
ARC middleware

The NorduGrid Collaboration

Abstract

The paper describes the existing components of ARC, discusses some of the new
components, functionalities and enhancements currently under development, and
outlines the architectural and technical choices that have been made to ensure
scalability, stability and high performace.

1 Introduction

Computational Grids are not a novel idea. The Condor r© project [1] led the
way in 1988 by setting the goal of creating a computing environment with
heterogeneous distributed resources. Further efforts to create a layer for se-
cure, coordinated access to geographically distributed computing and storage
resources resulted in the appearance of the Globus Toolkit r© [2] and its Grid
Security Infrastructure (GSI) [3] in the late 1990’s. The words Grid and mid-

dleware were coined to describe the new phenomenon of the single-login ac-
cess to widely distributed computing resources. Addressing the needs of the
Nordic 1 research community, the NorduGrid collaboration [4] in 2002 started
to develop a software solution for wide-area computing and data handling [5],
making use of the by then de facto standard Globus Toolkit r© 2. This new open
source middleware is now called the Advanced Resource Connector (ARC).

Scientific and academic computing in the Nordic countries has a specific fea-
ture in a way that it is carried out by a large number of small and medium
size facilities of different kind and ownership. An important requirement from
the very start of ARC development has been to keep the middleware portable,
compact and manageable both on the server and the client side. The client
package currently occupies only 14 Megabytes, it is available for most current
Linux 2 distributions and can be installed at any available location by a non-
privileged user. For a computing service, only three main processes are needed:

1 Nordic states are: Denmark, Finland, Iceland, Norway and Sweden.
2 Linux is a trademark of Linus Torvalds.

2005



those of the file transfer service (GridFTP, see Section 3.1), the Grid Manager
(see Section 3.3) and the Local Information Service (see Section 3.6.1).

Recently, ARC development and deployment has been funded by the Nordic
Natural Science Research Council (NOS-N) and the aim is to provide a foun-
dation for a large-scale, multi-disciplinary Nordic Data Grid Facility [6]. ARC
is being used as the middleware of choice for this facility and for many other
Grid infrastructures, such as the Estonian Grid [7], Swegrid [8], DCGC [9],
Swiss ATLAS Grid [10] and others. The middleware supports production-
level systems being in a non-stop operation since 2002 [11], and has proven its
record in demanding High Energy Physics computing tasks [12,13], being the
first ever middleware to provide services to this kind of a massive world-wide
data processing effort.

This paper gives a comprehensive technical overview of the ARC middleware,
its architecture and components — the existing core ones as well as the recently
introduced and beta-quality services.

The rest of the paper is organised as follows. In Section 2, the basic architec-
ture of ARC is presented. Section 3 discusses various services and Section 4
describes the client components and user interfaces. Sections 5 and 6 are more
development oriented, discussing the developer interfaces and libraries, recent
additions to ARC, and software dependencies and packaging, respectively. A
summary is provided in Section 7.

2 Architecture

The architecture and design of the ARC middleware has been driven by the
requirements and specifics of the user community that initiated the project —
the Nordic ATLAS [14] groups. The basic set of high-level requirements is not
different from those of any other community, be it users, resource owners or
software developers: the system must be performant, reliable, scalable, secure
and simple. However, the environment that led to creation of ARC has some
specifics that can be outlined as follows:

• Excellent academic network (NORDUNet [15]), providing a solid basis for
deployment of wide area computing architectures based on Grid technolo-
gies;

• A multitude of computing resources of various capacity, origin and owner-
ship, effectively excluding a possibility for a centralized, uniform facility;

• Prevalence of trivially parallel, serial batch tasks, requiring Linux flavours
of operating system;

• Necessity to operate with large amounts (Terabytes) of data stored in files

2



and accessed by the tasks via POSIX calls.

Customers’ requirements impose strict rules for the middleware development.
Independently of the nature of the customer — an end-user or a resource
owner — the guiding principles are the following:

(1) No single point of failure, no bottlenecks.
(2) The Grid is self-organizing with no need for centralized management.
(3) The Grid is robust and fault-tolerant, capable of providing stable round-

the-clock services for years.
(4) Grid tools and utilities are non-intrusive, have small footprint, do not

require special underlying system configuration and are easily portable.
(5) No extra manpower is needed to maintain and utilize the Grid layer.
(6) Tools and utilities respect local resource owner policies, in particular,

security-related ones.

ARC developers take a conscious approach of creating a solution that ad-
dresses the users’ needs while meeting the resource owners’ strict demands.
This requires a delicate balance between the users’ wishes to get a transpar-
ent, single-login access to as much resources as possible world-wide, and the
system administrators’ needs to keep unwanted customers and expensive or
insecure services at bay. Simplicity is the key word: applied correctly, it en-
sures robustness, stability, performance and ease of control. Development of
the ARC middleware follows the philosophy “start with something simple that
works for users and add functionality gradually”. This allows ARC to provide
customers with a working setup on very early stages, and to define the prior-
ities of adding functionality and enhancements based on the feed-back from
the users.

Middleware development was preceded by an extended period of try-outs of by
then available solutions and collecting feed-back from the users. This process
identified a set of more specific user requirements, described in the following
Section.

2.1 Requirements

Perhaps the most important requirement that affects ARC architecture stems
from the fact that most user tasks deal with massive data processing. A typical
job expects that a certain set of input data is available via a POSIX open call.
Moreover, such a job produces another set of data as a result of its activity.
These input and output data might well reach several Gigabytes in size. The
most challenging task of the Grid is thus not just to find free cycles for a job,
but to ensure that the necessary input is staged in for it, and all the output is
properly staged out. To date, ARC is the only Grid solution which adequately

3



addresses this demand.

Another important requirement is that of a simple client that can be easily
installed at any location by any user. Such a client must provide all the func-
tionality necessary to work in the Grid environment and yet remain small
in size and simple in installation. The functionality includes, quite obviously,
Grid job submission, monitoring and manipulation, possibility to declare and
submit batches of jobs with minimal overhead, and means to work with the
data located on the Grid. The client must come primarily as a lightweight
command line interface (CLI), with an optional extension to a GUI or a por-
tal. The requirement of CLI portability and non-root installation procedure
practically implies its distribution as a binary archived package (tar, gzip).
A user must be able to use clients installed in different workstations inter-
changeably, without the necessity to instantiate them as permanently active
services. Naturally, configuration process must be reduced to an absolute min-
imum, with the default configuration covering most of the use cases. Last, but
not least, the clients must remain functional in a firewalled environment.

There is another perspective on the Grid: that of the resource owners. The idea
of providing rather expensive and often sensitive services to a set of unknown
users worldwide is not particularly appealing to the system administrators, fa-
cility owners and funding bodies, whose primary task is to serve local user com-
munities. A set of strict agreements defining a limited user base and specific
services results effectively in a limited and a highly regulated set of dedicated
computing resources, only remotely resembling the World Wide Grid idea.
NorduGrid’s approach is to provide resource owners with a non-invasive and
yet secure set of tools, requiring minimal installation and maintenace efforts
while preserving the existing structures and respecting local usage policies.

Each resource owner that would be willing to share some resources on the
Grid, has a specific set of requirements to be met by the middleware. The
most common requests are:

• The solution must be firewall-friendly (e.g., minimize number of necessary
connections).

• Services must have easy crash recovery procedures.
• Allowed Grid-specific resource usage (load, disk space) should be adjustable

and manageable.
• Accounting possibilities must be foreseen.
• Services must be able to run using a non-privileged account.
• Single configuration procedure for site-specific services is highly desirable.

4



2.2 Design

The ARC architecture is carefully planned and designed to satisfy the above
mentioned needs of end-users and resource providers. The major effort is put
to make the resulting Grid system stable by design. This is achieved by iden-
tifying three mandatory components (see Figure 1):

(1) The Computing Service, implemented as a GridFTP-Grid Manager pair
of services (see Sections 3.1 and 3.3). The Grid Manager (GM) is the
“heart” of the Grid, instantiated at each computing resource’s (usually a
cluster of computers) front-end as a new service. It serves as a gateway
to the computing resource through a GridFTP channel. GM provides an
interface to the local resource management system, facilitates job ma-
nipulation, data management, allows for accounting and other essential
funtions.

(2) The Information System (see Section 3.6) — serves as a “nervous system”
of the Grid. It is realized as a hierarchichal distributed database: the
information is produced and stored at each service (computing, storage),
while the distributed system of Index Services maintains the list of known
services.

(3) The Brokering Client (see Section 4.2.1) — the “brain” of the Grid,
which is deployed as a client part in as many instances as users need. It
is enabled with powerful brokering capabilities, being able to distribute
the workload across the Grid. It also provides client functionality for all
the Grid services, and yet is required to be lightweight and installable by
any user in an arbitrary location in a matter of few minutes.

Computing
Services 1..*

Brokering
Clients 1..*

Resource Index
Services 1..*

Monitoring
Clients 1..*

User
Databases 1..*

Storage
Services 1..*

Logging
Services 1..*

Data Indexing
Services 1..*

Mandatory elements

Optional elements

Fig. 1. Components of the ARC architecture.

5



In this scheme, the Grid is defined as a set of resources registering to the
common information system. Grid users are those who are authorized to use
at least one of the Grid resources by the means of Grid tools. Services and
users must be properly certified by trusted agencies (Section 3.7). Users inter-
act with the Grid via their personal clients, which interpret the tasks, query
the Information System whenever necessary, discover suitable resources, and
forward task requests to the appropriate ones, along with the user’s proxy
and other necessary data. If the task consists of job execution, it is submitted
to a computing resource, where the Grid Manager interprets the job descrip-
tion, prepares the requested environment, stages in the necessary data, and
submits the job to the local resource management system (LRMS). Grid jobs
within the ARC system possess a dedicated area on the computing resource,
called the session directory, which effectively implements limited sandboxing
for each job. Location of each session directory is a valid URL and serves
as the unique Job Identifier. In most configurations this guarantees that the
entire contents of the session directory is available to the authorised persons
during the lifetime of the Grid job. Job states are reported in the Information
System. Users can monitor the job status and manipulate the jobs with the
help of the client tools, that fetch the data from the Information System and
forward the necessary instructions to the Grid Manager. The Grid Manager
takes care of staging out and registering the data (if requested), submitting
logging and accounting information, and eventually cleaning up the space used
by the job. Client tools can also be used to retrieve job outputs at any time.

The reliable performance of such a system is achieved by using several inno-
vative approaches:

• Usage of the specialized GridFTP server (see Section 3.1) for job submis-
sion provides for job and resource management flexibility, full GSI benefits,
firewall-friendliness, and a lightweight client.

• The Grid Manager carries most of the workload, thus enabling a perfect
front-end Grid model, where no Grid-related software (other than the LRMS)
has to be installed on cluster worker nodes. The Grid Manager is highly con-
figurable.

• The data management functionality of the Grid Manager includes reliable
file transfer, input data caching and registration of output data to data
indexing services via built-in interfaces.

• The system has no central element or service: the information tree is mul-
tirooted, and matchmaking is performed by individual clients.

• The information system appropriately describes the natural Grid entities
and resources in a dedicated LDAP schema. The information about Grid
jobs, users and resource characteristics is kept in local LDAP databases at
every resource and is not cached in higher level databases: the imperative
is to always have fresh data, or not to have it at all.

• There is no intermediate service between the client and the resource: the

6



Brokering Client performs the matchmaking and actual Grid job submission,
as well as providing clients for other Grid services. Users can share the
clients, or have several user interfaces per user.

• All the services are stateful, allowing easy failure recovery and synchronisa-
tion, when necessary.

Figure 1 shows several optional components, which are not required for an
initial Grid setup, but are essential for providing proper Grid services. Most
important are the Storage Services and the Data Indexing Services. As long as
the users’ jobs do not manipulate large amonts of data, these are not necessary.
However, when Terabytes of data are being processed, they have to be reliably
stored and properly indexed, allowing further usage. Data are stored at Storage

Elements (SE), which in ARC come in two kinds: the “regular” disk-based SE
is simply a GridFTP interface to a file system (see Section 3.4), while the Smart
Storage Element (SSE) is a Web service providing extended functionality,
including file movement and automatic file indexing (see Section 3.5). File
indexing itself needs a specially structured database with a proper GSI-enabled
interface. ARC currently has an interface to several data indexing systems:
Globus Replica Catalog (RC) [16], Globus Replica Location Service (RLS) [17]
and gLite Fireman [18]. RC and RLS were developed by the Globus project
with the goal to facilitate cataloging and consequent locating of data sources.
The original Replica Catalog was not GSI-enabled; however, ARC developers
have added possibility to perform securely authenticated connections. Fireman
is being development as a component of the gLite [19] Data Management
System.

Another non-critical component that nevertheless often comes among the top-
ranked in user requirements, is the Grid Monitor (Section 4.4). In the ARC
solution, it is only a client without capabilities to manipulate resources or jobs,
providing information only to the end-users. It relies entirely on the Informa-
tion System, being basically a specialized user-friendly LDAP browser. Moni-
toring in ARC does not require special sensors, agents or dedicated databases:
it simply re-uses the Information System infrastructure.

While monitoring offers real-time snapshots of the system, historical informa-
tion has to be persistified for further analysis, accounting, auditing and similar
purposes. To provide for this, a job’s usage record is submitted by the Grid
Manager to a Logging Service (Logger) (see Section 6.2). Each group of users
that desires to maintain such records can run a dedicated Logger.

For all the structure described above to serve a particular user, this user should
be known (authenticated) to the Grid and be authorised to use one or more
services according to the policies adopted by the service providers. The ARC
user management scheme is identical to most other Grid solutions: typically,
Grid users are grouped in Virtual Organisations (VO), which provide their

7



member lists via various User Databases or through a Virtual Organization
Membership Service (VOMS [20]). ARC services that require authorisation,
such as the Computing Service or a Storage Service, subscribe to a subset of
these databases (depending on local policies) and regularly retrieve the lists
of authorised user credentials.

The overall architecture does not impose any special requirements upon com-
puting resources, apart from the preferable presence of a shared filesystem (e.g.
NFS) between the head node and the compute (worker) nodes of a cluster. If
there is no shared area, LRMS has to provide means for staging data between
the head node and the compute nodes. Cluster-wise, ARC implements a pure
front-end model: nothing has to be installed on the worker nodes.

Being developed mainly for the purposes of serial batch jobs, ARC presently
does not support a range of other computational tasks. Most notably, there
is no solution for an interactive analysis, such as graphical visualisation or
other kind of tasks requiring real-time user input. Although it attempts to
look to an end-user not much different from a conventional batch system,
ARC has a substantial difference: the results of a batch job do not appear
at the user’s local area, until the user fetches them manually. The ARC job
submission client does not provide an automatic job resubmission in the case
of trivial failures (such as network outages), neither does it implement job
re-scheduling from one computing service to another. Higher level tools or
Grid services can be developed to assist in such tasks (e.g., the Job Manager,
see Section 6). ARC is not suitable for jobs that are expected to execute
instantly: this would require distributed advance resource reservation, which
is not implemented in the Grid world. The related shortcoming is that ARC
provides no solution for cross-cluster parallel jobs. All these limitations do not
stem from the architectural solution: rather, they would require creating new
dedicated services, quite possibly in the framework of the current design.

3 Services

ARC provides a reliable, lightweight, production quality and scalable imple-
mentation of fundamental Grid services such as Grid job submission and man-
agement, Grid resource management, resource characterization, resource ag-
gregation, and data management.

A Grid enabled computing resource runs a non-intrusive Grid layer composed
of three main services: specialized GridFTP (Sections 3.1), Grid Manager
(Section 3.3), and the Local Information Service (Section 3.6.1). The first
two constitute the Computing Service as such.

8



A Grid enabled storage resource makes use of either of the two types of Grid
storage layers provided by ARC: a conventional solution, based upon the
GridFTP server (Section 3.4), or the Web service based (Section 3.2) Smart
Storage Element (Section 3.5). Storage resources also run Local Information
Services.

Computing and storage resources are connected to the Grid via the registration
service (Section 3.6.3) which links a resource to an Information Index Service
(Section 3.6.2), this way implementing resource aggregation.

3.1 ARC GridFTP server

GridFTP interface was chosen. ARC provides its own GridFTP server (GFS),
with a GridFTP interface implemented using the Globus GSIFTP Control

Connection application programming interface (API) of the Globus Toolkit r©

libraries. The reason for introducing this server was an absence of GridFTP
servers with flexible authorization. Only available implementation was modi-
fied WU-FTPD FTP server distributed as part of Globus Toolkit r©Ẇith whole
configurutation based on UNIX identity of users, it was incapable of providing
adequate authorization in distributed environement.

GFS consists of two parts. The front-end part implements the GridFTP proto-
col, authentication, authorization and configuration of the service. The back-
end part implements the file system visible through the GridFTP interface.
This solution also adds possibility to serve various kind of information through
GridFTP interface, and to reduce number of transport protocols used in sys-
tem. And hence, to decrease complexity of software.

GFS does not implement all the latest features of the GridFTP protocols, but
it is compatible with the tools provided by the Globus Toolkit r© and other
Grid projects based on it.

The front-end part takes care of identifying the connecting client and applying
access rules (see Section 3.7). In the configuration, a virtual tree of directories
is defined, with directories assigned to various back-ends. The activation of
the virtual directories is performed in the configuration, according to the Grid
identity of a client. Therefore, each client may be served by various combina-
tions of services.

Information about Grid identity of user is propagated through whole chain
down to back-ends. This make it possible to write back-end capable of making
internal authorization decisions based entirely on Grid identity of connection
client and avoid necessity to manage dedicated local user accounts.

9



The back-end part is implemented as a set of plugins. Each plugin is a dynamic
library which implements a particular C++ class with methods corresponding
to FTP operations needed to create a view of a virtual file system-like structure
visible through the GridFTP interface.

Currently, the ARC distribution comes with three plugins. Two of them, called
fileplugin and gaclplugin, implement different ways for accessing local file sys-
tems (see Section 3.4 for description). Their virtual file system almost corre-
sponds to the underlying physical one. The third plugin is called jobplugin: it
generates a virtual view of session directories managed by the Grid Manager
service and is described in Section 3.3.

3.2 HTTPSd framework

ARC comes with a framework for building lightweight HTTP, HTTP over SSL
(HTTPS) and GSI (HTTPg) services and clients. 3 It consists of C++ classes
and a server implementation. These classes implement a subset of the HTTP
protocol, including GET, PUT and POST methods, content ranges, and other
most often used features. The implementation is not feature rich, instead, it
is light-weight and targeted to transfer the content with little overhead. It has
some support for gSOAP [22] integrated in the implementation of the POST
method, thus allowing creation and communication with Web Services. This
framework does not support message-level security.

The server implements configuration, authentication and authorization in a
way common for all the network services of ARC. It listens to two TCP/IP
ports for HTTPS and HTTPg connections. The configuration assigns various
plugin services to paths. The services themselves are dynamic libraries which
provide configuration and creation functions and supply an implementation of
a C++ class responsible for handling HTTP requests.

The client part is a thin layer which allows one to pump data through GET
and PUT methods, and provides functionality adequate to the server part. The
DataMove library, described in Section 5.2, uses its functionality to provide a
multi-stream access to HTTP(S/g) content.

ARC is currently being delivered with two HTTP(S/g) plugins. Those are
two Web Services: the Smart Storage Element (Section 3.5) and the Logger

(Section 6.2). Some others are being developed. Among them is a Web Service
for job submission and control, intended to replace the jobplugin of the GFS. It
also provides an interface for ordinary Web browsers to monitor the execution
of Grid jobs.

3 For a summary of these mechanisms, see [21].

10



3.3 Grid Manager

The purpose of the ARC Grid Manager (GM) is to take necessary actions
on a computing cluster front-end, needed to execute a job. In ARC, a job
is defined as a set of input files, a main executable, the requested resources
(including pre-installed software packages) and a set of produced files. The
process of gathering the input files, executing the main executable, and trans-
ferring/storing the output files is carried out by GM (Figure 2).

Submission

Stage-in

Stage-out

Cache
Link or copy Job session

directory

GridFTP
server

Downloader

Uploader

File access

Job control

Grid
Manager

LRMS

NFS

Front-end

Computing
node

LRMS

Job session
directory

Fig. 2. A typical setup of ARC Grid Manager

GM processes job descriptions written in Extended Resource Specification
Language (XRSL, see Section 4.1).

Each job gets a directory on the execution cluster, the session directory. This
directory is created by GM as a part of the job preparation process. The job is
supposed to use this directory for all input and output data, and possibly other
auxilliary files. All the file paths in the job description are specified relative to
the session directory. There is no notion of the user’s home directory, nor user
ID, nor other attributes common in shell access environments. Jobs executed
on ARC enabled clusters should not rely on anything specific to user account,
not even on the existence of such an account.

In most common installations, the space for the session directory resides in
an area shared by means of the Network File System with all the computing
nodes. In this case, all the data that a job keeps in the session directory
is continuously available to the user through the jobplugin of the GFS, as
described below.

It is also possible to have a session directory prepared on the front-end com-
puter and then moved to a computing node. This limits the amount of remotely
available information during the job execution to that generated by GM itself.

Input files are gathered in the session directory by the downloader module of
GM. In the most common configuration this module is run by the GM directly

11



on the front-end. To limit the load of the front-end machine, it is possible to
control the number of the simultaneous instances of the downloader modules
and the number of downloadable files. GM can be instructed to run downloader
on a computing node as a part of the job execution. Such a configuration is
desirable on computing clusters with slow or small disk space on the front-end.

GM supports various kinds of sources for input as well as for output files.
These include pseudo-URLs expressed in terms of data registered in Indexing
Services. All types of supported URLs can be found in Section 5.2.

A client can push files to the session directory as a part of the job preparation.
This way, the user can run remotely a snapshot of an environment prepared
and tested on a local workstation without the trouble of arranging space on
storage services.

GM handles a cache of input files. Every URL requested for download is first
checked against the contents of the cache. If a file associated with a given URL
is already cached, the remote storage is contacted to check the file’s validity
and the access permissions based on the user’s credentials. If a file stored in
cache is found to be valid, it is either copied to session directory, or a soft-link
is used, depending on the configuration of GM. The caching feature can be
turned off either by the resource administrator or by the user submitting the
job.

GM can automatically register the files stored in its cache to a Data Indexing
Service. This information is then used by a brokering client (see Section 4.2)
to direct jobs into a cluster with a high probability of fast access to input
data. This functionality has proved to be very useful when running many jobs
which process the same input data.

It is possible to instruct GM to modify the files’ URLs and hence access them
through more suitable protocols and servers. This feature makes it possible to
have so called ”local Storage Elements” in a way transparent to users. Together
with the possibility to have this information published in the Information
System (see Section 3.6), this may significantly reduce the job preparation
costs.

After the contents of the session directory has been prepared, GM communi-
cates with the Local Resource Management System (LRMS) to run the main
executable of the job. GM uses a set of back-end shell scripts in order to
perform such LRMS operations as job submission, detection of the exit state
of the main executable, etc. Currently supported LRMS types include vari-
ous PBS [23] flavors, Condor [1] and SGE [24]. There is also support for job
execution on the front-end, meant for testing purposes only.

The output files generated by the job have to be listed in the job description

12



together with their final destinations, or indicated to be kept on the computing
resource for eventual retrieval. After the job’s main executable has stopped
running, they are delivered to the specified destinations by the uploader mod-
ule. The uploader is similar to the downloader described above.

The session directories are preserved only temporarily after the session is fin-
ished. Hence, the user can not directly re-use any produced data in sequential
jobs and has to take care of retrieving output files kept on the computing
resource as soon as possible.

Support for software runtime environments (RTE, see also Section 4.1) is also
a part of GM. RTEs are meant to provide a unified access to pre-installed
software packages. In the GM, support for RTE is made through shell scripts
executed a few times during job duration: after the preparation phase of the
job, before running the main executable, and after it has finished. The scripts
may set up environments needed by pre-installed software packages, and even
modify the job description itself. To standardize creation of new RTEs and to
make it easier for users to find out how to use available RTEs, a registration
portal was established [25] by the NorduGrid partner, the Nordic Data Grid
Facility.

A job passes through several states in GM, and each state can be assigned
an external plugin. This way, the functionality of GM can be significantly
extended with external components to include e.g. logging, fine-grained au-
thorization, accounting, filtering, etc.

GM itself does not have a network port. Instead, it reads the information about
job requests from the local file system. This information is delivered through
the GridFTP channel by using a customized plugin for the ARC GridFTP
server, named jobplugin. Information about the jobs served by GM and con-
tent of their session directories is represented by the same plugin through the
virtual file system. Session directories are mapped to directories, and actions
to various FTP commands and files. Access to every piece of information is
protected, and a flexible access control over the job data is possible. By de-
fault, every piece of information about the job is accessible only by a client
which presents the same credentials as those used to submit a job. By adding
GACL [26] rules to job description, a user can allow other users to see re-
sults of the job and even to manage it. Thus users can form groups to share
responsibility for submitted jobs.

GM has several other, less significant, features. Those include E-mail notifica-
tion of job status changes, support for site local credentials through customiz-
able plugins, reporting jobs to centralized logging service (see Section 6.2),
etc.

13



3.4 Classic Storage Element

Most Storage Elements on sites equipped with ARC are GridFTP servers. A
significant number of them use ARC GridFTP server with one of the following
plugins.

The fileplugin presents the underlying file system in a way similar to ordinary
FTP servers with file access based on a mapping between the client certificate
subject and a local UNIX 4 identity. It is also possible to specify static ac-
cess restrictions for pre-defined directories directly in the configuration of the
GridFTP server (GFS). In addition, there is a way to completely disregard
UNIX identities of the clients, thus relying only on capability of GFS to create
virtual file system trees, or to mix both ways.

This plugin is meant to be used as a replacement for an ordinary FTP server
in user mapping mode, or for user communities which do not need complex
dynamic access control inside dedicated storage pools.

The gaclplugin uses GACL [26], an XML-based access control language, in
order to control access to files and directories on a storage element. Each
directory and file has an associated GACL document stored in a dedicated file.
In order not to break the compatibility with the FTP protocol, modification
of GACL rules is performed by downloading and uploading those files. GACL
files themselves are not visible through FTP file listing commands.

Each GACL document consists of entries with list of identities and access rules
associated with them. There is no predefined set of supported types of identi-
ties. Currently, ARC can recognize a X.509 certificate subject (Distinguished
Name), VOMS [20] names, groups, roles and capabilities, and membership
of a predefined Virtual Organization (lists of members must be created by a
third-party utility). GACL permissions control possibility to read and write

objects, list the contents of directories or get information about stored file.
The admin permission allows one to obtain and modify the contents of GACL
documents.

A GridFTP server with the gaclplugin is most convenient for providing flexible
dynamic access control based purely on Grid identities.

4 UNIX is a trademark of the Open Group.

14



3.5 Smart Storage Element

A “Smart” Storage Element (SSE) is a data storage service that performs
a basic set of the most important data management functions without user
intervention. It is not meant to be used in an isolated way. Instead, its main
purpose is to form a data storage infrastructure together with similar SSEs
and Data Indexing Services, such as the Globus r© Replica Catalog or Replica
Location Service.

The main features of SSE and the data storage infrastructure which can be
implemented using SSE are as follows (see also Figure 3):

• SSE can be used as a stand-alone service, but preferably should be a part of
a full infrastructure and must be complemented with Data Indexing Services
(DIS).

• DIS can be either a common purpose or an application specific one. Mod-
ular internal architecture of SSE allows adding (at the source code level)
interfaces to previously unsupported DIS types.

• SSE has no internal structure for storing data units (files). Files are iden-
tified by their identity used in a DIS (Logical File Name, GUID, Logical
Path, etc.)

• All operations on data units (creation, replication, deletion of replica, etc.)
are done upon a single request from a client through SSE. Hence most
operations are atomic from the client’s point of view. Nevertheless, objects
created during those operations do not always have final state and may
evolve with time. For example, a created file can be filled with data, then
validated, and then registered.

• Entry points to a DIS infrastructure should be used by clients only for
operations not involving data storage units. If an operation involves any
modification of SSE content which has to be registered in DIS, any commu-
nication to DIS will be done by the SSE itself.

• Access to data units in SSE is based on a Grid Identity of the client and is
controlled by GACL rules, for flexibility.

• Data transfer between SSEs is done upon request from a client, by SSEs
themselves (third-party transfers using “pull” model).

An interface to SSE is based on SOAP over HTTPS/HTTPg (Web Services)
with data transfer through pure HTTPS/HTTPg. It is implemented as a plu-
gin for the HTTPSd framework (see Section 3.2). SOAP methods implemented
in SSE allow it to:

• Create a new data unit and prepare it to be either filled by the client, or its
contents to be pulled from an external source. The SSE can pull data both
from inside of the infrastructure (replication) and from external sources. SSE

15



SSE SSE

SSESSE

Data IS

Data IS

Data IS

Indexing Services Infrastructure

Client

registration

data
 tra

nsfe
r

c
o
n
t
r
o
l

d
o
w
n
l
o
a
d
/
u
p
l
o
a
d

Fig. 3. An example of an architecture of a Data Storage Infrastructure.

uses the DataMove library (see Section 5.2) for data transfer and supports
all the corresponding protocols.

• Get information about stored data units — regular expression search for
names is possible.

• Inspect and modify the access rules of data units.
• Update the meta data of stored units. This method is mostly used to provide

checksums needed for content validation.
• Remove data units.

Recently, a SRM v1.1 [27] interface has been implemented for SSE. Work to
provide support for the current standard SRM v2.1.1 is in progress.

3.6 Information system

The ARC middleware implements a scalable, production quality, dynamic,
LDAP-based distributed information system via a set of coupled resource lists
(Index Services) and local LDAP databases. Implementation of the ARC infor-
mation system is based on OpenLDAP ([28], [29], [30]) and its modifications
provided by the Globus r© MDS framework [31,32]. NorduGrid plans to replace
the Globus r© LDAP modifications with native OpenLDAP functionalities.

The system consists of three main components:

(1) Local Information Services (LIS),
(2) Index Services (IS),
(3) and Registration Processes (RP)

The components and their connections shown in the overview Figure 4 are
described in the following subsections.

16



3.6.1 Local Information Service

Local Information Services (LIS) are responsible for resource (computing or
storage) description and characterization. We note that the description of Grid
jobs running on a resource is also a part of the resource characterization: job
status monitoring within ARC is done via querying the LIS components of the
information system. The local information is generated on the resource, and
optionally is cached locally within the LDAP server. Upon client requests, the
information is presented to the clients via LDAP interface. A LIS is basically
nothing more but a specially populated and customized OpenLDAP database.
Figure 5 together with the description below gives a detailed account of the
internal structure of the LIS.

The dynamic resource state information is generated on the resource. Small
and efficient programs, called information providers, are used to collect local
state information from the batch system, from the local Grid layer (e.g., the
Grid Manager or the GridFTP server), or from the local operating system
(e.g., information available in the /proc area). Currently, ARC infoproviders
are interfaced with the same systems as GM, namely the UNIX fork, the PBS
family [23] (OpenPBS, PBS-Pro, Torque), Condor [1] and Sun Grid Engine
(SGE) [24] batch systems. The output of the information providers (generated
in LDIF format) is used to populate the LIS. A special OpenLDAP back-end,
the Globus r© GRIS [32], is used to store the LDIF output of the information
providers. The custom GRIS back-end implements two functionalities: it is

Fig. 4. Overview of the ARC information system components. Clients issue type-1
queries (dotted arrows) against Index Services which maintain a dynamic list of
contact URLs of LISs and further Index Services registering to them (registration
processes are marked by dashed arrows). Then clients perform type-2 queries (solid
arrows) to discover resource properties stored in the LISs.

17



capable of caching the providers’ output, and upon client query it triggers the
information providers unless the data is already available in the cache. The
caching feature of the OpenLDAP back-end provides protection against over-
loading the local resource by continuously triggering the information providers.

The information stored in the LISs follows the ARC information model. This
model gives a natural representation of Grid resources and Grid entities. It is
implemented via an LDAP schema by specifying an LDAP Directory Informa-
tion Tree (DIT). The schema naturally describes Grid enabled clusters, queues
and storage elements. The schema, unlike other contemporary Grid schemas,
also describes Grid jobs and authorized Grid users. A detailed description of
this information model is given in the online manual [33].

Fig. 5. Internal structure of the Local Information Service

3.6.2 Index Services

Index Services are used to maintain dynamic lists of available resources, con-
taining the LDAP contact information of the registrants. A registrant can
either be a LIS or another Index Service. The content of the Index Service,
that is, the information about the registrants, is pushed by the registrants via
the registration process and is periodically purged by the Index Service, this
way maintaining a dynamic registrant list. Index Services are implemented as
special purpose LDAP databases: the registration entries are stored as pseudo-
LDAP entries in the Globus GIIS LDAP back-end [32]. Although the registra-
tion information is presented in a valid LDIF format, the registration entries
do not constitute a legitimate LDAP tree, therefore they are referred to as
the pseudo-LDAP registration entries of the Index Service. A specially crafted
LDAP query is required to obtain the registration entries. Besides the reg-
istrant tables, no any other information is stored in the ARC indices. The
current implementation based on such misuse of the GIIS-backend is planned
to be replaced by something more suitable: the simplistic functionality of
maintaining a dynamic list of registrant tables could be trivially done e.g. in

18



native LDAP. Furthermore, ARC Index Service does not implement any inter-
nal query machinery, Index Services are basically plain lists of contact URLs
of other Index Services and LISs.

3.6.3 Registration Processes, Topology

Individual LISs and Index Services need to be connected and organized into
some sort of a topological structure in order to create a coherent informa-
tion system. ARC utilizes registration processes and Index Services to build a
distributed information system of the individual LISs and Index Services.

During the registration process, the registrant (lower level) sends its regis-
tration packet to an Index Service. The packet contains information about
the host (the registrant) initiating the process and the type of the informa-
tion service running on the registrant (whether it is a LIS or an IS). The
registration message is basically an LDAP contact URL of the information
service running on the registrant. Registrations are always initiated by the
registrants (bottom-up model) and are performed periodically, thus the regis-
tration mechanism follows a periodic push model. Technically, the registrations
are implemented as periodic ldapadd operations.

The LISs and the Index Services of ARC are organized into a multi-level
tree hierarchy via the registration process. The LISs that describe storage or
computing resources represent the lowest level of the tree-like topology. Re-
sources register to first level Index Services, which in turn register to Second
level Services, and so forth. The registration chain ends at the Top Level In-
dices which represent the root of the hierarchy tree. The structure is built
from bottom to top: the lower level always registers to the higher one. The
tree-like hierarchical structure is motivated by the natural geographical orga-
nization, where resources belonging to the same region register under a region
index, region indices are registering to the appropriate country index, while
country indices are grouped together and register to the top level Grid Index
Services. Besides the geographical structuring there are some Index Services
which group resources by specific application area or organization. These ap-
plication/organization Index Services either link themselves under a country
Index or register directly to a Top Level Index. In order to avoid any sin-
gle point of failure, ARC suggests a multi-rooted tree with several top-level
Indices. Figure 6 shows a simplified schematic view of the hierarchical multi-
rooted tree topology of ARC-connected resources and Index Services.

3.6.4 Operational overview

Grid clients such as monitors, Web portals or user interfaces (Section 4) per-
form two types of queries against the Information System:

19



(1) During the resource discovery process clients query Index Services in or-
der to collect list of LDAP contact URLs of Local Information Services
describing Grid resources.

(2) During a direct resource query the clients directly contact the LISs by
making use of the obtained LDAP contact URLs.

Once the client has collected the list of resource LDAP contact URLs (by
performing type-1 queries against the Index Services), the second phase of the
information collection begins: type-2 queries are issued against LISs to gather
resource descriptions. Both types of queries are carried out and served via
the LDAP protocol. Unlike other similar purpose systems (Globus Toolkit r© 2
GIIS or Globus Toolkit r© 4 aggregator [34], or R-GMA [35]), ARC has no
service which caches or aggregates resource specific information on a higher
level. ARC Index Services are not used to store resource information, they
only maintain dynamic list of LDAP URLs. Figure 4 presents an overview of
the ARC information system components showing relations between the Index
Services, LISs registration processes and the two type of queries.

α

β

γ

ω

Indexing servers

Local information (cluster, storage)

Registrations

Deprecated registrations

Indexing servers

Indexing servers

Fig. 6. Resources (LIS) and Index Services are linked via the registration process
creating a hierarchical multi-rooted tree topology. The hierarchy has several lev-
els: the ω lowest level (populated by LIS), the γ organisation/project level, the
β country/international project level and the α top (root) Grid level. The tree is
multi-rooted, such that there are several α-level Index Services and in bigger coun-
tries there are several β- or country-level Index Services.

20



3.7 Security framework of services

The security model of the ARC middleware is built upon the Grid Security
Infrastructure (GSI) [3]. Currently, for communication ARC services do not
use message level security, but rather transport level security (see [21]).

The ARC services that make use of authentication and authorization are those
built on top of the GridFTP server and the HTTPSd framework.

The authentication part makes use of Certificate Authorities (CA) signing
policies, whereby sites can limit the signing namespace of a CA. Moreover,
ARC provides a utility (grid-update-crls) to retrieve certificate revocation
lists on a regular basis.

In a basic and largely obsolete authorization model, ARC services support a
simple X.509 certificate subject (Distinguished Name) mapping to UNIX users
through the grid-mapfile. Automatic grid-mapfile creation can be done using
the nordugridmap utility which can fetch Virtual Organization membership
information from LDAP databases, and simple X.509 subject lists — through
FTP and HTTP(s). In addition, it is possible to authorize local users, specify
filters and black-lists with this utility.

For advanced authorization, most of the ARC services are capable of acting
purely on Grid identity of the connecting client without relying on local iden-
tities. Those services support a unified set of rules which allows to identify
users, group them and choose adequate service level.

In addition to personal Grid identity of a user, other identification mechanisms
are supported. Among them are the Virtual Organization Membership Service
(VOMS) and general VO membership (through external information gathering
tools). It is also possible to use external identification plugins, thus providing
high level of flexibility.

In addition to access level authorization, many services make use of the client
Grid identities internally to provide fine-grained access control. Currently, all
such services use GACL language for that purpose. Fine-grained access control
is available in the GridFTP server’s file access and job control plugins and in
the SSE service.

The job handling service — the Grid Manager — also has a pluggable autho-
rization mechanism that can provide fine-grained authorization and account-
ing during job execution (see Section 3.3) through third-party plugins.

21



4 User interfaces and clients

Users interact with the ARC services on the Grid resources using various client
tools. With the help of the basic command line interface (CLI, Section 4.2),
users can submit jobs to the Grid, monitor their progress and perform basic job
and file manipulations. Jobs submitted through the command line interface
must be described in terms of the Extended Resource Specification Language
(Section 4.1).

The basic command line interface for job handling is similar to a set of com-
mands that can be found in a local resource management system. In addition
to this, there are commands that can be used for basic data management, like
creating and registering files on storage elements and administering access
rights to the data.

In addition to the CLI, the ARC client package includes some commands from
the Globus Toolkit r©, in particular, those needed for certificate handling and
data indexing (see Section 4.3).

Several other clients interacting with the ARC services are developed as well.
An example of such is the ARC Grid Monitor (see Section 4.4) that presents
the information from the Information System using a Web browser.

4.1 Resource Specification Language

The XRSL language used by ARC to describe job options is an extension of
the core Globus RSL 1.0 [36]. The extensions were prompted by the specifics of
the architectural solution, and resulted in the introduction of new attributes.
In addition, differentiation between the two levels of job options specifications
was introduced. The user-side XRSL is a set of attributes specified by a user in
a job description file. This file is interpreted and pre-processed by the brokering
client (see Section 4.2), and after the necessary modifications is passed to the
Grid Manager (GM). The GM-side XRSL is a set of attributes prepared by
the client, and ready to be interpreted by the GM.

The purpose of XRSL in ARC is therefore dual: it is used not only by users to
describe job requirements, but also by the client and GM as a communication
language.

The major challenge for many applications is pre- and post-staging of consid-
erable amount of files, often of a large size. To reflect this, two new attributes
were introduced in XRSL: inputFiles and outputFiles. Each of them is a list
of local-remote file name or URL pairs. Local to the submission node input

22



files are uploaded to the execution node by the client; the rest is handled by
the GM. The output files are moved upon the job completion by the GM to
a specified location (Storage Element). If no output location is specified, the
files are expected to be retrieved by a user via the client.

Another important addition is the runtimeenvironment attribute. Very of-
ten jobs require specific local environment in order to get properly executed.
This includes not merely — and not necessarily — a presence of a specific
pre-installed software, but also proper settings of local variables and paths,
existence of certain services or databases, a particular system configuration
and so on. It is convenient to denote such a suite of settings with a single
tag — a runtime environment name. This tag is validated and advertised by
the resource owners and simplifies matchmaking, since users can request the
necessary runtime environment tag by the means of XRSL.

Several other attributes were added in XRSL, allowing users to specify in
details their preferences [37]. A typical XRSL file is shown below:

& (executable="ds2000.sh") (arguments="1101")

(stdout="dc1.002000.simul.01101.hlt.pythia_jet_17.log") (join="yes")

(inputfiles=

("ds2000.sh"

"http://www.nordugrid.org/applications/dc1/2000/dc1.002000.simul.NG.sh"))

(outputFiles=

("dc1.002000.simul.01101.hlt.pythia_jet_17.log"

"rc://dc1.uio.no/2000/log/dc1.002000.simul.01101.hlt.pythia_jet_17.log")

("atlas.01101.zebra"

"rc://dc1.uio.no/2000/zebra/dc1.002000.simul.01101.hlt.pythia_jet_17.zebra")

("atlas.01101.his"

"rc://dc1.uio.no/2000/his/dc1.002000.simul.01101.hlt.pythia_jet_17.his")

("dc1.002000.simul.01101.hlt.pythia_jet_17.AMI"

"rc://dc1.uio.no/2000/ami/dc1.002000.simul.01101.hlt.pythia_jet_17.AMI")

("dc1.002000.simul.01101.hlt.pythia_jet_17.MAG"

"rc://dc1.uio.no/2000/mag/dc1.002000.simul.01101.hlt.pythia_jet_17.MAG")

)

(jobname="dc1.002000.simul.01101.hlt.pythia_jet_17")

(runTimeEnvironment="DC1-ATLAS")

4.2 ARC Command Line Interface

The ARC command line interface (CLI) provides basic tools for simple Grid
job management and single file manipulation. It also incorporates Grid re-
source discovery, matchmaking, and some brokering functionality. The ARC
CLI provides all the tools necessary to work in the Grid environment and yet
remains small in size and simple in installation. A user can run several CLIs:
clients installed on different workstations can be used simultaneously and in-
terchangeably by the same user without the necessity to instantiate them as
permanently active services.

23



4.2.1 Job management

A user should be able to submit jobs to Grid without having to worry about
which particular cluster will execute a job. From a user’s perspective it should
not be much different from submitting a job to a local cluster. The set of
commands used for job management in the ARC CLI is therefore similar to
a set of commands provided by a local resource management system on a
cluster. The commands are listed in Table 1.

Table 1
The job management commands in the ARC user interface.

ngsub job submission

ngstat find information about resources and jobs

ngcat catenate stdout, stderr or the grid manager’s error log of a job

ngget retrieve the results of a finished job

ngkill kill a running job

ngclean clean up after a job (deletes the session directory on the cluster)

ngrenew renew the GSI proxy certificate for a job

ngresub resubmit the job (using the same XRSL) to a different cluster

ngsync synchronise the local job data base using the Information System

ngtest perform various tests

Job submission is done using the ngsub command which invokes a built-in bro-
kering mechanism. Jobs that are submitted must be described using the XRSL
specification language (Section 4.1). When a job description is given to ngsub

its requirements are compared to the capabilities of the computing resources
that can be discovered through the Information System. A brokering between
the requirements and the capabilities is performed and a queue that satisfies
the given criteria is selected as submission target. The ngsub client then mod-
ifies the user-side XRSL by resolving optional arguments before sending the
job description to the selected target as a GM-side XRSL.

The brokering capabilities in the ARC middleware are distributed since each
client acts as its user’s individual broker, thereby avoiding the possible single
point of failure and potential bottleneck that would exist if a centralised broker
was used.

Several attributes in the XRSL are used in the brokering. A specific cluster
or queue can be selected by providing the corresponding XRSL attributes.
The requested number of CPUs, memory, architecture, operating system or
middleware version and pre-installed runtime environments are compared to
the capabilities published by the cluster in the information system and those

24



targets that fail to meet the specified requirements are rejected.

The brokering algorithm takes into account the size of the input files and
where they are located. It tries to minimise the amount of data that has to be
transferred from storage elements that are not local to the submission target.
It resolves the location of files registered in file index servers like RC and
RLS and if cache registration is enabled at the clusters, the information about
cached files is used as well. If there are no free CPUs available on a cluster
where the data is already present, the job description is sent to a different
cluster, thereby triggering the transfer of the data to that cluster.

The ngstat command is a user tool that queries the Information System and
presents the result to the user. It can be used for both getting information
about available computing resources and their capabilities and about the sta-
tus of jobs submitted to the system.

There are also commands for killing queueing or running jobs, for retrieving
outputs of finished jobs and for other job management tasks.

4.2.2 Data Management

Most of the Data Management tasks are automatic from a user’s perspective
since the file movement and registration is performed on the user’s behalf by
the Grid Manager, provided the correct attributes are specified in the XRSL
job description.

There are also user tools that interact with the Storage Services and Data
Indexing Services directly (see Table 2). These commands also provide for a
higher level data management since they support pseudo-URLs [38] referring
to Index Server registrations. If such pseudo-URLs are used, file registration
in the Data Indexing Service will be modified in a consistent way to reflect
the changes in the Storage Services.

Table 2
Data management commands in the ARC CLI

ngcopy copy files to from or between Storage Servers

ngremove delete files from Storage Servers

ngls list files on Storage or Index Servers

ngacl set or get the access control list of a file

25



4.3 External commands

The ARC middleware is built on top of the pre-WS components of the Globus
Toolkit r©. The toolkit provides command line interfaces to some of the com-
ponents used along with ARC.

In particular, the ARC middleware uses the Globus Security Infrastructure
(GSI) for authentication. Users therefore make use of the toolkit’s command
line tools that handle creation and management of proxy certificates, such as
grid-proxy-init.

Several Globus r© data management technologies have been integrated into
the ARC middleware, such as the Replica Catalog and the Replica Location
Service. In order to perform data management, users should use the clients
of these services. Most notably, the globus-rls-cli tool is very useful for
manipulating and querying registered file attributes in the Replica Location
Service.

4.4 The Monitor

A reliable and up-to-date information about the Grid system, its status, its
components, users and even single tasks is provided by the means of the ARC
Grid Monitor [39,40]. The Monitor is an end-user tool, offering a simple way
of checking the status of the Grid.

The ARC Grid Monitor is a Web interface to the ARC Information System
(Section 3.6), allowing to browse all the data published through it. The In-
formation System provides a robust and dynamic model for accessing not
only quasi-static information about resources and services, but also about
such rapidly changing parameters like queue and job status. Being based on
OpenLDAP, it can be easily interfaced to any browsing or monitoring tool,
giving thus a user-friendly overview of all the resources. The Grid Monitor
makes use of the PHP4 5 LDAP module to provide a real-time monitoring
and initial debugging via any Web browser.

The structure of the Grid Monitor to great extent follows that of the Infor-
mation System. The basic objects are defined by the schema’s objectclasses.
For each objectclass, either an essential subset of attributes, or the whole list
of them, is presented in an easily accessible inter-linked manner. This is real-
ized as a set of browser windows, each being associated with a corresponding
module.

5 For details about PHP, Hypertext Preprocessor language see e.g. [41].

26



Each module displays both dynamic and static information: for example, a
queue name is static, while the amount of running jobs in this queue is dy-
namic. Most of the displayed objects are linked to appropriate modules, such
that with a simple mouse click, a user can launch another module, expand-
ing the information about the corresponding object or attribute. Each such
module opens in an own window, and gives access to other modules in turn,
providing thus a very intuitive browsing.

The Grid Monitor’s framework allows full localization, making use of the
browsers’ preferred language settings. Currently, the Monitor is available in 5
languages, being perhaps the only multilingual Grid tool.

The Monitor layout is deliberately simplistic, ensuring its smooth working
with any Web browser. It has been used via a variety of such, starting from
text-based Lynx and ending with a mobile phone browsers. This effectively
allows ARC users to interact with the Grid literally by phone.

5 Developer interfaces

The public interfaces of ARC-enabled resources are expressed via standard
open protocols: GridFTP, LDAP and HTTP(S). Any client capable of talking
LDAP and GridFTP can interface to all ARC computing and most storage re-
sources. In order to ease this communication and to hide the low-level details
of the LDAP schemas and GridFTP internals (e.g. job submission, control
commands) ARC provides a set of developer libraries. The libraries also in-
clude convenient solutions for handling GSI identities and XRSL processing,
among others. The next subsection describes the ARClib library, focusing on
job submission including brokering, while Section 5.2 introduces a common
purpose data transfer library.

5.1 ARCLib and JARCLib

ARCLib is a client library for ARC written in C++ with a well-defined API.
The library consists of a set of classes for

• handling proxy, user and host certificates,
• discovering and querying resources like clusters and storage elements,
• handling XRSL job descriptions,
• operating on GridFTP servers — uploading and downloading files etc,
• brokering and
• job submission.

27



ARCLib also incorporates a set of common useful functionalities suitable for
both clients and servers, like URL handling, conversion routines for dates and
times and so on. ARCLib is complete enough to perform most client opera-
tions but is still very simple to use. Furthermore, ARCLib is wrapped using
SWIG [42] and thus also provides a Python [43] interface to the API. ARCLib
is therefore well suited for writing client utilities, graphical user interfaces,
and portals.

ARCLib depends on pre-WS Globus Toolkit r© for certificate handling, RSL
descriptions and interacting with GridFTP servers, and on OpenLDAP for
discovering and querying the information system for resources. Otherwise the
library is self-contained.

Resource discovery and querying in ARCLib is done by standard LDAP queries
to the information system, but the whole process of discovering and querying
resources is wrapped in simple method calls. For example, getting information
about all the clusters or all the storage elements registering to the ARC in-
formation system can be done by one simple method call. ARCLib does fully
threaded LDAP queries to all resources in one go, thus providing maximum
speed and performance.

Brokering is the process of selecting the most suitable resource in accordance
with the job specification. Having obtained a list of candidate target resources,
the brokering step consists of removing the candidates inconsistent with the
user’s job specification and sorting the remaining candidates after some cri-
teria. ARCLib finds the candidate targets by a full resource discovery and
querying the information system, and then removes inconsistent targets after
criteria like requested memory on the nodes of the clusters, requested CPU
time, requested installed runtime environments and so on. It then sorts the
remaining targets after the speed of the CPU’s of the clusters.

The ARCLib brokering framework makes it possible for the users to write their
own brokers and include them in the brokering. At the moment, this requires
re-compilation of a part of ARCLib but it is planned to make it possible to
dynamically load user-provided brokers.

Job submission in ARC is done by uploading the corresponding XRSL job
description to a specific directory on a cluster’s GridFTP server. From here,
the Grid Manager (GM) on the cluster takes over and handles the job. Job
submission in ARCLib follows logically after the brokering step. Having ob-
tained a sorted list of possible targets from this brokering step, the ARCLib
methods try to submit the job description to the first target in the target list.
If successful, they upload the corresponding local input files specified in the
job description and get back the job ID assigned by the GM on the cluster.
This job ID is returned to the user. If job submission to the first target fails,

28



the second one is tried and so on.

JARClib is a thin layer over GridFTP and LDAP protocols written in Java
language. Its aim is to provide a basic ARC API to Java programmers, in the
same way as ARCLib provides an API for C/C++ programmers. This enables
Java programmers to create platform independent ARC clients, including ap-
plets and Java standalone applications.

Currently, JARCLib supports job submission and control through the GridFTP
interface, basic Information System interfacing methods (e.g. computing re-
source discovery) and basic matchmaking. All of these actions can be executed
in parallel with a possibility to specify the maximum timeout for the whole
operation. JARCLib’s implementation relies on Globus r© CoG toolkit [44] and
Netscape Directory SDK [45].

5.2 DataMove

DataMove is a common purpose data transfer library used by most services
and utilities of the ARC middleware. This way, the capabilities of all parts
of ARC are unified. The DataMove library is implemented in C++. It does
not provide a POSIX-like interface; instead it is meant to be used for creating
data transfer channels to stream data through an application.

class DataPoint

class DataHandle class DataBufferPar class DataHandle

class DataPointclass DataMove

Source Destination

Data Indexing
Service

Data Storage
Service

Data Storage
ServiceData Indexing

Service

Fig. 7. Interaction between classes and external services for transfering data from
“source” to “destination”.

DataMove consists of an interface for URL abstraction (DataPoint) with in-
tegrated support for data registration in Data Indexing Service. Figure 7 illus-
trates typical usage for transfering data between two endpoints. Data access
interface (DataHandle) has an expandable support for popular data transfer
protocols. An abstraction of memory buffer (DataBufferPar) is used to estab-
lish a multi-stream channel between two DataHandle instances. Other features
include getting information about objects, control over transfer speed, check-
sum calculation, etc.

Currently supported services are: Globus r© RC and RLS, gLite Fireman [18],
GridFTP, HTTP wrapped in SSL and GSI, SRMv1.1 [46], SSE and local file
systems.

29



6 Ongoing development

As ARC is nearing its 0.6 release, new functionalities are being added. In the
next paragraphs, the Job Manager and the HTTPS job submission framework
development are described in brief. Then, the Java Graphical User Interface
(can be used as an applet as well) is being introduced, followed by the Logger
framework and the application portals.

The Job Manager is a higher-level client tool for managing jobs on ARC
enabled Grids. It is able to supervise jobs by monitoring their states and
reacting to changes in the state. The Job Manager is constructed in such a
way that a user can tailor it to fit specific needs for controlling Grid jobs
by plugging in handlers for different situations. The system acts as a layer
between the user and the Grid, i.e., the users interact with Grid through the
Job Manager.

As a first step to a Web service based job control interface, a new experimental
service is being developed. It is going to provide a replacement for job control
over GridFTP currently used in ARC middleware. The interface fully supports
the authentication and authorization used in ARC and uses a lightweight
(comparing to GridFTP) secure HTTP(S/g) channel. A pure Web interface
to session directories and job information is also available.

6.1 Java GUI

The Java GUI client for the ARC middleware, the “Arconaut”, is currently in
the development stage. It is built on top of JARCLib (see Section 5.1). The
main aim of the design was to provide a localizable user friendly interface to
credential management, job description generation, submission and manage-
ment of the jobs.

The main features of the Arconaut are as follows:

• creating jobs for specific applications (such as Scilab, Povray or any other
engine based applications) completely transparently with respect to the un-
derlying XRSL job description;

• creating or importing a user proxy from a number of sources (including
MyProxy servers [47]);

• submitting a job to Grid with a single click, or browse manually for the
computing resource that suits the job the best;

• issuing standard actions on multiple submitted jobs in an intuitive way.

Arconaut can be used either as a Java Web Start application or as a stan-

30



dalone application. It is platform independent as it depends only on pure Java
libraries. The modular architecture provides an easy way for extending the
functionality of Arconaut.

6.2 Logging service

ARC provides a framework to deploy a Grid-wide logging infrastructure. The
logging system consists of a Logging service (Logger) and logging clients.

The Logging Service (Logger) is a MySQL database with a Web service in-
terface implemented in the HTTPSd infrastructure (Section 3.2). The Logger
database collects Usage Records (UR) of Grid jobs. The URs are produced
on the Grid-enabled computing resources and pushed to the Logger database
in a SOAP message. Access to the Logger database is controlled via flexible
common access rules which provide administrative and logging access levels.
For ordinary clients, access to every UR is private.

The Usage Records stored in the Logger database describe Grid job charac-
teristics including resource usage, execution information, ownership, etc. The
current UR of ARC is very simplistic and contains only very basic informa-
tion about jobs. A new UR based on the corresponding Global Grid Forum
(GGF) [48] documents has been developed and is currently being implemented.

Usage Records are being prepared and submitted to the Logger service by the
Grid Manager. By caching URs on the resource front-end, sufficiently reliable
message delivery is obtained.

Although logging by definition is a centralized service, the target Logger ser-
vice where the UR is submitted can be selected by both resource administra-
tors via the Grid Manager configuration and by Grid users via their Grid job
description. A Usage Record of a Grid job can be submitted to multiple Log-
ger Services, multiple Loggers can coexist and be simultaneously used. This
makes it possible to have Logger service deployed per infrastructure or per
VO or for a user to have a personal Logger.

To query the information stored in the Logger database ARC provides a com-
mand line tool. Besides the command line tool, the NGLogger Web inter-
face [13] was developed for convenient access to the URs stored in the database.
Items like number of various kind of jobs per cluster or per user can be seen
in a textual and graphical way.

31



6.3 Application Portals

As more research areas need more computational resources, it is very impor-
tant to provide easy access to these resources, both via Web based interfaces
and from the command line. Currently, most users of the computational re-
sources use command line tools for accomplishing tasks. For other scientific
areas this way of accessing a system can be very unfamiliar. To expand the
user base at the center for scientific and technical computing in Lund (Lu-
narc [49]), an application portal project was initiated. The projects aims to
provide a Web based interface to the most commonly used applications, such
as MOLCAS [50], ABAQUS [51], MATLAB [52] and Python.

Implementation of the Lunarc Application Portal is designed to be lightweight
and easily extendable. An important aspect of this is not to reinvent the wheel.
Existing software packages and tools are used as much as possible. The ar-
chitecture is illustrated in Figure 8. The Lunarc Application Portal is imple-
mented in Python using the WebWare application server [53]. WebWare is
an object-oriented application server capable of handling multiple user Web
sessions. Each page on the server is represented by a Python class. The applica-
tion server is integrated into the Apache Web server [54] using the mod webkit

Apache module. Job submission and management is handled using the ARC
middleware. The current version of the portal uses the command line tools
to interface with ARC, but the development version of the portal will use
ARCLib.

Fig. 8. Application Portal architecture

7 Discussion, conclusions and future work

In this paper, we have presented NorduGrid collaboration’s Advanced Re-
source Connector (ARC) middleware, starting from the user requirements and

32



proceeding to the architectural and software engineering related solutions that
were implemented based on the requirements.

In order to meet the requirement of performance, security and easy deploy-
ment, the corner-stones of ARC on the server side are the Information System,
built on LDAP, that provides a fast access to the information of computing
and storage enviroment; the Grid Manager-GridFTP pair offering a power-
ful and versatile computing service and storage services. On the client side,
there is a job submission client that implements matchmaking between the
job requirements and the resources described by the Information System. The
standalone client package, available to a variety of Unix platforms, is easy to
install and use.

The ARC middleware has quickly grown from a prototype to a production-
quality solution allowing quick and easy setup of a robust and reliable Grid
computation infrastructure. In order to simplify the task of migrating users to
the new environment, the developers offer an excellent community support via
ticketing system and mailing lists, comprehensive documentation, and easy to
download and install client packages. The software, documentation, access to
Web based tools etc are made available by the NorduGrid [4].

Since there are several solutions on the market offering Grid services, standard-
ization and consequent interoperability between them becomes as essential as
interoperability of electrical appliances on the power grid — and even more
so, as user jobs have much higher mobility.

ARC as a second generation Grid middleware is based on standard libraries
and solutions provided by Globus r©, OpenSSL, OpenLDAP and VOMS; and
offers public interfaces through standard channels: GridFTP and LDAP. Nev-
ertheless, interoperability among second generation Grid middlewares (like
LCG [55], gLite [19], Globus [2] and Unicore [56]) is not easily obtainable.
The gradual development and acceptance of Grid standards such as Open
Grid Service Architecture OGSA [57] and Web Service Resource Framework
WS-RF [58] will hopefully bring us closer to an ideal situation where users
would not have to care which Grid client to use. In the future, communication
with Grid servers that implement such functionalities as resource discovery,
job submission, data management etc, will be available through standard in-
terfaces and protocols. With ARC, a Web service based interface (using its
own HTTPg engine [59]), is being developed. Another area of standardization
is that of job submission. JSDL [60] is a forthcoming standard of an XML
based job submission description language. It is foreseen that ARC will use
JSDL in the near future.

With these efforts under way, ARC is gradually converging to the community
standards set by the Global Grid Forum and similar bodies.

33



References

[1] M. Litzkow, M. Livny, M. Mutka, Condor - A Hunter of Idle Workstations, in:
Proc. of the 8th International Conference of Distributed Computing Systems,
1988, pp. 104–111.

[2] I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit,
International Journal of Supercomputer Applications 11 (2).

[3] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke, A Security Architecture for
Computational Grids, in: Proceedings of the 5th ACM Conference on Computer
and Communications Security, San Francisco, California, USA, 1998.

[4] The NorduGrid Collaboration, Web site.
URL http://www.nordugrid.org

[5] M. Ellert, A. Konstantinov, B. Kónya, O. Smirnova, A. Wäänänen, The
NorduGrid project: Using Globus toolkit for building Grid infrastructure, Nucl.
Instr. and Methods A 502 (2003) 407–410.

[6] F. Ould-Saada, The NorduGrid Collaboration, SWITCHjournal 1 (2004) 23–24.

[7] Estonian Grid, Web site.
URL http://grid.eenet.ee

[8] SWEGRID: the Swedish Grid testbed, Web site.
URL http://www.swegrid.se

[9] Danish Center for Grid Computing, Web site.
URL Available at: http://www.dcgc.dk

[10] S. Gadomski, C. Häberli, F. Orellana, G. L. Volpato, The Swiss ATLAS
Computing Prototype, Tech. Rep. CERN-ATL-COM-SOFT-2005-007, ATLAS
note (2005).

[11] P. Eerola, B. Kónya, O. Smirnova, T. Ekelöf, M. Ellert, J. Hansen, J. Nielsen,
A. Wäänänen, A. Konstantinov, F. Ould-Saada, Building a Production Grid in
Scandinavia, IEEE Internet Computing 7 (4) (2003) 27–35.

[12] P. Eerola, B. Kónya, O. Smirnova, T. Ekelöf, M. Ellert, J. Hansen, J. Nielsen,
A. Wäänänen, S. Hellman, A. Konstantinov, T. Myklebust, F. Ould-Saada,
Atlas Data-Challenge 1 on NorduGrid, in: Proc. of CHEP 2003, La Jolla,
California, 2003.

[13] B. Kónya, P. Eerola, T. Ekelöf, M. Ellert, J. Hansen, A. Konstantinov,
J. Nielsen, F. Ould-Saada, O. Smirnova, A. Wäänänen, U. Erkarslan, K. Pajchel,
Usage Statistics and Usage Patterns on the NorduGrid: Analyzing the Logging
Informations Collected on One of the Largest Production Grids in the World, in:
A. Aimar, J. Harvey, N. Knoors (Eds.), Proc. of CHEP 2004, CERN-2005-002,
Vol. 1, 2005, p. 711.

34



[14] The ATLAS Collabiration, ATLAS - A Toroidal LHC ApparatuS, Web site.
URL http://atlas.web.cern.ch

[15] Nordic universities network, Web site.
URL http://www.nordu.net

[16] H. Stockinger, A. Samad, K. Holtman, B. Allcock, I. Foster, B. Tierney, File
and object replication in data grids, Cluster Computing 5 (3).

[17] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi,
C. Kesselman, P. Kunszt, M. Ripenu, B. Schwartzkopf, H. Stockinger,
K. Stockinger, B. Tierney, Giggle: A framework for constructing scalable replica
location services, in: Proceeding of IEEE Supercomputing 2002, 2002.

[18] P. Kunszt, Fireman catalog user guide, Web site.
URL https://edms.cern.ch/document/570780

[19] EGEE gLite, gLite – Lightweight Middleware for Grid Computing, Web site.
URL http://glite.web.cern.ch/glite/

[20] R. Alfieri, R. Cecchini, V. Ciashini, L. dell’Agnello, A. Frohner, K. Lorentey,
F. Spataro, VOMS an authorization system for virtual organizations, in: Proc.
of the 1st European Across Grids Conference, Santiago de Compostela, Spain,
2003.

[21] S. Shirasuna, A. Slominski, L. Fang, D. Gannon, Performance Comparison of
Security Mechanisms for Grid Services, in: Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing, 2004.

[22] G. Aloisio, M. Cafaro, D. Lezzi, R. van Engelen, Secure Web Services with
Globus GSI and gSOAP, in: H. Kosch, L. Böszörményi, H. Hellwagner (Eds.),
Euro-Par 2003 Parallel Processing: 9th International Euro-Par Conference
Klagenfurt, Austria, August 26-29, 2003 Proceedings, Springer, 2003, Lecture
Notes in Computer Science.

[23] R. L. Henderson, Job Scheduling Under the Portable Batch System, in: D. G.
Feitelson, L. Rudolph (Eds.), Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, no. 949, Springer, 1995, Lecture Notes In
Computer Science.

[24] W. Gentzsch, Sun Grid Engine: Towards Creating a Compute Power Grid , in:
Proceedings of the 1st International Symposium on Cluster Computing and the
Grid, 2001.

[25] Runtime Environment Registry, Web site.
URL http://www.csc.fi/grid/rer/

[26] The Gridsite Project, GridSite: Grid Access Control Language, available at:
http://www.gridsite.org/1.0.x/gacl.html (2003).

[27] Storage Resource Management Working Group, Web site.
URL http://sdm.lbl.gov/srm-wg/

35



[28] OpenLDAP, Web site.
URL http://www.openldap.org

[29] T. A. Howes, M. C. Smith, A Scalable, Deployable Directory Service Framework
for the Internet, Tech. Rep. 95-7, CITI (Center for Information Technology
Integration), University of Michigan, USA (1995).

[30] M. Smith, T. A. Howes, LDAP : Programming Directory-Enabled Applications
with Lightweigt Directory Access Protocol, Macmillan, 1997.

[31] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith,
S. Tuecke, A Directory Service for Configuring High-performance Distributed
Computations, in: IEEE International Symposium on High Performance
Distributed Computing, IEEE Press, 1997.

[32] K. Czaijkowski, et al., Grid Information Services for Distributed Resource
Sharing, in: IEEE International Symposium on High Performance Distributed
Computing, IEEE Press, 2001.

[33] B. Konya, The NorduGrid/ARC Information System.
URL http://www.nordugrid.org/documents/arc infosys.pdf

[34] J. M. Schopf, M. D’Arcy, N. Miller, L. Pearlman, I. Foster, C. Kesselman,
Monitoring and Discovery in a Web Services Framework: Functionality and
Performance of the Globus Toolkit’s MDS4, Tech. Rep. ANL/MCS-P1248-0405,
Argonne National Laboratory (2005).

[35] A. W. Cooke, et al., The Relational Grid Monitoring Architecture: Mediating
Information about the Grid, Journal of Grid Computing (2).

[36] The Globus Alliance, The Globus Resource Specification Language RSL v1.0,
Web site.
URL http://www-fp.globus.org/gram/rsl spec1.html

[37] The NorduGrid Collaboration, Extended Resource Specification Language,
available at: http://www.nordugrid.org/documents/xrsl.pdf (2002).

[38] A. Konstantinov, Protocols, Uniform Resource Locators (URL) and Extensions
Supported in ARC.
URL http://www.nordugrid.org/documents/URLs.pdf

[39] O. Smirnova, The Grid Monitor (2002).
URL http://www.nordugrid.org/documents/monitor.pdf

[40] NorduGrid Web site, The Grid Monitor, the interface.
URL http://www.nordugrid.org/monitor

[41] D. Thomas, et al., Professional PHP4, Wrox Press, 2004.

[42] D. Beazley, SWIG and Automated C/C++ Scripting Extensions, Dr. Dobb’s
Journal.

[43] M. Lutz, Programming Python, O’Reilly, 2001.

36



[44] G. von Laszewski, J. Gawor, P. Lane, N. Rehn, M. Russell, Features of the Java
Commodity Grid Kit, Concurrency and Computation: Practice and Experience
13 (8-9).

[45] The Mozilla Directory (LDAP) SDK Project, Web site.
URL http://www.mozilla.org/directory/

[46] A. Shoshani, Storage Resource Managers: Middleware components for Grid
Storage, in: Proc. of the Nineteenth IEEE Symposium on Mass Storage Systems,
2002.

[47] J. Novotny, S. Tuecke, V. Welch, An Online Credential Repository for the
Grid, in: Proc. of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, 2001.

[48] Global Grid Forum, Web site.
URL http://www.ggf.org

[49] Lunarc - Center for Technical and Scientifc Computing Lund University, Web
site.
URL http://www.lunarc.lu.se

[50] Molcas, Web site.
URL http://www.teokem.lu.se/molcas/

[51] ABAQUS, Inc., ABAQUS suite of software for finite element analysis, Web site.
URL http://www.hks.com/

[52] The MathWorks, Inc., Matlab, Web site.
URL http://www.mathworks.com

[53] Python Web Application Toolkit, Web site.
URL http://www.webwareforpython.org

[54] The Apache HTTP Server Project, Web site.
URL http://www.apache.org

[55] CERN, The LHC Computing Grid Project - LCG, Web site (2003).
URL http://lcg.web.cern.ch/LCG/

[56] D. Erwin (Ed.), Unicore Plus Final Report - Uniform Interface to Computing
Resources, Unicore Forum, Forschungszentrum Julich, 2003.

[57] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The physiology of the Grid, in:
F. Berman, G. Fox, T. Hey (Eds.), Grid Computing, John Wiley & Sons Ltd.,
2003, pp. 217–250.

[58] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin,
D. Snelling, S. Tuecke, W. Vambenepe, The
WS-Resource Framework, Version 1.0, whitepaper, available at http://www-
128.ibm.com/developerworks/library/ws-resource/ws-wsrf.pdf.

[59] A. Konstantinov, The HTTP(s,g) And SOAP Framework.
URL http://www.nordugrid.org/documents/HTTP SOAP.pdf

37



[60] JSDL-WG, Job Submission Description Language Work Group, Web site.
URL https://forge.gridforum.org/projects/jsdl-wg

38


