NorduGrid, the middleware and related projects

Oxana Smirnova
NDGF/Lund University

GRID06 – June 26, 2006 – Dubna
2001–2002: a research project of the NORDUNet2 program aimed to enable Grid in the Nordic countries

Since end–2002 is a research collaboration between Nordic academic institutes
- Open to anybody, non-binding

Since end–2003 focuses on middleware
- Develops own Grid middleware: the Advanced Resource Connector (ARC)
- Provides middleware to research groups and national Grid projects

ARC is now installed on ~50 sites (~5000 CPUs) in 14 countries all over the World
The NorduGrid Collaboration

From To

- EDG
- Tesbed
- HEP
- 4 Nordic
- 20 cpu’s
- 2001

> ARC
> 50 sites
> Bio, Chem,...
> 13 countries
> 5000 cpu’s
> 2003

... from a research project to a research collaboration
... from a Grid testbed to a major middleware provider

NOT an infrastructure, does not operate or control resources
How did ARC appear

- Back in 2001...High Energy Physics Institutes from Scandinavia wanted to share their computing resources and jointly contribute to CERN/LHC computing
 - They needed a Grid!
 - The Grid hype just begun
 - Globus was regarded as the “de facto standard” middleware
- NO production ready middleware was available or seen on the horizon as of November 2001:
 - Very alpha Globus GT–2.0 (GRAM–1.5, MDS–2.0); nevertheless Globus & IBM already started to work on OGSA/I, i.e. GT v.3 (which was announced in February 2002)
 - EDG middleware was in an extremely embryonic phase
- Since May 2002 ARC has been used in production Data Challenges
1. The system must be:
 a) Light-weight
 b) Portable & modular
 c) Non-intrusive on the resource side:
 • Resource owners retain full control
 • No requirements w.r.t. OS, resource configuration, etc.
 • Clusters need not be dedicated
 • Runs independently of other existing Grid installation
 d) Special attention to functionality & performance

“Traditionally, Scandinavian design has been associated with simple, uncomplicated designs, functionality and a democratic approach”

www.scandesign.org
Design philosophy (2/2)

e) Flexible & powerful on the client part

- must be easily installable by a novice user
- trivial tasks must be trivial to perform
- no dependency on central services
- No central client(s), create a real distributed system

2. Strategy: start with something simple that works for users and add functionality gradually

Source of design illustrations:
“Scandinavian Design beyond the Myth”
www.scandesign.org
ARC components

Goal: no single point of failure
Architecture key points

- Each resource has a front-end
 - Authenticates users, interprets tasks, interacts with LRMS, publishes information, moves data
 - Resources are Grid–enabled by the ARC layer deployed on the front–end, no middleware components behind the front–end!

- Each user can have an independent lightweight brokering client (or many)
 - Resource discovery, matchmaking, job submission and manipulation, monitoring

- Grid topology is achieved by an hierarchical, multi–rooted set of indexing services

- Monitoring relies entirely on the information system

- Ad–hoc data management, for the beginning
Computing resources: Grid-enabled via ARC layer on head node (front-end):
- Custom GridFTP server for all the communications
- Grid Manager handles job management upon client request, interfaces to LRMS
- Performs most data movement (stage in and out), cache management, manages user work area
- Publishes resource and job information via LDAP
Components: Clients

- **Client**: a lightweight *User Interface* with the built-in Resource Broker
 - A set of command line utilities
 - Minimal and simple
 - Under the hood: resource discovery, matchmaking, optimization, job submission
 - Complete support for single job management
 - Basic functionality for multiple job management
 - Support for single file manipulations
 - Built upon ARCLIB

- Portals and GUI clients are being developed
Components: Infosystem

- **Information System**: based on Globus-patched OpenLDAP: it uses GRIS and GIIS back-ends
 - Keeps strict registration hierarchy
 - Multi-rooted
 - Effectively provides a pseudo-mesh architecture, similar to file sharing networks
 - Information is only kept on the resource; never older than 30 seconds
 - Own schema and providers
Components: Storages

- **Storage**: any kind of storage system with a disk front-end
 - **Conventional Storage**:
 - Own GridFTP server implementation with pluggable back-ends
 - Ordinary file system access
 - Grid Access Control Lists (GACL) based access
 - **“Smart” Storage Element**: WS based data service with direct support for Indexing Services (Globus’ RC, RLS)
 - no tape storage systems in use so far
Functionality overview

- Provides reliable implementation of fundamental Grid services:
 - The usual grid security: single sign on, Grid ACLs (GACL), VOs (VOMS)
 - Job submission: direct or via matchmaking and brokering
 - Information services: resource aggregation, representation, discovery and monitoring
 - Implements core data management functionality
 - Automated seamless input/output data movement
 - Data Indexing (RLS, Fireman), client-side data movement
 - Job monitoring & management
 - Logging service

- Builds upon standard open source solutions and protocols
 - Globus Toolkit® pre–WS API and libraries (no services!)
 - OpenLDAP, OpenSSL, SASL, SOAP, GridFTP, GSI
What is ARC today

- General purpose Open Source European Grid middleware
 - Being developed & maintained by the NorduGrid Collaboration
 - Deployment support, extensive documentation
- Lightweight architecture for a dynamic heterogeneous system
- User- & performance-driven development
 - Production quality software since May 2002
 - First middleware ever to contribute to HEP data challenge
- Middleware of choice by many national academic projects due to its technical merits
 - SWISS Grid(s), Finnish M-Grid, NDGF, etc...
 - Majority of ARC users now are NOT from the HEP community
- Involvement in Interoperability initiatives
 - LCG <-> ARC gateway
- Strong commitment to provide implementations of standards:
 - JSDL, GGF Usage Record support with the coming release
ARC development status

- Production sites run stable releases 0.4.x
 - Released in April 2004, took 2 years to develop
 - Globus 2, pre-WS technology, most basic functionality
- Development branch 0.5.x is already used as a release candidate
 - In ATLAS’ Dulcinea executor and other clients
 - Deployed at several sites, offers production-level functionality not available in 0.4.x
 - Perfectly backward-compatible: NorduGrid is a mixture of 0.4.x and 0.5.x sites and clients
- Release 0.6 should be out *real soon*
 - Re-write of the client part, configuration etc needed more bug fixing than anticipated
 - … and many authors are not even employed by the NorduGrid members, had to work extra-time
 - … and some non-anticipated requirements (e.g. VOMS, SRM) appeared meanwhile
 - Currently working on documentation and packaging; 0.5.48 and 0.5.49 are good release candidates
 - Will be easy to upgrade; no simultaneous upgrade of the sites necessary
What is new in ARC 0.6

- New external software, new packaging and distribution
 - Globus 4 based (pre-WS components, e.g. GSI, gridftp libraries, LDAP backends)
 - Latest VOMS, GSOAP
 - Natively works on 64bit architectures
 - Streamlined configuration
 - Software repositories (e.g. apt, yum)
- Major re-write of the client code base
 - Modularity
 - Multithreaded implementation
 - Extensibility
- Client libraries, modules available for C++ (native), Python, Perl etc – via SWIG, and Java
 - Easy to use API for clients that need to interface to ARC, e.g. GUIs, portals, CLIs
- Many new attributes in the information system
 - Better monitoring and decision-making
 - Improved job description
- Even more extensions on the server side:
 - Authorization, security: VOMS, MyProxy support, GACL for jobs
 - JSDL support
 - SRM support (also in the data movement client)
 - LSF support; PBS, SGE and Condor interfaces significantly improved
More new features

- “Smart Storage Element” (SSE) is a part of the release
 - Files instantiated at an SSE are registered in e.g. RLS automatically
 - Has a basic SRM interface
- Non-root ownership of services
- Performance improvements of the core services
- Logging infrastructure: new Usage Record format, better performance
- Improved monitoring
- Localization of clients (user interface, monitor)
- Improved usability: notifications, logs, command line options
What is not (yet) in ARC 0.6

- Bulk data manipulation tool
 - ARC file transfer service is needed
 - Data management user interface

- Own data indexing tool
 - External tools are interfaced (RC, RLS, Fireman, maybe LFC)
 - None is satisfactory (no data collection support, no fine-grained access control, no integration with data manipulation tools)

- Own full-scale SRM solution
 - SRM proxy is under development

- VO-aware monitoring and accounting; VO-specific attributes in information system
 - User-friendly interface to logging/accounting systems
 - Lightweight logging/accounting
 - Security layer over information and monitoring services

- User-friendly client
 - A Java-based GUI prototype (the “Arconaut”) exists, not mature enough to be in 0.6
 - Brokering needs to be improved
 - “Off-line” job management functionality (“babysitting”) is needed
The KnowARC project

- **EU FP6 Specific Targeted Research Project**
 - "Grid–enabled Know–how Sharing Technology Based on ARC Services and Open Standards"
 - Start: June 1st, 2006 (signature still on its way)
 - Partners: NorduGrid members and research teams in medicine, bioinformatics, physics, engineering, automotive industry apps, IT (10 partners from 7 countries)

- **Objectives:**
 - to create a novel, powerful Next Generation Grid middleware based on ARC, widely respected for its simplicity, non-invasiveness and cost-efficiency;
 - to promote Grid standardization and interoperability;
 - to contribute to Grid technologies take–up, bridging the gaps between business and academia in Grid development

- **Will develop the middleware that will be the next step after ARC 0.6, addressing current limitations and shortcomings**
KnowARC development plan

- **Core Services**
 - Next generation Grid middleware architecture survey and design
 - Web Service interfaces over ARC services
 - Back-ends
 - Sandboxing & virtualization
 - Security framework (delegation)

- **Higher level services**
 - Self-healing flexible storage and user-friendly storage interface
 - Self healing grid jobs: job migration & job manager
 - P2P-like information backbone, novel brokering approaches
 - Scalable accounting service
 - Dynamic application framework management
 - ARC-enabled Taverna and flowGuide (workflow engines)

- **Standards & Interoperability**
 - OGSA
 - gLite gateway

- **Applications**
 - Automotive industry
 - Medical image processing
 - Statistical genomics
 - Engineering portal (construction industry)

- **Quality assurance, software distribution**
 - Build system, testing, support
 - Profiling, performance analysis, usability studies
 - Pilot Grid system
 - ARC in major Linux distributions
 - New platforms: Windows, Solaris, Mac OS-X
ARC and gLite: wish to interoperate
Nordic Data Grid Facility

- **NDGF == “Nordic Data Grid Facility”**
 - Idea conceived in 2002 simultaneously with LCG
 - Goal: create a Nordic Grid infrastructure, primarily for LHC Grid computing (Tier1)
 - 2003–2006: pilot project funded by the 4 Nordic countries (Denmark, Finland, Norway, Sweden)
 - NorduGrid/ARC middleware chosen as the basis
- **June 1st 2006: NDGF is launched**
 - Nordic production Grid, leveraging national grid resources
 - Common framework for Nordic production Grid
 - Co-ordinates & hosts major Grid projects (e.g. the Nordic LHC Tier-1)
 - Develops Grid middleware (*ARC contributor*)
 - Single Point of Entry for collaboration, middleware development/deployment, e-Science projects
 - Represents the Nordic Grid community internationally
- **NDGF 2006–2010**
 - Funded (2 MEUR/year) by National Research Councils of the Nordic countries (NOS–N)
- **NDGF coordinates activities** – does not own resources or middleware

[Diagram showing the Nordic Data Grid Facility with countries and their abbreviations: DK (Denmark), SF (Sweden), N (Norway), and S (Finland).]
Summary

- ARC middleware is approaching the milestone of the second stable release (v0.6)
- Being based on old technologies, has severe limitations and shortcomings
- ARC developers have a clear roadmap for further development, and start enjoying substantial support
 - EU FP6 KnowARC project, with many partners from different research areas
 - Ambitious plans to extend and re-design ARC
 - Nordic Data Grid Facility
 - Came into existence on June 1st as well
 - Rely upon ARC middleware, will employ a number of middleware developers
- Interoperability and standardization needs are among the major driving forces behind further ARC development