Grid Computing with Debian, Globus and ARC

Mattias Ellert, Uppsala Universitet (.se)
Steffen Möller, Universität zu Lübeck (.de)
Anders Wäänänen, Niels Bohr Institutet (.dk)
Grid Computing

- Seamless integration of distributed computing and storage resources from the user’s point of view

- Computing grid vs. power grid analogy
 - Power grid: users plug in their electrical devices and don’t need to care which power plant provides the electricity (unless they want to)
 - Computing grid: the user prepares a computing task and sends it to the “grid” and doesn’t need to care which cluster performs the calculation (unless it wants to)
Volunteer vs. Grid Computing

- Volunteer Computing: BOINC
 - “single regular users fetch prepared workunits”
 - regular Debian client package
 - unofficial server packages

- Computational Grids
 - “big compute clusters wait for arbitrary jobs”
 - no previous packages for any Linux distributions
 - common IT backbone for High Energy Physics
Mutual Trust

Network of trust
- Users trust sites
 - Data security, validity of installations
- Sites trust users
 - All usage can be traced back to the user

X.509 certificates
- Certificate Authorities (CAs) guarantee identities
- User creates time-limited variants of these certificates (proxies) to delegate their rights to jobs
Mutual Trust (cont’d)

- International Grid Trust Federation (IGTF)
 - CAs that trust each other’s policies
 - Users with a user certificate issued by a member CA can authenticate to resources that have host certificates issued by any other member CA

- Virtual organisations
 - Clusters in the grid delegate decision over admissions to virtual organisations
 - Easiest: a website collecting the individuals’ certificates descriptive names
Typical Grid Usage

- Submission of Job
 - Task should be described in a job description – executable, input data, output data, software and hardware requirements, ...

- Status information
 - Query the state of clusters and jobs

- Retrieval of results
 - Download to client or (if specified in the job description) automatically upload to storage

- Data management
 - Keep track of large sets of input and output files
Remaining Challenges

- Make grid access easier
 - Local vs. grid accounts

- Increase flexibility
 - Migration of jobs
 - Preparation of runtime environments

- Increase public awareness
 - Universities and research groups
 - Industry
 - Computer clubs
 - Presentations like this one ;-)
Current Technologies / Projects

- **Globus**
 - can be used as a complete grid middleware
 - is a library of core functionalities for many

- **Unicore**
 - both Grid and Grid Infrastructure

- **EGEE**
 - uses the gLite grid middleware and Globus

- **NorduGrid**
 - with or without Globus
 - compatible with the others
A set of libraries and tools for grid computing used by many grid projects

- **Globus security infrastructure (GSI)**
 - Authentication and authorization based on short lived proxy certificates
 - Standardized as RFC 3820

- **GridFTP**
 - Extensions to the FTP protocol to support GSI authentication, third-party transfers, multiple data channels for parallel transfers, partial file transfers
 - “Proposed recommendation” document in the Global Grid Forum (GFD-R-P.020)
Packaging Globus

Source
- Distributed as >100 MB tarball
- Contains ~300 inter-dependent packages within

Split into individual packages to become manageable
- Strong consistency between Globus and Debian packages

Build uses the Grid Packaging Toolkit (GPT)

Patches communicated back to upstream
Packaging Globus

- Redundancies with system libraries are all eliminated from the source tree
 - e.g. openssl, openldap, libltdl
- Glue packages are provided instead
 - providing GPT metadata information for system packages to satisfy build dependencies
- Status
 - First packages uploaded to Debian new queue, also uploaded to Fedora
Packaging Globus

- Regular package for Grid Package Toolkit
- Use GPT packaging metadata information to autogenerate Debian folders in source code management system
- Manual curation of these folders
 - preparation of patches
 - provisioning of better descriptions
NorduGrid – ARC

- Advanced Resource Connector
- Grid middleware built on top of the Globus libraries, with higher level services
- Used by the Nordic Data Grid Facility (NDGF) to provide computing resources for
 - High Energy Physics researchers at the CERN Large Hadron Collider
 - Bioinformatics
 - Quantum chemistry
 - ...

2009-02-07 www.knowarc.eu
Monitor of clusters contributing

ARC Grid Monitor

2009-02-06 CET 17:41:17

<table>
<thead>
<tr>
<th>Land</th>
<th>Site</th>
<th>CPUs</th>
<th>Last (Prozesse: Grid+Lokal)</th>
<th>In einer Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien</td>
<td>Alfred (UniMelb)</td>
<td>124</td>
<td>B+20</td>
<td>0+0</td>
</tr>
<tr>
<td>Dänemark</td>
<td>Benedict - Aalborg pr></td>
<td>52</td>
<td>B+30</td>
<td>0+0</td>
</tr>
<tr>
<td></td>
<td>Fyrkat (DCSC/AAU)</td>
<td>656</td>
<td>B+150</td>
<td>0+584</td>
</tr>
<tr>
<td></td>
<td>LSCF (NBI)</td>
<td>20</td>
<td>B+012</td>
<td>273+0</td>
</tr>
<tr>
<td></td>
<td>Morpheus (DCGC/NBI)</td>
<td>13</td>
<td>B+0</td>
<td>0+0</td>
</tr>
<tr>
<td></td>
<td>Steno (DCSC/KU)</td>
<td>2296</td>
<td>B+01092</td>
<td>427+417</td>
</tr>
<tr>
<td>Deutschland</td>
<td>Uni Lübeck - INB</td>
<td>16</td>
<td>B+12</td>
<td>0+0</td>
</tr>
<tr>
<td>Finnland</td>
<td>Akkaatti (M-grid)</td>
<td>200</td>
<td>B+82</td>
<td>0+40</td>
</tr>
<tr>
<td></td>
<td>Ametisti (M-grid)</td>
<td>260</td>
<td>B+1136</td>
<td>0+232</td>
</tr>
<tr>
<td></td>
<td>Jaspis (M-grid, HIP)</td>
<td>14</td>
<td>B+8</td>
<td>0+0</td>
</tr>
<tr>
<td></td>
<td>Kinilini (CSC)</td>
<td>72</td>
<td>B+0</td>
<td>0+0</td>
</tr>
<tr>
<td></td>
<td>Kvaritsi (M-grid)</td>
<td>192</td>
<td>B+123</td>
<td>1+10</td>
</tr>
<tr>
<td></td>
<td>Liuske (CSC test)</td>
<td>8</td>
<td>B+0</td>
<td>0+0</td>
</tr>
<tr>
<td></td>
<td>Murska</td>
<td>2176</td>
<td>B+2126</td>
<td>0+0</td>
</tr>
<tr>
<td></td>
<td>Opaali (M-grid)</td>
<td>88</td>
<td>B+84</td>
<td>3+123</td>
</tr>
<tr>
<td></td>
<td>Sepelli</td>
<td>512</td>
<td>B+1018</td>
<td>2814+0</td>
</tr>
<tr>
<td></td>
<td>Spektroliitti (M-grid)</td>
<td>26</td>
<td>B+0</td>
<td>0+0</td>
</tr>
<tr>
<td></td>
<td>Topaasi (M-grid)</td>
<td>82</td>
<td>B+70</td>
<td>0+0</td>
</tr>
<tr>
<td>Island</td>
<td>Jotunn (UiO)</td>
<td>168</td>
<td>B+0</td>
<td>0+0</td>
</tr>
<tr>
<td></td>
<td>RHI-CSD</td>
<td>1</td>
<td>B+0</td>
<td>0+0</td>
</tr>
</tbody>
</table>
Packaging NorduGrid – ARC

- Available today from www.nordugrid.org
- version 0.6.x
 - “Production” release
 - full Globus dependency
 - Globus packages should be accepted first
- version 1.x
 - ongoing development
 - optional Globus dependency
 - Debian packages will offer the more compatible Globus-dependent version
Implications for Debian

- Increased connectivity
 - between users of Debian
 - in between clusters of Linux distributions
- Promotion as an extended concept of the Debian society
 - the sharing of packaging may be extended towards a sharing of resources
- Debian Technologies
 - packages are perfect descriptions for runtime environments
 - availability on many heterogeneous platforms
Acknowledgments

- KnowARC – www.knowarc.eu
 - European Commission 5th framework programme project
- NDGF – www.ndgf.org
- The developers of Globus – www.globus.org
 - Charles Bacon in particular, for his integration of patches
- The developers of NorduGrid ARC – www.nordugrid.org