
vironments. Before starting the job, the A-REX will set up environment variables and paths according to those
requested. Runtime environment names are defined by Virtual Organizations, and tend to be organized in name
spaces.

To request several environments, repeat the attribute string:
(runTimeEnvironment="ENV1")(runTimeEnvironment="ENV2") etc.

To make a disjunct-request, use a boolean expression:
(|(runTimeEnvironment="env1")(runTimeEnvironment="env2")).

You can use >= or <= operators: job will be submitted to any suitable site that satisfies such requirements, and
among the available at the sites runtime environments, the highest version satisfying a requirement will be requested
in the pre-processed xRSL script.

Runtime environment string interpretation is case-insensitive. If a runtime environment string consists of a name
and a version number, a partial specification is possible: it is sufficient to request only the name and use > or >=
operators to select the highest version.

The optional arguments can be supplied as additional strings after runtime environment string. On the server side
they are passed to software responsible for preparing corresponding infrastructure.

8.5. Job Description Language (xRSL) 349

NorduGrid ARC 7 Documentation, Release ARC7

middleware

Unique: no
Operators: = != > < >= <=
User xRSL: (middleware=<string>)
A-REX xRSL: only = is allowed
Example: (middleware="nordugrid-arc-0.5.99")

Required middleware version. Make sure to specify full name and version number.

string Grid middleware name.

The site to submit the job to will be chosen by the ARC Client among those advertising specified middleware. Usage
is identical to that of the runTimeEnvironment. Use the >= operator to request a version “equal or higher”.

opsys

Unique: no
Operators: = != > < >= <=
User xRSL: (opsys=<string>)
A-REX xRSL: only = is allowed
Example: (opsys="FC3")

Required operating system.

string Operating system name and version.

The site to submit the job to will be chosen by the ARC Client among those advertising specified operating system.
Usage is identical to that of runTimeEnvironment and middleware. Use the >= operator to request a version
“equal or higher”.

stdin

Unique: yes
Operators: =
User xRSL: (stdin=<string>)
A-REX xRSL: -"-
Example: (stdin="myinput.dat")

The standard input file.

string file name, local to the computing element.

The standard input file should be listed in the inputFiles attribute; otherwise it will be forced to that list by the
ARC Client.

350 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

stdout

Unique: yes
Operators: =
User xRSL: (stdout=<string>)
A-REX xRSL: -"-
Example: (stdout="myoutput.txt")

The standard output file.

string file name, local to the computing element and relative to the session directory.

The standard output file should be listed in the outputFiles attribute; otherwise it will be forced to that list by
the ARC Client. If the standard output is not defined, ARC Client assigns a name.

stderr

Unique: yes
Operators: =
User xRSL: (stderr=<string>)
A-REX xRSL: -"-
Example: (stderr="myjob.err")

The standard error file.

string file name, local to the computing element and relative to the session directory.

The standard error file should be listed as an outputFiles attribute; otherwise it will be forced to that list by the
ARC Client. If the standard error is not defined, ARC Client assigns a name. If join is specified with value yes,
ARC Client adds stderr to the pre-processed xRSL script with the same value as stdout.

join

Unique: yes
Operators: =
User xRSL: (join="yes"|"no")
A-REX xRSL: none
Example: (join="yes")

If yes, joins stderr and stdout files into the stdout one. Default is no.

8.5. Job Description Language (xRSL) 351

NorduGrid ARC 7 Documentation, Release ARC7

gmlog

Unique: yes
Operators: =
User xRSL: (gmlog=<string>)
A-REX xRSL: -"-
Example: (gmlog="myjob.log")

A name of the directory containing grid-specific diagnostics per job.

string a directory, local to the computing element and relative to the session directory

This directory is kept in the session directory to be available for retrieval (ARC Client forces it to the list if
outputFiles)

jobName

Unique: yes
Operators: =
User xRSL: (jobName=<string>)
A-REX xRSL: -"-
Example: (jobName="My Job nr. 1")

User-specified job name.

string job name

This name is meant for convenience of the user. It can be used to select the job while using the ARC Client. It is
also available through the Information System.

ftpThreads

Unique: yes
Operators: =
User xRSL: (ftpThreads=<integer>)
A-REX xRSL: -"-
Example: (ftpThreads="4")

Defines how many parallel streams will be used by the A-REX during gsiftp and http(s|g)transfers of files.

integer a number from 1 to 10

If not specified, parallelism is not used.

352 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

acl

Unique: no
Operators: =
User xRSL: (acl=<xml>)
A-REX xRSL: -"-
Example:

(acl="<?xml version=""1.0""?>

<gacl version=""0.0.
1""><entry><any-user></any-user>

<allow><write/><read/><list/><admin/></
allow></entry></gacl>")

Makes use of GACL rules to list users who are allowed to access and control job in addition to job’s owner. Access
and control levels are specified per user. any-user tag refers to any user authorized at the execution cluster. To
get more information about GACL please refer to http://www.gridsite.org.

xml a GACL-compliant XML string defining access control list

Following job control levels can be specified via acl:

write allows to modify contents of job data (job directory) and control job flow (cancel, clean, etc.)
read allows to read content of job data (contents of job directory)
list allows to list files available for the job (contents of job directory)
admin allows to do everything – full equivalence to job ownership

queue

Unique: yes
Operators: = !=
User xRSL: (queue=<string>)
A-REX xRSL: only = is allowed
Example: (queue="pclong")

The name of the remote batch queue.

Use only when you are sure that the queue by this name does exist.

string known queue name

While users are not expected to specify queue in job descriptions, this attribute must be present in the Server-side
xRSL. In fact, this is primarily an internal attribute, added to the job description by client tools after resource
discovery and matchmaking. Still, users can specify this attribute to explicitly force job submission to a queue:
when specified explicitly by the user, this value will not be overwritten by the ARC Client, and an attempt will be
made to submit the job to the specified queue.

If for some reason (e.g. due to a client tool error) queue is absent from the Server-side xRSL, A-REX on the
selected cluster will attempt to submit the job to the default queue if such is specified in the A-REX configuration.

8.5. Job Description Language (xRSL) 353

http://www.gridsite.org

NorduGrid ARC 7 Documentation, Release ARC7

startTime

Unique: yes
Operators: =
User xRSL: (startTime=<time>)
A-REX xRSL: (startTime=<tttt>)
Example: (startTime="2002-05-25 21:30:00")

Time to start job processing by the Grid Manager, such as e.g. start downloading input files.

time time string, YYYY-MM-DD hh:mm:ss
tttt time string, YYYYMMDDhhmmss[Z] (converted by the ARC Client from time)

Actual job processing on a worker node starts depending on local scheduling mechanisms, but not sooner than
startTime.

lifeTime

Unique: yes
Operators: =
User xRSL: (lifeTime=<time>)
A-REX xRSL: (lifeTime=<tttt>)
Example: (lifeTime="2 weeks")

Maximal time to keep job files (the session directory) on the gatekeeper upon job completion.

time time (in minutes if no unit is specified)
tttt time (seconds, converted by the ARC Client from time)

Typical life time is 1 day (24 hours). Specified life time can not exceed local settings.

notify

Unique: yes
Operators: =
User xRSL: (notify=<string> [string] ...)
A-REX xRSL: -"-
Example: (notify="be your.name@your.domain.com")

Request e-mail notifications on job status change.

string string of the format: [b][q][f][e][c][d] user1@domain1 [user2@domain2] ...

Here flags indicating the job status are:

354 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

b begin (PREPARING)
q queued (INLRMS)
f finalizing (FINISHING)
e end (FINISHED)
c cancellation (CANCELLED)
d deleted (DELETED)

When no notification flags are specified, default value of eb will be used, i.e., notifications will be sent at the job’s
beginning and at its end.

No more than 3 e-mail addresses per status change accepted.

rerun

Unique: yes
Operators: =
User xRSL: (rerun=<integer>)
A-REX xRSL: -"-
Example: (rerun="2")

Number of reruns (if a system failure occurs).

integer an integer number

If not specified, the default is 0. Default maximal allowed value is 5. The job may be rerun after failure in any state
for which reruning has sense. To initiate rerun user has to use the arcresume command.

architecture

Unique: no
Operators: = !=
User xRSL: (architecture=<string>)
A-REX xRSL: none
Example: (architecture="i686")

Request a specific architecture.

string architecture (e.g., as produced by uname -a)

nodeAccess

Unique: yes
Operators: =
User xRSL: (nodeAccess="inbound"|"outbound")
A-REX xRSL: none
Example: (nodeAccess="inbound")

Request cluster nodes with inbound or outbound IP connectivity. If both are needed, a conjunct request should be
specified.

8.5. Job Description Language (xRSL) 355

NorduGrid ARC 7 Documentation, Release ARC7

dryRun

Unique: yes
Operators: =
User xRSL: (dryRun="yes"|"no")
A-REX xRSL: -"-
Example: (dryRun="yes")

If yes, do dry-run: job description is sent to the optimal destination, input files are transferred, but no actual job
submission to LRMS is made. Typically used for xRSL and communication validation.

rsl_substitution

Unique: no
Operators: =
User xRSL: (rsl_substitution=(<string1> <string2>))
A-REX xRSL: -"-
Example: (rsl_substitution=("ATLAS" "/opt/atlas"))

Substitutes <string2> with <string1> for internal RSL use.

string1 new internal RSL variable
string2 any string, e.g., existing combination of variables or a path

Use this attribute to define variables that simplify xRSL editing, e.g. when same path is used in several values,
typically in inputFiles. Only one pair per substitution is allowed. To request several substitution, concatenate
such requests. Bear in mind that substitution must be defined prior to actual use of a new variable string1.

After the substitution is defined, it should be used in a way similar to shell variables in scripts: enclosed in round
brackets, preceded with a dollar sign, without quotes:
(inputfiles=("myfile" $(ATLAS)/data/somefile))

Unlike the environment attribute, rsl_substitution definition is only used by the client and is valid inside
xRSL script. It can not be used to define environment or shell variable at the execution site.

environment

Unique: no
Operators: =
User xRSL: (environment=(<VAR> <string>) [(<VAR> <string>)] ...)
A-REX xRSL: -"-
Example: (environment=("ATLSRC" "/opt/atlas/src") ("ALISRC" "/opt/alice/src"))

Defines execution shell environment variables.

VAR new variable name
string any string, e.g., existing combination of variables or a path

356 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

Use this to define variables at an execution site. Unlike the rsl_substitution attribute, it can not be used to
define variables on the client side.

count

Unique: yes
Operators: =
User xRSL: (count=<integer>)
A-REX xRSL: -"-
Example: (count="4")

Specifies amount of sub-jobs to be submitted for parallel tasks.

countpernode

Unique: yes
Operators: =
User xRSL: (countpernode=<integer>)
A-REX xRSL: -"-
Example: (countpernode="2")

Specifies amount of sub-jobs per node to be submitted for parallel tasks. Note: The count attribute must be
specified when this attribute is specified.

exclusiveexecution

Unique: yes
Operators: =
User xRSL: (exclusiveexecution="yes"|"no")
A-REX xRSL: -"-
Example: (exclusiveexecution="yes")

Specifies whether the node should be allocated for exclusive use by the job.

jobreport

Unique: yes
Operators: =
User xRSL: (jobreport=<URL>)
A-REX xRSL: -"-
Example: (jobreport="https://grid.uio.no:8001/logger")

Specifies an URL for an accounting service to send reports about job to. The default is set up in the cluster
configuration.

URL URL

It is up to users to make sure the requested accounting service accepts reports from the set of clusters they intend
to use.

8.5. Job Description Language (xRSL) 357

NorduGrid ARC 7 Documentation, Release ARC7

credentialserver

Unique: yes
Operators: =
User xRSL: (credentialserver=<URL>)
A-REX xRSL: -"-
Example: (credentialserver="myproxy://myproxy.nordugrid.org;username=user")

Specifies an URL which Grid Manager may contact to renew/extend delegated proxy of job. Only MyProxy servers
are supported.

URL URL of MyProxy server

It is up to a user to make sure the specified MyProxy server will accept requests from Grid Manager to renew
expired credentials. URL may contain options username and credname to specify user name and credentials name
which Grid Manager should pass to MyProxy server. If username is not specified DN of user credentials is used
instead.

priority

Unique: yes
Operators: =
User xRSL: (priority=<integer>)
A-REX xRSL: -"-
Example: (priority="80")

Specifies priority given to this job during staging of input and output files when the new data staging framework
is used by A-REX. Values are limited to between 1 (lowest priority) and 100 (highest priority). Default if this
attribute is not specified is 50.

8.5.3 Server-side attributes

Note: It is strongly advised to aviod specifying following attributes in the client xRSL.

The following attributes are a part of the internal ARC job representation, and must be provided by ARC client
tools and passed to the A-REX. Developers of new ARC client tools and utilities must make sure these attributes
are added to the user job description before it is submitted to a A-REX.

sstdin

A-REX xRSL: (sstdin=<filename>)
Example: (sstdin="myinput.dat")

Internal attribute for the standard input. Can also be spelled stdinput. Only needed for GRAM compatibility,
not used by ARC as such.

• filename - standard input file name

358 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

action

A-REX xRSL: (action="request"|"cancel"|"clean"|"renew"|"restart")
Example: (action="request")

Action to be taken by the gatekeeper: submit the job, cancel job execution, clear the results of the job (also cancels
the job), renew the proxy of the job, or restart the job from a previous failed state.

savestate

A-REX xRSL: (savestate="yes"|"no")
Example: (savestate="yes")

If yes, input RSL is stored in a temporary file at the gatekeeper. Must be always set as yes in the current imple-
mentation. Only needed for GRAM compatibility, not used by ARC as such.

lrmstype

A-REX xRSL: (lrmstype=<string>)
Example: (lrmstype="pbs")

LRMS type, indicating which submission script is to be invoked.

• string - LRMS type

hostName

A-REX xRSL: (hostname=<string>)
Example: (hostName="grid.quark.lu.se")

Name (e.g. as returned by the Linux hostname command) of the client machine from which the submission was
made.

• string - client host name, as passed by the ARC client

jobid

A-REX xRSL: (jobid=<string>)
Example: (jobid="grid.quark.lu.se:2119/jobmanager-ng/157111017133827")

Unique job identification string, needed for cancellation and clean-up.

• string - global job ID

It can also be provided during submission of the job and should be unique to a computing element (cluster).

8.5. Job Description Language (xRSL) 359

NorduGrid ARC 7 Documentation, Release ARC7

clientxrsl

A-REX xRSL: (clientxrsl=<string>)
Example: (clientxrsl="&(executable=/bin/echo)(arguments=boo)")

Job description xRSL string as submitted by the user, before being pre-processed by the client.

• string - original xRSL description submitted by the user

This attribute is added by the User Interface during pre-processing, and is used for job re-submission in order to
repeat brokering and matchmaking.

clientsoftware

A-REX xRSL: (clientsoftware=<string>)
Example: (clientsoftware="nordugrid-arc-0.5.39")

Version of ARC client used to submit the job.

• string - version string

This attribute is added by the User Interface during pre-processing.

delegationid

A-REX xRSL: (delegationid=<id>)
Example: (delegationid="a6f3e8fc920de023fbb432ea520")

X.509 delegation identifier for all data staging operations and job itself.

• id - delegation identifier obtained during delegation procedure (for applicable job submission interfaces)

This attribute is added by the User Interface during pre-processing.

8.5.4 Examples

User-side xRSL script

&
(* test run: if "yes", only submits RSL without actual job start *)

(dryRun="no")
(* some local variables defined for further convenience *)

(rsl_substitution=("TOPDIR" "/home/johndoe"))
(rsl_substitution=("NGTEST" $(TOPDIR)/ngtest))
(rsl_substitution=("BIGFILE" "/scratch/johndoe/100mb.tmp"))

(* some environment variables, to be used by the job *)
(environment=("ATLAS" "/opt/atlas") ("CERN" "/cern"))

(* the main executable file to be staged in and submitted to the PBS *)
(executable="checkall.sh")

(* the arguments for the executable above *)
(arguments="pal")

(* files to be staged in before the execution *)
(inputFiles = ("be_kaons" "")

(continues on next page)

360 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

("file1" gsiftp://grid.uio.no$(TOPDIR)/remfile.txt)
("bigfile.dat" $(BIGFILE)))

(* files to be given executable permissions after staging in *)
(executables="be_kaons")

(* files to be staged out after the execution *)
(outputFiles=

("file1" "gsiftp://grid.tsl.uu.se/tmp/file1.tmp")
("100mb.tmp" "rls://rls.nordugrid.org:39281/test/bigfile")
("be_kaons.hbook" gsiftp://ce1.grid.org$(NGTEST)/kaons.hbook))

(* user-specified job name *)
(jobName="NGtest")

(* standard input file *)
(stdin="myinput.dat")

(* standard output file *)
(stdout="myoutput.dat")

(* standard error file *)
(stderr="myerror.dat")

(* A-REX logs directory name *)
(gmlog="gmlog")

(* flag whether to merge stdout and stderr *)
(join="no")

(* request e-mail notification on status change *)
(notify="bqfe john.doe@gmail.com jane.doe@mail.org")

(* maximal CPU time required for the job, minutes for PBS*)
(CpuTime="60")

(* maximal time for the session directory to exist on the remote node, days *)
(lifeTime="7")

(* memory required for the job, per count, Mbytes *)
(Memory="200")

(* wall time to start job processing *)
(startTime="2002-04-28 17:15:00")

(* disk space required for the job, Mbytes *)
(Disk="500")

(* required architecture of the execution node *)
(architecture="i686")

(* required run-time environment *)
(runTimeEnvironment="APPS/HEP/Atlas-1.1")

(* number of re-runs, in case of a system failure *)
(rerun="2")

Server-side xRSL script

Note that a client tool must do matchmaking and modify correspondingly the job document before submitting it to
the matching resource. Specifically, a client tool has to:

• expand all the rsl_substitution values

• add double quotes to all strings

• insert queue attribute in case such is missing

• make sure every logical or comparison operator is expanded and replaced with a deterministic = statement

• streamline blank spaces

Note: Comment lines are removed from the Server-side xRSL! Below they are shown to explain details.

8.5. Job Description Language (xRSL) 361

NorduGrid ARC 7 Documentation, Release ARC7

&
(* saves RSL in a temporary file if "yes" *)

("savestate" = "yes")
(* job submission to be performed if action is "request" *)

("action" = "request")
(* submission host name *)

("hostname" = "ce1.grid.org")
(* client software version *)

("clientsoftware" = "nordugrid-arc-0.6.0.3")
(* walltime value added by the client, in seconds *)

("walltime" = "3600")
(* test run: if "yes", only submits RSL without actual job start *)

("dryRun" = "no")
(* some local variables defined for further convenience *)

("rsl_substitution" = ("TOPDIR" "/home/johndoe"))
("rsl_substitution" = ("NGTEST" "/home/johndoe/ngtest"))
("rsl_substitution" = ("BIGFILE" "/scratch/johndoe/100mb.tmp"))

(* some environment variables, to be used by the job *)
("environment" = ("ATLAS" "/opt/atlas") ("CERN" "/cern"))

(* executable *)
("executable" = "checkall.sh")

(* arguments *)
("arguments" = "pal")

(* files to be staged in before the execution *)
("inputfiles" = ("checkall.sh" "279320")

("myinput.dat" "39806")
("be_kaons" "8807")
("file1" "gsiftp://grid.uio.no/home/johndoe/remfile.txt")
("bigfile.dat" "104857600")

)
(* files to be given executable permissions after staging in *)

("executables" = "checkall.sh" "be_kaons")
(* files to be staged out after the execution *)

("outputfiles" = ("file1" "gsiftp://grid.tsl.uu.se/tmp/file1.tmp")
("100mb.tmp" "rls://rls.nordugrid.org:39281/test/bigfile")
("be_kaons.hbook" "gsiftp://ce1.grid.org/home/johndoe/ngtest/kaons.hbook")
("myoutput.dat" "")
("myerror.dat" "")

)
(* user-specified job name *)

("jobName" = "NGtest")
(* standard input file *)

("stdin" = "myinput.dat")
(* standard output file *)

("stdout"="myoutput.dat")
(* standard error file *)

("stderr" = "myerror.dat")
(* flag whether to merge stdout and stderr *)

("join" = "no")
(* request e-mail notification on status change *)

("notify" = "bqfe john.doe@gmail.com jane.doe@mail.org")
(* specific queue to submit the job *)

("queue" = "atlas")
(* CPU time required for the job, converted into seconds *)

("cputime" = "3600")
(* maximal time for the session directory to exist on the remote node, seconds *)

("lifetime" = "604800")
(continues on next page)

362 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

(continued from previous page)

(* memory required for the job, per count, Mbytes *)
("memory" = "200")

(* wall time to start job processing *)
("startTime" = "20020128171500")

(* disk space required for the job, Mbytes *)
("disk" = "500")

(* required architecture of the execution node *)
("architecture" = "i686")

(* required run-time environment *)
("runtimeenvironment" = "APPS/HEP/Atlas-1.1")

(* number of re-runs, in case of a system failure *)
("rerun" = "2")

(* original client xRSL with expanded string substitutions; shortened here *)
("clientxrsl" = "&(""dryrun"" = ""no"")(...)(""rerun"" = ""2"")")

8.6 ARC Client Config Reference

Some default valued used by client tools can be refedined in the client configuration file located in ~/.arc/
client.conf.

All currently supported client configuration options should be defined in the [common] block.

Warning: Other blocks (that was previously used to define target options in ARC5) are deprecated from ARC
6.5.0 release!

You can still use such blocks with legacy submission endpoint selection options for backward compatibility.
But they are completely ignored with new ARC6 options set.

8.6.1 certificatepath

Synopsis: certificatepath = path

Description: Specify the location of client certificate file. Environmental variable X509_USER_CERT redefines
this value.

Default: $HOME/.globus/usercert.pem

Example:

certificatepath=/home/user/credentials/cert.pem

8.6.2 keypath

Synopsis: keypath = path

Description: Specify the location of client secret key file. Environmental variable X509_USER_KEY redefines
this value.

Default: $HOME/.globus/userkey.pem

Example:

keypath=/home/user/credentials/key.pem

8.6. ARC Client Config Reference 363

NorduGrid ARC 7 Documentation, Release ARC7

8.6.3 cacertificatesdirectory

Synopsis: cacertificatesdirectory = path

Description: Specify the location of CA certificates directory Environmental variable X509_CERT_DIR redefines
this value.

Default: /etc/grid-security/certificates

Example:

cacertificatesdirectory=/home/user/.globus/certificates

8.6.4 proxypath

Synopsis: proxypath = path

Description: Specify the location of proxy certificate (both for generation and usage) Environmental variable
X509_USER_PROXY redefines this value.

Default: /tmp/x509up_u${UID}

Example:

proxypath=/home/user/credentials/proxy.pem

8.6.5 vomsespath

Synopsis: vomsespath = path

Description: Path to file or directory that holds client VOMS configuration to generate proxy certificates

Environmental variables X509_VOMS_FILE and X509_VOMSES redefine this value If missing arcproxy will search
for vomses in the following locations:

• ~/.arc/vomses

• ~/.voms/vomses

• /etc/vomses

• /etc/grid-security/vomses

Default: undefined

Example:

vomsespath=/home/user/credentials/vomses

8.6.6 defaultvoms

Synopsis: defaultvoms = vo[:command]

Description: Default value for --voms (-S) arcproxy option that is used to define VO and optionaly FQANs used
during proxy certificate generation

This option in multivalued.

Default: undefined

Example:

364 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

defaultvoms=atlas:/atlas/Role=pilot
defaultvoms=nordugrid.org:all
defaultvoms=ops.ndgf.org

8.6.7 rejectdiscovery

Synopsis: rejectdiscovery = service

Description: Specify the FQDN or URLs of the services that should be rejected during service discovery process
by CLI tools (arcsub, arctest, arcresub)

This option in multivalued.

Default: undefined

Example:

rejectdiscovery=bad.service.org
rejectdiscovery=bad2.service.org

8.6.8 rejectmanagement

Synopsis: rejectmanagement = service

Description: Specify the FQDN or URLs of the CEs that should be skipped during the job management (e.g.
arcstat, arckill)

This option in multivalued.

Default: undefined

Example:

rejectmanagement=bad3.service.org
rejectmanagement=bad4.service.org

8.6.9 brokername

Synopsis: brokername = broker

Description: Specify the broker used in resource discovery. The full list of installed brokers can be obtained
running arcsub -P

Default: Random

Example:

brokername=FastestQueue

8.6. ARC Client Config Reference 365

NorduGrid ARC 7 Documentation, Release ARC7

8.6.10 brokerarguments

Synopsis: brokerarguments = args

Description: Specify broker arguments (if applicable to specified broker)

Default: undefined

Example:

brokername=PythonBroker
brokerarguments=ACIXBroker.ACIXBroker:https://cacheindex.ndgf.org:6443/data/index

8.6.11 timeout

Synopsis: timeout = seconds

Description: Amount of time to wait for a service to respond before considering it dead.

Default: 20

Example:

timeout=60

8.6.12 joblist

Synopsis: joblist = path

Description: Path to the jobs database that holds all extra data about submitted jobs to be used during further job
management

Default: $HOME/.arc/jobs.dat

Example:

joblist=/home/user/arcjobs.dat

8.6.13 joblisttype

Synopsis: joblisttype = type

Description: Type of the backend used for jobs database.

Warning: IT IS STRONGLY advised to keep default SQLITE type of backend.

Allowed values: SQLITE,, BDB,, XML

Default: SQLITE

Example:

joblisttype=XML

366 Chapter 8. Documentation for Infrastructure Users

NorduGrid ARC 7 Documentation, Release ARC7

8.7 ARC SDK Documentation

8.7. ARC SDK Documentation 367

NorduGrid ARC 7 Documentation, Release ARC7

368 Chapter 8. Documentation for Infrastructure Users

CHAPTER

NINE

ARC MISCELLANEOUS PAGES

These pages contain information that does not fit in the formal ARC documentation. That can be for instance more
dynamic contents, like overview of testing campaigns related to releases, or how-to pages.

9.1 About the Nordugrid ARC Releases

This page collects general information concerning the releases of the Nordugrid ARC software.

An ARC release is defined as the ARC source package AND the corresponding binary packages on the supported
platforms.

9.1.1 Release categories

The source package is identified by its major and minor version number. Due to historical reasons a “bugfix”
number is also included, but for scheduled releases (see below) this is always 0. For scheduled releases we do as
of March 2018 not distinguish between bugfix and minor releases. The third digit is bumped only in the case of an
emergency release (see below).

An example of a release number is NorduGrid ARC 6.1.0 where 6 refers to the major release series, and 1 to the
minor. This is a scheduled release since the last digit is 0.

An ARC release 6.1.1 or 6.1.2 signifies an emergency release since the last digit is different than 0.

The properties of a major are:

• may break backward compatibility

• introduces new components, features

• obsoletes components

• has longer term planning

• 3-6 months preparation

• can include alpha, beta, rcx test releases

• bumps the major number in the version number

• the contents mainly follow a high level ARC development roadmap

The properties of a minor release are:

• includes bugfixes

• can include new features and/or enhancements

• can include new components

• does not include anything that is backward incompatible

• the release bumps the minor number in the version number

369

NorduGrid ARC 7 Documentation, Release ARC7

The Nordugrid ARC releases can come in three types: scheduled, emergency and binary update of a release.

Scheduled releases:

• Minor releases are scheduled regularly monthly or bi-montly

• Major releases are scheduled irregularly as needed, with frequency ranging from 1 to three years.

• All developments that at the time of the release are already merged into master are included in the scheduled
release

– this means that backward incompatible changes are kept in separate development branches, and only
merged before a major release is imminent.

Emergency releases:

• is an unplanned urgent release to fix a security issue or a critical bug

• maximum two weeks preparation

• only development needed to fix the issue is included into the release in order to not delay the release or
introduce new bugs

• a separate branch is created from the point on master of the last release, and the release tag is created on this
branch

• bumps the third digit in the ARC release number by one: 6.1.0 -> 6.1.1.

Binary update of a release:

• is sometimes needed due to a change in the external dependencies and ARC releases have to be rebuilt

• this “semi release” does not affect the ARC source code, no re-tagging takes place, only new binaries are
built

• can happen for both major, minor or emergency releases

9.1.2 Testing

Testing needs to be done on several Linux distributions as ARC depends on a lot of software that has different
versions on different distributions with different file structure.

The level of importance of the different Linux distributions is evaluated as follows:

1. RHEL/CentOS/Scientific Linux version 7.x architecture x86_64 is The Most Important version.

2. RHEL 6, Latest Ubuntu LTS, Latest Ubuntu, any architecture

3. Fedora and other Ubuntu

4. The rest.

Some OSes are more used server-side (RHEL) and some client-side (Fedora).

The testing of Nordugrid ARC is performed in levels, where level 1 and 2 are always performed, and level 3 is
performed on the best-effort or as-needed -basis.

370 Chapter 9. ARC Miscellaneous Pages

NorduGrid ARC 7 Documentation, Release ARC7

Level 1

All supported platforms are built on a nightly basis and publically available.

In addition ARC is built and deployed for the most important platforms on the GitLab CI platform. The deployment
includes a basic functional test. Both supported platforms and tests are subject to ongoing development. Currently
the build and deploy is performed on each commit to master.

Level 2

The release candidate is deployed on voulenteer sites (minially 1) and on testing infrastructure available at the time.
In particular the functionality affected by the development in the current release should be tested.

The test-site tracks his contribution to the test on in the GitLab Wiki.

Level 3

If necessary and possible, larger testing campaigns are organized using the release candidate in question (involving
users and sysadmins outside the testing team). This campaign will follow a plan organized centrally by the Nor-
dugrid ARC team. The sites report back on any issues seem, and may be asked to perform tests, and give a simple
report back on the test results.

The tests and their reults are recorded on a dedicated pages in the Testing area of the ARC documentation

9.1.3 Release notes

Release notes are published on http://www.nordugrid.org/arc/releases/ and are distributed in the following chan-
nels:

• News section at http://www.nordugrid.org

• RSS feed: http://www.nordugrid.org/news.xml

• RSS feed: http://www.nordugrid.org/arc/release-news.xml

• LinkedIn NorduGrid page: http://www.linkedin.com/company/nordugrid

The following Web pages are updated upon a release:

• ARC Web page: http://www.nordugrid.org/arc/

• ARC releases: http://www.nordugrid.org/arc/releases/ (updated automatically when release notes are up-
loaded)

• NorduGrid repositories, in case new one is created: repository document within this documentation and
http://download.nordugrid.org/repos-6.html

• Wikipedia article: http://en.wikipedia.org/wiki/Advanced_Resource_Connector

9.2 Security Operations

This page collects general information about security operations.

9.2. Security Operations 371

http://download.nordugrid.org/builds/index.php?pkgname=nordugrid-arc&type=master
https://source.coderefinery.org/nordugrid/arc/pipelines
https://source.coderefinery.org/nordugrid/arc/-/wikis/home
http://www.nordugrid.org/arc/releases/
http://www.nordugrid.org
http://www.nordugrid.org/news.xml
http://www.nordugrid.org/arc/release-news.xml
http://www.linkedin.com/company/nordugrid
http://www.nordugrid.org/arc/
http://www.nordugrid.org/arc/releases/
http://download.nordugrid.org/repos-6.html
http://en.wikipedia.org/wiki/Advanced_Resource_Connector

NorduGrid ARC 7 Documentation, Release ARC7

9.2.1 Finding jobs submitted by DN

In case it is necessary to find all the jobs belonging to a specific user, the following command may be run by the
local CE admin:

[root ~]# arcctl job list --owner <DN>

9.2.2 Killing jobs submitted by DN

In case you need to kill all jobs owned by a specific user, identified by a certain certificate DN:

[root ~]# arcctl job killall --owner <DN>

9.2.3 Removing jobs submitted by DN

Warning: Do not do this before any needed forensics have been performed

In case you want to remove all files related to a jobs run by a specific user:

[root ~]# arcctl job cleanall --owner <DN>

9.3 ARC 7 Testing Area

There are 3 slurm test-sites set up for users to test e.g. token submission or ARCREST interface to:

• https://source.coderefinery.org/nordugrid/arctestsite-slurm-el9-arc7

• https://source.coderefinery.org/nordugrid/arctestsite-slurm-el8-arc7

• https://source.coderefinery.org/nordugrid/arctestsite-slurm-el7-arc7

In addition there is 1 condor site:

• https://source.coderefinery.org/nordugrid/arctestsite-condor-el7-arc7

Instructions on how to interact with these is found in the repos themself.

9.4 Release management

9.4.1 People involved in preparing for a release

Table 9.1: People

Name Experties/responsibility
Anders Waananen Packaging, autotools, admin access to Bugzilla and

nordugrid.org (package downloads http://download.
nordugrid.org/repos/6/)

Balazs Konya Overall coordination
Mattias Ellers packaging and builds, EPEL and Debian uploads

(Globus)
Maiken Pedersen Release manager
Oxana Smirnova Bugzilla, Web site, documentation

372 Chapter 9. ARC Miscellaneous Pages

https://source.coderefinery.org/nordugrid/arctestsite-slurm-el9-arc7
https://source.coderefinery.org/nordugrid/arctestsite-slurm-el8-arc7
https://source.coderefinery.org/nordugrid/arctestsite-slurm-el7-arc7
https://source.coderefinery.org/nordugrid/arctestsite-condor-el7-arc7
https://bugzilla.nordugrid.org/
http://download.nordugrid.org/repos/6/
http://download.nordugrid.org/repos/6/

NorduGrid ARC 7 Documentation, Release ARC7

9.4.2 Release workflow

• Decide on release date and timeline on Nordugrid technical coordination weekly meeting

– The aim is a monthly scheduled minor release

– The timeline contains code-freeze date. From this date on no new merge requests will as a rule be
added to master.

– Together with the developers a set of minimal tests are defined for the current release in planning.

– Clarify if any documenation changes are needed.

– The release manager enters the test-descriptions on the GitLab wiki test-page: https://source.
coderefinery.org/nordugrid/arc/wikis/home

• Release manager sends out a heads-up email announcing the release in preparation and its timeline right
after the decision of the release is made

– to: nordugrid-disucss

– Inform that documentation updates should be ready by code-freeze date

• The day after code-freeze, the agreed test-sites should install the nightly build from the nightly build reposi-
tory: http://download.nordugrid.org/builds/index.php?pkgname=nordugrid-arc&type=master and report on
the tests and any issues encountered

– If there are any issues the release date might be postponed.

∗ If a postponement is necessary a new timeline is drawn

∗ TO-DO: Should a new email go out to nordugrid-discuss or will that just be noise?

– If no issues are found the release is ready for the next step

• After the definite code-freeze the translations are run

– The release manager gives a green light to run translations

– Translations are run. Responsible: Oxana Smirnova

• The release manager creates a tag on master

– Informs the build-manager about the commit-hash either on skype or by email to nordugrid-core mail
list

• The builds are created and repositories populated. Responsible: Anders Waananen

• The list of supported platforms is checked for updates. Responsible: Anders Waanaen

• Once the source tarballs are available in the nordugrid repo, the build in the Fedora build system and for
Debian is started. Responsible: Mattias Ellert.

– The builds should not be made available before the release is announced. TO-DO: Is this possible?

• Prepare the release announcement (see more below). Responsible: Maiken Pedersen

• Notify release manager that the builds are ready to be pushed to the repo. Responsible: Anders Waananen

• Notify responsible in order to publish the release annoucement on the web. Responsible: Maiken Pedersen

– Publish the release announcement. Responsible: Oxana Smirnova

• Notify responsible in order to push the packages to the nordugrid repo. Responsible: Maiken Pedersen

– Push packages to nordugrid repo. Responsible: Anders Waananen

• Notify responsible in order to push builds to Fedora and Debian repo. Responsible: Maiken Pedersen

– Push packages to Fedora and Debian repos. Responsible: Mattias Ellers

• Ensure there are consistent binary packages in agreed repositories and linked from the release page. Respon-
sible: Maiken Pedersen

9.4. Release management 373

https://source.coderefinery.org/nordugrid/arc/wikis/home
https://source.coderefinery.org/nordugrid/arc/wikis/home
http://download.nordugrid.org/builds/index.php?pkgname=nordugrid-arc&type=master

NorduGrid ARC 7 Documentation, Release ARC7

• Ensure there is corresponding release version in Bugzilla. Responsible: Anders Wannanen

9.4.3 The release announcement should contain

• Most important changes/highlights

• List of fixed bugs

• List of new features (if relevant)

• List of backward incompatible changes (if relevant - only for major releases)

• Link to documentation in addition to installation links

• Link to the GitLab ARC repo

• Getting-in-touch information

9.5 Changelogs/list of bugs

9.5.1 Main changes in ARC 6 compared to ARC 5

There are many improvements and changes in the new ARC release, and with these we hope to have greatly en-
hanced the ease of setting up, configuring and managing an ARC production site, and to have improved the relia-
bility and scalability of the ARC CE by the internal restructuring ARC has undergone.

Note: Despite all the new features and code changes, the supported ARC 6 CE interfaces are un-
changed - the latest ARC 5 clients are compatible with an ARC 6 CE and vice versa.

• Complete overhaul of server-side ARC CE configuration:

– Configuration has been completely reworked, cleaned up, regrouped and made more streamlined.

– In particular, the way authorization and user mapping is handled has been greatly improved. Worth
mentioning is the support of higher granularity vo-based authorization, and that mapping via
gridmap files is no longer required nor recommended.

– ARC now comes with a so-called zero configuration - a preconfigured minimal ARC setup auto-
matically installed with ARC, including test-CA and test-host certificate for immediate test sub-
mission.

– Default values throughout ARC have had a big tidy up and are now handled consistently through
the ARC runtime configuration.

– Configuration blocks are now used to enable (turn on) or disable a functionality, a service or an
interface. For example, the NorduGrid schema is no longer published unless it is enabled via the
corresponding configuration block.

– Validation of the ARC configuration is enforced by A-REX startup scripts. If you have configura-
tion errors then A-REX will not start, and you will be pointed to the error.

• Scalability and manageability improvements:

– The internal job-loop in A-Rex has been re-engineered to be event-driven

– xrootd plugin has been re-written to improve data transfer performance

– Consistent handling of server-side logging and improved logfile structure

– Reworked startup scripts

– Streamlined package name scheme, where e.g. ldap services have been separated out

374 Chapter 9. ARC Miscellaneous Pages

NorduGrid ARC 7 Documentation, Release ARC7

• The RTE framework has got a redesigned architecture and a largely extended functionality (default, installed
and enabled RTEs, introduction of RTE parameters)

• A new framework for RunTimeEnvironments (RTE):

– The RTE framework has gotten a redesigned architecture and largely extended functionality (de-
fault, installed, enabled RTEs, introduction of RTE parameters).

Note: RTEs must in ARC 6 be explicitly enabled through the new arcctl tool as a separate
step after installation.

– There are several system RTEs installed together with ARC which you can enable on
demand. These are:

∗ ENV/CANDYPOND: makes ARC Candypond (“Cache and deliver your pilot on-demand
data”) client available on the Worker Nodes and ready to be used

∗ ENV/CONDOR/DOCKER: enables submission to Docker universe in HTCondor backend

∗ ENV/LRMS-SCRATCH: enables the usage of local WN scratch directory defined by
LRMS

∗ ENV/PROXY: copies proxy certificate to the job session directory

∗ ENV/RTE: copies RunTimeEnvironment scripts to the job session directory

• ARCCTL, a new server-side management and control tool for sysadmins has been developed.

– arcctl is meant to be the central one-stop-shop tool for administrating an ARC CE

– With this tool you can handle RTEs, the jobs, accounting, ARC services and many other things
related to an ARC CE.

– arcctl also offers help with integrating 3rd party services and components with an ARC CE such
as handling CAs, VOMS, etc..

• JURA Accounting subsystem improvements:

– Accounting configuration, archive and operations has been restructured to improve typical opera-
tions.

– Improved republishing via arcctl.

– Better integration with APEL SSM.

– Archive structure is relying on a database for republishing and gathering stats locally.

• ARCHERY , the new DNS-based service endpoint catalogue for ARC

– archery-manage package to populate the ARCHERY registry with ARC CE endpoint info

– Official top-level DNS registry under the nordugrid.org domain

– ARCHERY-compatible clients to submit and monitor jobs (arc cli, ldap monitor)

– ARCHERY replaces the OBSOLETED EGIIS service of the ARC 5 release series.

• TECHNOLOGY PREVIEW components:

– The REST interface - enabled together with the A-Rex Web-Service.

– The INTERNAL interface - a special interface aimed for restrictive HPC sites, to be used with a
local installation of the ARC Control Tower.

– Candypond - “Cache and deliver your pilot on-demand data” service to bring the power of ARC
Cache to the pilot job universe.

– Experimental Python LRMS for SLURM with SSH access support.

• The ARC client and SDK:

9.5. Changelogs/list of bugs 375

NorduGrid ARC 7 Documentation, Release ARC7

– The client has undergone a major internal cleanup, large number of submission, target retrieval
and job description plugins got removed as a result of OBSOLETING third-party interfaces and
technologies in ARC.

– New plugins for ARCHERY and the REST And INTERNAL interfaces were implemented.

– The arcstat cli of the ARC6 client and the underlying SDK now handles walltime as (wall-
time)*(number of cores) for multicore jobs.

REMOVED and obsoleted components

• Large number of configuration options of arc.conf got DELETED during the server-side configuration re-
work. A detailed list of those options are available in the arc.conf.DELETED file.

• The separate gangliarc component is discontinued, instead we now offer ganglia integrated into AREX.

• Nordugrid no longer distributes a source code bundle including documentation, gangliarc and nagios.

• CREAM related plugins and server-side components.

• UNICORE related plugins and server-side components.

• All the windows & solaris related ARC code and build.

• JAVA bindings for ARC SDK.

• Support for BES, WSRF and other non-EMIES WS flavours as job management interfaces.

• Support for JDL, ARCJSDL, RSL job description dialects: ARC keeps only XRSL and ADL as supported
job description languages.

• EMIR indexing service including ARC CE registration to EMIR and ARC SDK plugins.

• Server-side EGIIS, including ARC CE registration to EGIIS. BUT: keep EGIIS plugins in the client.

• GLUE1 support from the ARC client SDK, server-side support for GLUE1 temporarily kept but labelled as
OBSOLETE.

• ARC SDK support to obtain information from top-BDII.

• Publishing nordugrid-authuser objects in the NorduGrid LDAP schema

List of bugs fixed since ARC 5

A rather long (but not exhaustive) list of bugs fixed since ARC 5 can be found here: http://www.nordugrid.org/arc/
arc6/common/changelog/bugs-6.0.0.html

9.5.2 List of bugs fixed since ARC 5.4.4

Table 9.2: bugs_600

Bug ID Summary
BUGZ-895 ARC Administrative tools
BUGZ-1421 No log of backend script problems
BUGZ-3034 arcstat -s is case-sensitive
BUGZ-3106 arcproxy could be more expressive when it finds a problem
BUGZ-3360 SGE and LL backends fail to report correct node OS/system information in GLUE2 in-

fosystem
BUGZ-3384 Support for per-queue authorisation configuration and publishing
BUGZ-3451 Configure number of cpus manually
BUGZ-3476 Crashes in multiple ARC components
BUGZ-3545 Patch for Correct Cores Parsing

continues on next page

376 Chapter 9. ARC Miscellaneous Pages

http://www.nordugrid.org/arc/arc6/common/changelog/bugs-6.0.0.html
http://www.nordugrid.org/arc/arc6/common/changelog/bugs-6.0.0.html
https://bugzilla.nordugrid.org/show_bug.cgi?id=895
https://bugzilla.nordugrid.org/show_bug.cgi?id=1421
https://bugzilla.nordugrid.org/show_bug.cgi?id=3034
https://bugzilla.nordugrid.org/show_bug.cgi?id=3106
https://bugzilla.nordugrid.org/show_bug.cgi?id=3360
https://bugzilla.nordugrid.org/show_bug.cgi?id=3384
https://bugzilla.nordugrid.org/show_bug.cgi?id=3451
https://bugzilla.nordugrid.org/show_bug.cgi?id=3476
https://bugzilla.nordugrid.org/show_bug.cgi?id=3545

NorduGrid ARC 7 Documentation, Release ARC7

Table 9.2 – continued from previous page
Bug ID Summary
BUGZ-3557 undetected job submission in case of heavy filesystem load
BUGZ-3565 Allow setting default VO in ~/.arc/client.conf to be used in arcproxy
BUGZ-3566 Implement RTEs processing without shared directory
BUGZ-3569 Exporting CPU/Wall time limits to Glue2/BDII
BUGZ-3570 Arcsub used 100GB memory
BUGZ-3584 JURA: create one log file per job, not per submission
BUGZ-3624 Data delivery service can only listen to one network interface.
BUGZ-3626 Force GLUE2ComputingManagerTotalLogicalCPUs to be totalcpus when this value is

defined in arc.conf
BUGZ-3632 arcproxy fails in Ubunt 16.04, 16.10 and recent Debian systems
BUGZ-3637 arcget with multiple jobs crashes
BUGZ-3643 The watchdog crashes
BUGZ-3662 arcsub crashes
BUGZ-3667 JSON output for arcstat
BUGZ-3674 settings in client.conf ignored
BUGZ-3675 Problems retrieving jobs with arcget 1
BUGZ-3676 Problems retrieving jobs with arcget 2 (first byte missing)
BUGZ-3677 arcproxy fails retrieving attributes from voms
BUGZ-3682 Better error message when DN not in gridmap file
BUGZ-3690 Warnings about missing information on deleted jobs
BUGZ-3695 Slowness with arccp and the xrootd protocol
BUGZ-3700 ARC1ClusterInfo.pm uses netstat
BUGZ-3702 Cannot use arc data commands without certificates
BUGZ-3707 Seg fault Triolith - related or not to the data-staging problems on Triolith
BUGZ-3713 Malformed jobs.dat entries
BUGZ-3722 Xenial repo for the (nordugrid) ARC source is not correct
BUGZ-3756 package update failed to restart A-REX
BUGZ-3772 Can’t use different credentials within one submission process when jobs require user

input files
BUGZ-3773 Enabling arex-ganglia breaks controldir access
BUGZ-3778 arcctl not working if arc code configured with –disable-swig flag and installed with make

install
BUGZ-3788 Poor performance with arccp and HTTPS
BUGZ-3812 A-REX hangs inside XRootd after fork

9.6 Using ARC packages from nightly builds

Recent development version of ARC is available as a nightly builds packages for many Linux distribution.

To use these nightlies smoothly for installation and updates, the repository should be added to your system.

9.6.1 Enabling nightlies repo for RHEL-based distributions

Setup a CRON job (e.g. /etc/cron.daily/update-arc-nightly-time.sh) to fetch the latest nightlies date:

#!/bin/bash
curl -s http://builds.nordugrid.org/nightlies/nordugrid-arc/next/ | sed -n 's/^.*<a.*>
↪→\(.*\)\/<\/a>.*$/\1/p' | sort | tail -1 > /etc/yum/vars/arcnightly

Run the CRON script once manually to have the arcnightly variable initialized. Also, make sure the script has
executable permissions.

9.6. Using ARC packages from nightly builds 377

https://bugzilla.nordugrid.org/show_bug.cgi?id=3557
https://bugzilla.nordugrid.org/show_bug.cgi?id=3565
https://bugzilla.nordugrid.org/show_bug.cgi?id=3566
https://bugzilla.nordugrid.org/show_bug.cgi?id=3569
https://bugzilla.nordugrid.org/show_bug.cgi?id=3570
https://bugzilla.nordugrid.org/show_bug.cgi?id=3584
https://bugzilla.nordugrid.org/show_bug.cgi?id=3624
https://bugzilla.nordugrid.org/show_bug.cgi?id=3626
https://bugzilla.nordugrid.org/show_bug.cgi?id=3632
https://bugzilla.nordugrid.org/show_bug.cgi?id=3637
https://bugzilla.nordugrid.org/show_bug.cgi?id=3643
https://bugzilla.nordugrid.org/show_bug.cgi?id=3662
https://bugzilla.nordugrid.org/show_bug.cgi?id=3667
https://bugzilla.nordugrid.org/show_bug.cgi?id=3674
https://bugzilla.nordugrid.org/show_bug.cgi?id=3675
https://bugzilla.nordugrid.org/show_bug.cgi?id=3676
https://bugzilla.nordugrid.org/show_bug.cgi?id=3677
https://bugzilla.nordugrid.org/show_bug.cgi?id=3682
https://bugzilla.nordugrid.org/show_bug.cgi?id=3690
https://bugzilla.nordugrid.org/show_bug.cgi?id=3695
https://bugzilla.nordugrid.org/show_bug.cgi?id=3700
https://bugzilla.nordugrid.org/show_bug.cgi?id=3702
https://bugzilla.nordugrid.org/show_bug.cgi?id=3707
https://bugzilla.nordugrid.org/show_bug.cgi?id=3713
https://bugzilla.nordugrid.org/show_bug.cgi?id=3722
https://bugzilla.nordugrid.org/show_bug.cgi?id=3756
https://bugzilla.nordugrid.org/show_bug.cgi?id=3772
https://bugzilla.nordugrid.org/show_bug.cgi?id=3773
https://bugzilla.nordugrid.org/show_bug.cgi?id=3778
https://bugzilla.nordugrid.org/show_bug.cgi?id=3788
https://bugzilla.nordugrid.org/show_bug.cgi?id=3812
http://builds.nordugrid.org/index.php?pkgname=nordugrid-arc&type=next

NorduGrid ARC 7 Documentation, Release ARC7

To add the nightlies repository to your RHEL-based system, create a /etc/yum.repos.d/nordugrid-nightly.
repo with the following content1:

[nordugrid-nightly]
name=Nordugrid ARC Next Nightly Builds - $basearch
baseurl=http://builds.nordugrid.org/nightlies/nordugrid-arc/next/$arcnightly/centos/
↪→el7/$basearch
enabled=1
gpgcheck=0

Check if it works running yum (or dnf), e.g.:

[root ~]# yum makecache

Enabling dependent repos for RHEL-based distributions

The NorduGrid repositories for RedHat Enterprise Linux/CentOS depends on the EPEL Repositories which must
also be part of the YUM configuration, so as root user do:

For RHEL7 flavour:

yum install -y epel-release
yum install -y yum-utils --enablerepo=extras

For RHEL8 flavour:

dnf config-manager --set-enabled powertools

For RHEL9 flavour:

dnf config-manager --set-enabled crb

Once the NorduGrid repositories are configured and the dependency above installed, install the alpha/beta/release-
candidate packages with:

yum install --enablerepo nordugrid-nightly <list-of-packages>

For instance:

dnf install --enablerepo nordugrid-nightly nordugrid-arc-arex

Are you on RHEL-flavour 7, use yum instead of dnf.

Please refer to the ARC Computing Element Installation and Configuration Guide for package selection and con-
figuration.

1 NOTE that you should modify OS release version to match your case. For Fedora releases, replace centos/el with fedora/.

378 Chapter 9. ARC Miscellaneous Pages

https://fedoraproject.org/wiki/EPEL

NorduGrid ARC 7 Documentation, Release ARC7

9.6.2 Enabling nightlies repo for Debian-based distributions

Nightlies for Debian/Ubuntu are available as standalone packages without repository index files generated.

The suggested approach is to:

• download packages locally

• create the necessary repository package index

• use the repository on the local filesystem

To accomplish this, install the necessary tools for making repository files:

[root ~]# apt-get -y install dpkg-dev

Regularly fetch latest nightly packages and create the repository index with the following daily CRON job:

#!/bin/bash

arcrelease='ubuntu/16.04/amd64'
latestdate=$(wget -q -O - http://builds.nordugrid.org/nightlies/nordugrid-arc/next/␣
↪→| sed -n 's/^.*<a.*>\(.*\)\/<\/a>.*$/\1/p' | sort | tail -1)
repodir=/srv/nordugrid-nightlies

rm -rf $repodir; mkdir -p $repodir; cd $repodir

wget -q -r -nH --cut-dirs=8 --no-parent -l1 -A "*.deb, *.ddeb" http://builds.
↪→nordugrid.org/nightlies/nordugrid-arc/next/$latestdate/$arcrelease/

dpkg-scanpackages . /dev/null 2>/dev/null | gzip -9c > Packages.gz

Create the local repository file /etc/apt/sources.list.d/nordugrid-nightlies.list and add the con-
tents:

deb [trusted=yes] file:/srv/nordugrid-nightlies ./

Check it works running apt, e.g:

[root ~]# apt-get update

9.7 Work-in-progress Docs

Hidden area that holds unfinished documents to be build and available in the doc tree, but not yet linked to the right
place.

9.7.1 INTERNAL interface - ARC 6

NB! WIP [TODO] Fix references, now in tex style ref to arc-ce sys admin guide

The INTERNAL submission interface is aimed for restrictive HPC sites. When ARC runs in the internal mode, it
should do so alongside a local instance of the ARC Control Tower (aCT). aCT pulls jobs from the central job server
(like PaNDA for ATLAS), and and feeds ARC with new jobs internally. Since there is no external access, there
is no need for a web-service, gridftp server or ldap, as the purpose of these components are to facilitate external
access. There is neither a need for a host-certificate on such a machine. The only service running on ARC is
A-REX. Therefore a stripped-down version of aCT and ARC-CE can be used which is beneficial for installation,
configuration and maintenance. Furthermore, in the INTERNAL mode ARC should be installed as a normal user.
No user mapping (See Section myref{sub:access_control}) is needed in this case, as the default behaviour in ARC
6 is to map the user submitting the job to the A-REX user.

9.7. Work-in-progress Docs 379

NorduGrid ARC 7 Documentation, Release ARC7

Implementation overview

The INTERNAL submission plugin which is part of the ARC client, interacts with the parent plugin classes using
the same API as the other plugins such as gridftp plugin or the emi-es plugin. However, the INTERNAL plugin
interacts directly with the A-REX memory and methods, and therefore is integrated as part of the A-REX service
which belongs to the ARC-CE code-base. Therefore, both the ARC client and the ARC CE must be installed and
on the same machine for the INTERNAL submission plugin interface to function.

All interaction between the client and A-REX happens directly via files in the controldir or via A-REX memory.

Actions

Retrieving Service Information

As a site running in the INTERNAL mode is not accessible from the outside, any service retrieval information
can only be done from within the site. You may inspect the service information as usual by issuing the arcinfo
command. The information is extracted by direct access to the info.xml file in the controldir. The sstat method of
the INTERNALClient reads the info.xml and outputs information in xml-format to the client. An example of the
output of arcinfo for localhost

[root ~]# arcinfo -c localhost
Computing service:
Information endpoint: file://localhost
Submission endpoint: file://localhost (status: ok, interface: org.nordugrid.

↪→internal)

When arcinfo is called, the INTERNAL submission interface extracts the site information by directly accessing the
info.xml file in the controldir. The INTERNAL plugin reads the info.xml and outputs information in xml-format
to the client, which in turn displays it to the user.

Job submission

When a job is submitted via the INTERNAL submission interface the plugin creates an A-REX job object, which
in turn takes care of creating all necessary files (like for instance the ARC job description) and folders (ses-
siondir) for the job, in addition to creating a job ID. The INTERNAL plugin then places any input files local
to the client in the newly created sessiondir. Remaining remote input files are downloaded by the DTR (See Sec-
tion myref{sub:datastaging}). Once these files are present in the controldir A-REX adds the job to its joblist, and
takes over the handling of the job from there.

Accessing Information About Job

Job information evoked by calling arcstat is extracted from a combination of information stored in A-REX memory
(job state) and the job.ID.local file in the controldir (session, stagein and stageout directories).

Controlling Execution Of Job

Killing, cleaning and resubmitting jobs is initiated by direct call the existing ARexJob methods: Kill(), Clean(),
Resume(). These methods all place files in the controldir that the grid-manager acts upon, such as job.jobid.clean
mark or job.jobid.cancel mark.

Delegation Interface [TODO]

380 Chapter 9. ARC Miscellaneous Pages

BIBLIOGRAPHY

[6.2] New in version 6.2.

[globus] In the ARC < 6.5 there was an all-in-one plugin globus instead of gridftp, gridftpjob and some
other components.

381

	ARC tutorial
	ARC Overview
	ARC CE components and the infrastructure ecosystem around

	Obtaining the software
	Support and Community
	Documentation for Infrastructure Admins
	ARC Configuration Reference Document
	General configuration structure
	[block]
	example_config_option

	Configuration blocks and options
	[common] block
	hostname
	http_proxy
	x509_host_key
	x509_host_cert
	x509_cert_policy
	x509_cert_dir
	x509_voms_dir
	voms_processing

	[authtokens] block
	[authgroup:groupname] block
	subject
	file
	voms
	authgroup
	plugin
	authtokens
	authtokensgen
	all

	[mapping] block
	map_to_user
	map_to_pool
	map_with_file
	map_with_plugin
	policy_on_nomap
	policy_on_map
	policy_on_nogroup

	[lrms] block
	lrms
	lrmsconfig
	benchmark
	defaultmemory
	nodename
	gnu_time
	movetool
	pbs_bin_path
	pbs_log_path
	pbs_dedicated_node_string
	condor_bin_path
	condor_config
	condor_rank
	condor_requirements
	sge_bin_path
	sge_root
	sge_cell
	sge_qmaster_port
	sge_execd_port
	sge_jobopts
	slurm_bin_path
	slurm_wakeupperiod
	slurm_use_sacct
	slurm_requirements
	slurm_query_retries
	lsf_bin_path
	lsf_profile_path
	lsf_architecture
	ll_bin_path
	ll_consumable_resources
	boinc_db_host
	boinc_db_port
	boinc_db_name
	boinc_db_user
	boinc_db_pass

	[arex] block
	user
	norootpower
	delegationdb
	watchdog
	loglevel
	logfile
	joblog
	fixdirectories
	controldir
	sessiondir
	defaultttl
	shared_filesystem
	scratchdir
	shared_scratch
	tmpdir
	runtimedir
	maxjobs
	maxrerun
	statecallout
	wakeupperiod
	infoproviders_timelimit
	pidfile
	mail
	helper
	helperlog
	forcedefaultvoms
	tokenscopes

	[arex/cache] block
	cachedir

	[arex/cache/cleaner] block
	logfile
	loglevel
	cachesize
	calculatesize
	cachelifetime
	cachespacetool
	cachecleantimeout

	[arex/data-staging] block
	loglevel
	logfile
	statefile
	usehostcert
	maxtransfertries
	passivetransfer
	globus_tcp_port_range
	globus_udp_port_range
	httpgetpartial
	speedcontrol
	maxdelivery
	maxprocessor
	maxemergency
	maxprepared
	sharepolicy
	sharepriority
	copyurl
	linkurl
	preferredpattern
	deliveryservice
	localdelivery
	remotesizelimit

	[arex/ws] block
	wsurl
	logfile
	pidfile
	max_job_control_requests
	max_infosys_requests
	max_data_transfer_requests
	tlsciphers
	tlsserverorder
	tlsprotocols
	tlscurve

	[arex/ws/jobs] block
	allownew
	allownew_override
	allowaccess
	denyaccess
	maxjobdesc

	[arex/ws/publicinfo] block
	allowaccess
	denyaccess

	[arex/ws/cache] block
	cacheaccess

	[arex/ws/candypond] block
	[arex/jura] block
	logfile
	loglevel
	vomsless_vo
	vo_group
	urdelivery_frequency
	x509_host_key
	x509_host_cert
	x509_cert_dir

	[arex/jura/sgas:targetname] block
	targeturl
	localid_prefix
	vofilter
	urbatchsize
	urdelivery_frequency

	[arex/jura/apel:targetname] block
	targeturl
	topic
	gocdb_name
	apel_messages
	vofilter
	urbatchsize
	urdelivery_frequency

	[arex/ganglia] block
	gmetric_bin_path
	metrics
	frequency

	[infosys] block
	logfile
	loglevel
	validity_ttl

	[infosys/ldap] block
	hostname
	slapd_hostnamebind
	port
	user
	slapd
	slapd_loglevel
	threads
	timelimit
	idletimeout
	infosys_ldap_run_dir
	ldap_schema_dir
	bdii_debug_level
	bdii_provider_timeout
	bdii_location
	bdii_run_dir
	bdii_log_dir
	bdii_tmp_dir
	bdii_var_dir
	bdii_update_pid_file
	bdii_database
	bdii_conf
	bdii_update_cmd
	bdii_db_config
	bdii_archive_size
	bdii_breathe_time
	bdii_delete_delay
	bdii_read_timeout

	[infosys/nordugrid] block
	[infosys/glue2] block
	admindomain_name
	admindomain_description
	admindomain_www
	admindomain_distributed
	admindomain_owner
	admindomain_otherinfo
	computingservice_qualitylevel

	[infosys/glue2/ldap] block
	showactivities

	[infosys/cluster] block
	alias
	hostname
	interactive_contactstring
	comment
	cluster_location
	cluster_owner
	advertisedvo
	clustersupport
	homogeneity
	architecture
	opsys
	nodecpu
	nodememory
	middleware
	nodeaccess
	localse
	cpudistribution
	maxcputime
	mincputime
	maxwalltime
	minwalltime

	[queue:name] block
	homogeneity
	comment
	pbs_queue_node
	sge_jobopts
	condor_requirements
	slurm_requirements
	totalcpus
	nodecpu
	nodememory
	defaultmemory
	architecture
	opsys
	osname
	osversion
	osfamily
	benchmark
	allowaccess
	denyaccess
	advertisedvo
	maxslotsperjob
	forcedefaultvoms
	maxcputime
	mincputime
	maxwalltime
	minwalltime

	[datadelivery-service] block
	transfer_dir
	hostname
	port
	pidfile
	logfile
	loglevel
	user
	secure
	allowed_ip
	allowed_dn
	x509_host_key
	x509_host_cert
	x509_cert_dir

	[custom:name] block

	Removed blocks and options
	[deleted:blocks] block
	[authgroup:groupname] block
	userlist

	[arex/data-staging] block
	use_remote_acix

	ARC CE Deployment and Operation
	Quickstart ARC: towards distributed computing in a few minutes - x509 edition
	Step 1. Enable NorduGrid ARC7 repos
	Step 2. Install A-REX
	Step 3. Run A-REX
	Step 4. Generate user x509 certificate and key for testing
	Testing from the host running A-REX
	Testing from any other host

	Step 5. Install the nordugrid-arc-client
	Step 6. Submit a job and check it is running
	Step 7. Play more with the ARC Computing Element

	Quickstart ARC: towards distributed computing in a few minutes - token edition
	Step 1. Enable NorduGrid ARC7 repos
	Step 2. Install A-REX
	Step 3. Run A-REX
	Step 4. Get a submission token
	Step 5. Configure A-REX to handle token authentication
	Step 5. Install nordugrid-arc-client
	Step 7. Submit a job and check that it is running
	Step 8. Play more with the ARC Computing Element
	Get production ready

	ARC Computing Element Installation and Configuration Guide
	Prerequisites
	Choosing the host
	Plan for storage areas
	Local resource management system (LRMS)
	Configure OS accounts

	Installation
	Configuration
	Configure authorization and mapping rules
	Provide LRMS-specific information
	Specify you LRMS type
	Specify queues

	Configure A-REX Subsystems
	Enable job management interfaces
	Enable data services
	RunTime Environments

	Information system
	Defining general information

	Accounting

	Configure Firewall
	Enable and Run Services
	Test Basic Functionality

	ARC6 to ARC7 Migration Guide
	ARC CE Deployment Scenarios
	WLCG Deployment with Data Capabilities
	Prerequisites
	Install necessary packages
	CA certifcates
	Install and set up fetch-crl

	Prepare for voms service signature authentication
	Configure ARC datastaging and cache
	Runtime environments
	ENV/PROXY
	ATLAS RTE

	Singularity from cvmfs on compute nodes
	Configure the site to work with ARC Control Tower (aCT)

	WLCG Deployment for pilot sites
	ARC Deployment beyond the WLCG scope

	Tuning tips for ARC and FAQ
	CA certificates
	File-system tuning
	How to extract backtrace of core dump file
	How to extract backtrace of ARC core dump file using gdb and save the output to a file.
	How to extract backtraces using a-rex-backtrace-collect

	Operating ARC CE Subsystems
	ARC6 Packages
	ARC6 Services
	Authorization, Mapping and Queue selection rules
	Overview
	Defining authgroups
	Applying authorization rules
	Example: ARC zero configuration
	Example: subject-based authorization
	Example: VOMS-based authorization

	Configure mapping
	Example: mapping to the same account
	Example: mapping to the accounts pool
	Example: Legacy grid-mapfile based mapping
	Example: mapping with external LCMAPS rules

	Queue selection rules and queue configuration

	Batch systems support
	Overview
	General LRMS configuration
	Accounting considerations
	Fork Backend
	Recommended batch system configuration
	Known limitations

	Portable Batch System (PBS)
	Recommended batch system configuration
	Known limitations

	SLURM
	Recommended batch system configuration
	Using Python LRMS backend implementation
	Known limitations

	HTCondor
	Recommended batch system configuration
	Known limitations
	LoadLeveler
	Recommended batch system configuration
	Known limitations

	LSF
	Recommended batch system configuration
	Known limitations

	SGE
	Recommended batch system configuration
	Known limitations

	BOINC
	Recommended batch system configuration
	Known limitations

	ARC Information System
	ARC CE Data Staging and Caching
	RunTime Environments in ARC
	Understanding RunTime Environments
	Advertising RTEs
	Modifying job environment
	RunTime Environment script template

	Operating RunTime Environments
	Installing RTE scripts
	Enabling RTEs
	By name
	By path
	Using wildcards
	Dummy RTEs
	Default RTEs
	RTE Parameters
	List available RTEs and their status
	View RTE content
	Disable and Undefault RTEs

	System-defined RunTime Environments shipped with ARC
	ENV/PROXY
	ENV/RTE
	ENV/LRMS-SCRATCH
	ENV/CONDOR/DOCKER
	ENV/SINGULARITY
	ENV/CANDYPOND (experimental)

	Working with community-defined RTEs
	1. Enable Community-defined RTEs support
	2. Establish trust chain with community
	3. Discover RTEs in the registry
	4. Deploy community-defined RTE
	5. Enable community-defined RTE
	Additional information and hints
	Location of deployed community software
	Operating without the registry
	Removing RTEs and communities

	Measuring accounting metrics of the job
	Measuring memory and CPU usage on the WN with cgroups
	Enabling cgroups usage
	How ARC operates cgroups

	Measuring memory and CPU usage on the WN with GNU time
	Using LRMS-provided metrics

	Accounting Subsystem
	Overview
	Configuration
	WLCG VOs

	Enabling accounting records reporing
	Configuring reporting to SGAS
	Configuring reporting to APEL
	Lookup local accounting data

	Republishing records
	Clean up of the <controldir>/logs folder

	Job scratch area
	Compute inside shared session directory
	Compute inside a local WN scratch directory
	Session directory is shared, WN scratch directory is not shared
	Session directory is NOT shared, WN scratch directory is NOT shared
	Use-case 1: Static path to WN scratch directory
	Use-case 2: Dynamic job path to the WN scratch directory

	Accounting with legacy JURA
	Overview
	Enabling accounting records reporing
	Configuring reporting to SGAS
	Configuring reporting to APEL

	Records archiving
	Lookup local accounting data

	Republishing records

	Next generation ARC accounting: arcctl example queries
	General statistic queries examples
	Job-specific accounting queries

	About benchmarks and accounting publishing
	Which version of ARC you have?
	What are the reasons for missed benchmark value in the job records?
	How to fix missing benchmark values manually?
	What should I know to avoid running into bechmark issues?
	So, should I do something if I see “HEPSPEC 1.0 is being used” message?

	ARC tutorial
	Prequisites
	For tutorial part 1 and 2
	For tutorial part 3

	Tutorial overview
	No tokens? Using x509 instead?
	All commands in an bash file

	ARCHERY
	ARCHERY deployment for NorduGrid
	The NorduGrid topology for ARCHERY
	Per-Country ARCHERY DNS zones of the NorduGrid
	Project-based ARCHERY Registries of NorduGrid
	ARCHERY DNS zone administration tasks
	Registering site in the ARCHERY

	Initial setup of ARCHERY instance
	Choose DNS zone name
	Generate transaction signature key to manage ARCHERY
	Define key in BIND
	Keyfile for archery-manage

	Configure DNS zone for ARCHERY
	Define zone in BIND
	Create zonefile with a basic zone info
	Define records in parent zone

	Populate ARCHERY DNS zone with initial data

	Operating ARCHERY instance
	JSON topology configuration file for ARCHERY
	Simple ARC services group
	Defining nested groups and arbitrarty services
	Integration with BDII
	ARCHERY as a cummunity trusted software registry
	Referencing existing ARCHERY objects
	Custom DNS data in ARCHERY zone controlled by archery-manage

	Managing ARCHERY data in DNS
	The archery-manage data processing
	Step 1. Define e-Infrastructure topology
	Step 2. Fetch service data
	Step 3. Filter endpoints
	Step 4a. Incremental DDNS Update
	Step 4b. Output data

	Define infrastructure services topology
	Simple topology: flat list of ARC CEs
	Hierarchical topology and non-ARC services

	Run archery-manage to update DNS zone information
	Filter: Port connectivity
	Filter: Endpoint type
	Filter: VO

	Check the data is embedded to DNS
	Setup regular updates to ARCHERY
	ARCHERY operations hints
	Optimize information fetching frequency
	Configure LDAP-monitor to use ARCHERY

	Querying ARCHERY registry data
	The archery-manage tool as registry client
	Any DNS client for manual data retrieval
	ARC Client/SDK endpoint retrieval plugin
	NorduGrid monitor is fetching ARCHERY data

	ARCHERY as a community-defined RTEs registry
	1. Signing keys
	2. Preparing RTEs
	3. Signing and publishing RTEs
	Just do it
	Customize the process
	GPG location and key
	Manually define public key
	Host signed RTEs instead of embedding into DNS
	Manually define RTEs

	ARC Admin Tools Reference
	ARC Control Tool
	Named Arguments
	ARC Components
	Sub-commands:
	deploy
	Deployment Actions
	Sub-commands:
	igtf-ca
	Positional Arguments
	Named Arguments
	vomses
	Positional Arguments
	Named Arguments
	voms-lsc
	Positional Arguments
	Named Arguments
	iptables-config
	Named Arguments

	test-ca
	Named Arguments
	Test CA Actions
	Sub-commands:
	init
	Named Arguments
	cleanup
	hostcert
	Named Arguments
	usercert
	Named Arguments

	test-jwt
	Named Arguments
	Test JWT Actions
	Sub-commands:
	init
	Named Arguments
	info
	Named Arguments
	export
	cleanup
	config-get
	Positional Arguments
	Named Arguments
	config-set
	Positional Arguments
	Named Arguments
	token
	Named Arguments

	config
	Config Actions
	Sub-commands:
	dump
	get
	Positional Arguments
	describe
	Positional Arguments
	Named Arguments
	brief
	Named Arguments
	verify
	Named Arguments

	service
	Services Actions
	Sub-commands:
	enable
	Named Arguments
	disable
	Named Arguments
	start
	Named Arguments
	restart
	Named Arguments
	stop
	Named Arguments
	list
	Named Arguments

	rte
	RunTime Environments Actions
	Sub-commands:
	enable
	Positional Arguments
	Named Arguments
	disable
	Positional Arguments
	list
	Named Arguments
	default
	Positional Arguments
	Named Arguments
	undefault
	Positional Arguments
	cat
	Positional Arguments
	params-get
	Positional Arguments
	Named Arguments
	params-set
	Positional Arguments
	params-unset
	Positional Arguments
	community
	Community RTE Actions
	Sub-commands:
	add
	Positional Arguments
	Named Arguments
	remove
	Positional Arguments
	Named Arguments
	list
	Named Arguments
	config-get
	Positional Arguments
	Named Arguments
	config-set
	Positional Arguments
	rte-list
	Positional Arguments
	Named Arguments
	rte-cat
	Positional Arguments
	rte-deploy
	Positional Arguments
	Named Arguments
	rte-remove
	Positional Arguments
	Named Arguments

	accounting
	Accounting Actions
	Sub-commands:
	stats
	Named Arguments
	job
	Job Accounting Actions
	Sub-commands:
	info
	Positional Arguments
	Named Arguments
	events
	Positional Arguments
	transfers
	Positional Arguments
	republish
	Named Arguments
	APEL
	SGAS
	Other options

	job
	Named Arguments
	Jobs Control Actions
	Sub-commands:
	list
	Named Arguments
	script
	Positional Arguments
	log
	Positional Arguments
	Named Arguments
	info
	Positional Arguments
	stdout
	Positional Arguments
	Named Arguments
	stderr
	Positional Arguments
	Named Arguments
	attr
	Positional Arguments
	path
	Positional Arguments
	kill
	Positional Arguments
	killall
	Named Arguments
	clean
	Positional Arguments
	cleanall
	Named Arguments
	stats
	Named Arguments
	accounting
	Job Accounting Actions
	Sub-commands:
	info
	Positional Arguments
	Named Arguments
	events
	Positional Arguments
	transfers
	Positional Arguments
	datastaging
	Job Datastaging Menu
	Sub-commands:
	get-totaltime
	Positional Arguments
	get-details
	Positional Arguments

	cache
	A-REX Cache Actions
	Sub-commands:
	stats
	list
	Named Arguments
	is-cached
	Positional Arguments
	Named Arguments

	datastaging
	DataStaging Control Actions
	Sub-commands:
	summary
	Job Datastaging Summary Menu
	Sub-commands:
	jobs
	Named Arguments
	files
	Named Arguments
	job
	Job Datastaging Menu
	Sub-commands:
	get-totaltime
	Positional Arguments
	get-details
	Positional Arguments
	dtr
	DTR info menu
	Sub-commands:
	state
	Positional Arguments

	ARCHERY Manage Tool
	Named Arguments

	ARC Configuration Parser
	Named Arguments
	Runtime configuration
	Configuration files
	Getting values

	NorduGrid repository information for ARC 7
	Repository security
	Repository configuration - Red Hat Enterprise Linux
	Install nordugrid-release package with YUM/DNF
	Manual YUM repository setup - NorduGrid repository
	Install required packages
	For RHEL7 flavour:
	For RHEL8 flavour:
	For RHEL9 flavour:

	Repository configuration - Debian and Ubuntu
	Install nordugrid-release package for Debian/Ubuntu through dpkg
	Manual APT repository setup - NorduGrid repository
	Install required packages

	NorduGrid testing repository information for ARC 7
	Repository security
	Repository configuration - Red Hat Enterprise Linux
	Manual YUM repository setup - NorduGrid repository
	Install required packages
	For RHEL7 flavour:
	For RHEL8 flavour:
	For RHEL9 flavour:

	Repository configuration - Debian and Ubuntu
	Manual APT repository setup - NorduGrid repository
	Install required packages

	Technical Documents Describing ARC Components
	ARC Data Services Technical Description
	A-REX Data Cache technical description
	Structure of the cache directory
	How the cache works
	Cache cleaning
	Exposing the Cache

	A-REX data transfer framework (DTR) technical description
	Overview
	Implementation
	Configuration
	Client-side priorities
	gm-jobs -s
	Using DTR in third-party applications
	Supported Protocols
	Multi-host Data Staging
	Monitoring

	Advantages
	Open Issues
	Related Documents
	DTR Design and Implementation Details
	Issues with previous implementation
	Task Summary
	Requirements
	Security Requirements
	Performance Requirements
	Possible solution to URL options problem
	Architecture Proposal
	Requirements for components interfaces (based on protocol descriptions and architecture)
	DTR Description
	DTR Generator to DTR Scheduler
	DTR Scheduler to DTR Preprocessor
	DTR scheduler to DTR delivery
	Component Workflows
	Generator
	Scheduler
	Reactions to new events
	Processor
	Delivery
	Protocol Interfaces
	Current Interface
	New Interface
	For Meta Protocols (eg LFC, RLS)
	For Stageable Protocols (eg SRM, Chelonia)
	For Direct Protocols (eg FTP, HTTP)
	For All Protocols
	Existing ARC Code
	PREPARING/FINISHING State Semantics
	Processes and Threads
	Implementation Choices
	Suggestion 1
	Suggestion 2 (used in current implementation)
	Implementation idea for Suggestion 2

	Detailed description of DTRs
	Fields of the DTR
	State transitions of DTR
	Status codes
	Error Conditions of DTRs
	Methods of DTRs
	Implementation

	DTR priority and shares system
	Ideas behind priorities and fair-share in data staging
	Current Implementation
	Emergency Shares
	Sub-shares
	Potential Problems
	A-REX Configuration
	Example
	Dynamically modifying priorties

	ARC Data Delivery Service Technical Description
	Introduction
	Installation
	Configuration
	Remote Hosts
	A-REX Host

	Deployment Scenarios
	Shared Storage
	Local Caches

	Security
	Proxies
	Monitoring Remote Hosts

	CandyPond technical description
	Description and Purpose
	Installation and Configuration
	Runtime Environment Configuration
	Command Line Interface
	Python API

	Example Use Case
	Issues and Notes

	ARC Accounting Technical Details
	Job accounting information processing workflow
	Collecting the accounting information
	Using the local accounting database

	Accounting data publishing details
	Reporting to SGAS
	Reporting to APEL
	Republishing

	Security
	Third-party accounting queries
	Definition of the A-REX Accounting Record including attribute mappings to SGAS and APEL

	ARC CE REST interface specification
	The REST API endpoint
	Description of functionalities and operations
	Requesting supported versions
	Obtaining CE resource information
	Operating jobs
	Get list of jobs
	Job submission (create a new job)
	Jobs management

	File operations
	Working with session directory

	Delegation functionality
	Get list of delegations
	New delegation
	X.509 delegation
	JWT delegation

	Delegations management

	A-REX control directory files access for debugging purposes

	REST Interface Job States
	Status of This Document

	ARCHERY data model and DNS records rendering
	ARCHERY objects
	Endpoint object
	Service object
	Group object
	Software object
	RTE Object
	Entry point group object

	DNS Resource Records rendering
	Rendering ARCHERY objects
	Embedding ARCHERY object relations

	A-REX Technical Description
	Internal files of the A-REX

	ARC support for OIDC
	Support level
	Obtaining and using tokens
	Configuring authorization on server

	Old Relevant Technical Documents
	Hosting Environment of the Advanced Resource Connector middleware
	A Client Library for ARC

	Legacy JURA Accounting Technical Details
	Records processing and publishing
	AREX Accounting Records (AAR job log files)
	JURA initial AAR processing
	JURA Publihsing loop
	Reporting to SGAS

	Reporting to APEL

	Accounting archive
	Republishing process
	Security
	Implementation and API
	Limitations

	ARC Accounting Database Schema

	Documentation for Developers
	Implementation Details for Developers
	General arc.conf python configuration parser
	Parsing configuration
	Initial configuration parsing
	Runtime configuration
	Special constructs can be used as values
	Command substitutions
	Option values substitutions
	Evaluation of simple code

	Getting the configuration values
	Common configuration parsing sequence

	Options reference
	Examples

	LRMS shell-backends overview for developers
	CONFIG variables used in LRMS shell-backend:
	Call graph
	Submitting jobs
	Scanning jobs
	Canceling jobs

	Changes in ARC6 memory limits processing:

	Contributing to Documentation
	Commiting and reviewing changes
	Documentation structure
	Source tree directory structure
	Index files
	Storing images

	Building the docs
	Writing Documentation in reStructuredText
	General Syntax
	Code snippets
	References
	Using custom label
	Referring arc.conf.reference
	Referring bugz
	Referencing docs

	Adding notes
	Adding images
	Graphviz
	Converting from other sources

	Documentation for Infrastructure Users
	Installing ARC Client Tools
	Step 1. Enable NorduGrid ARC6 repos
	Step 2. Install packages
	Client tools
	ARCCTL
	Additional plugins

	Step 3. Setting up credentials
	CA certificates bundle
	Personal X.509 certificate
	Virtual Organization memberhip

	Step 4. Try it out
	Create proxy certificate
	Submit test job

	Overview of ARC client tools
	Submission endpoint types
	Credentials
	arcproxy
	arcrenew

	Job submission and management
	arcsub
	arcstat
	arccat
	arckill
	arcclean
	arcresub
	arcresume
	arcget
	arctest

	Data manipulation
	arcls
	arccp
	arcmkdir
	arcrename
	arcrm

	Information services
	arcinfo
	arcsync

	How to submit the job?
	Submission sequence
	Generate proxy-certificate
	Create job description
	Run arcsub

	Specify CEs for job submission
	Computing Element
	Registry
	Info endpoint type
	Submission endpoint type

	How to work with data?
	Data transfer URLs
	Stage-in during submission
	Stage-in on ARC CE
	Manual data movement with arc* tools

	Job Description Language (xRSL)
	xRSL syntax and rules
	Attribute value
	List of values
	Quoting
	Implicit conjunction
	Operators
	Blank spaces
	Comments
	Multible jobs in one description

	User-side xRSL attributes
	executable
	arguments
	inputFiles
	executables
	cache
	outputFiles
	cpuTime
	wallTime
	gridTime
	benchmarks
	memory
	disk
	runTimeEnvironment
	middleware
	opsys
	stdin
	stdout
	stderr
	join
	gmlog
	jobName
	ftpThreads
	acl
	queue
	startTime
	lifeTime
	notify
	rerun
	architecture
	nodeAccess
	dryRun
	rsl_substitution
	environment
	count
	countpernode
	exclusiveexecution
	jobreport
	credentialserver
	priority

	Server-side attributes
	sstdin
	action
	savestate
	lrmstype
	hostName
	jobid
	clientxrsl
	clientsoftware
	delegationid

	Examples
	User-side xRSL script
	Server-side xRSL script

	ARC Client Config Reference
	certificatepath
	keypath
	cacertificatesdirectory
	proxypath
	vomsespath
	defaultvoms
	rejectdiscovery
	rejectmanagement
	brokername
	brokerarguments
	timeout
	joblist
	joblisttype

	ARC SDK Documentation

	ARC Miscellaneous Pages
	About the Nordugrid ARC Releases
	Release categories
	Testing
	Level 1
	Level 2
	Level 3

	Release notes

	Security Operations
	Finding jobs submitted by DN
	Killing jobs submitted by DN
	Removing jobs submitted by DN

	ARC 7 Testing Area
	Release management
	People involved in preparing for a release
	Release workflow
	The release announcement should contain

	Changelogs/list of bugs
	Main changes in ARC 6 compared to ARC 5
	REMOVED and obsoleted components
	List of bugs fixed since ARC 5

	List of bugs fixed since ARC 5.4.4

	Using ARC packages from nightly builds
	Enabling nightlies repo for RHEL-based distributions
	Enabling dependent repos for RHEL-based distributions
	For RHEL7 flavour:
	For RHEL8 flavour:
	For RHEL9 flavour:

	Enabling nightlies repo for Debian-based distributions

	Work-in-progress Docs
	INTERNAL interface - ARC 6
	Implementation overview
	Actions
	Retrieving Service Information
	Job submission
	Accessing Information About Job
	Controlling Execution Of Job

	Bibliography

