L

NORDUGRID

NORDUGRID-TECH-24
2/5/2017

JOB USAGE REPORTER OF ARC — JURA

Technical description

Péter Débé *
Gabor Szigeti T

*dobe@iit.bme.hu
Tszigeti@niif.hu



1 Introduction

The Job Usage Reporter of ARC (JURA) is a component which is capable of creating job usage records of
multiple kinds, and sending them to multiple accounting services.

2 Overview of functionality

Accounting Service

Computing Element
database
A-REX
Accounting Service:
» . SGAS LUTS
iob [l Web service
o
! job log files call
—>»| JURA >
=y obUsageRecord
- -7 obUsageRecord
periodic execution obUsageRecord database
UR set

Figure 1: The usage reporting mechanism.

JURA is a stand-alone binary application which is periodically run by the A-REX (see Figure 1). There
is no designated configuration file for JURA, nor is the configuration file of A-REX read directly by the
application. Instead, options related to reporting are included within the job log files generated by A-REX
or supplied via command line argument. The primary purpose of these job log files is to hold metadata
about jobs starting, running and stopping. This is the main input of JURA. The format of the job log files
is described in Section 3.2.

The application is run periodically. First, it processes the job log files, and based on the target accounting
service specified in them, JURA creates usage records in a format appropriate for the target accounting
service. Then these records are sent to one or more accounting services, referred to as reporting destinations
in this document. Several reporting destinations are supported, these can be configured by the system
administrator in the A-REX configuration file, and in addition, the user submitting the job can specify
destinations in the job description.

Currently (in the January of 2013), the following job record formats are supported:

e Usage Record 1.0 XML format

e Usage Record 2.0 (Computing Accounting Record) XML format

Currently JURA is capable to send Usage Record 1.0 formatted message to the SGAS Logging and Usage
Tracking Service (LUTS). Communication with a LUTS server is done via a web service interface. JURA is
securely authenticated by the server using X.509 certificates.

Sending Usage Record 2.0 (CAR [I]) records to an APEL service is currently experimental, and it uses a
python messaging library (stomppy).



3 Operation

3.1 Invocation

JURA is a stand-alone executable application, executed by A-REX hourly (currently a hardcoded time
interval, see Section 8). It has no separate configuration file, and does not process the A-REX configuration
file. It receives all necessary options from A-REX in part through command-line arguments and mostly via
variables inserted into the job log files (See Section 3.2). The following configuration variables can be present
in the job log files:

e key_path — Path to the private key file used when submitting records.
e certificate_path — Path to the certificate file used when submitting records.
e ca_certificates_dir — Directory holding the certificates of trusted CAs.

e accounting_options — Additional configuration options for JURA.

The source of these variables is the “grid-manager” block of the A-REX configuration file (see Section 7).
The command line format of JURA is the following:
jura [-E <expiration_time>] [-u <url> [-u <url> [...]]] <control_dir> [<control_dir> [...]]

where expiration_time is the validity length of job log files in days, after which they are considered invalid;
control_dir is the A-REX control directory for a mapped local UNIX user. The “logs” subdirectory of each
control directory is traversed by JURA separately, in sequence.

The “-u” option can be used for interactive execution (e.g. from a terminal). In this case, usage data
generated for each job is reported once to each of the specified destination URLs regardless of the content
of the job log files, and no job log files are deleted.

3.2 Processing job log files

Job log files contain practically all input data (except those passed as command line arguments) for JURA.
A-REX generates these files, at least two for each job and for each reporting destination: one at the time
of job submission, another one after the job finishes, and possibly others at each start and stop event. Job
log files are the main and only source of detailed resource usage information. Furthermore, they are used to
communicate configuration parameters of JURA (see Section 3.1).

The job log files generated by A-REX reside under the directory < control_dir> /logs[2]. They have file name
format <ngjobid>.<random>, where ngjobid is the identifier created for the job by A-REX, random is a
randomly generated sequence of alphanumeric characters to avoid collision of different files pertaining to the
same job.

A file consists of “name=wvalue” lines, where “value” is either a job-related resource usage data or a config-
uration parameter. The URL of the reporting destination corresponding to the job log file is acquired from
a “jobreport=""line in the A-REX configuration file. In addition to this server-side configuration, a limited
number of destinations can be supplied by the submitter in the job description.

JURA generates records in the Usage Record (UR) format proposed by the Open Grid Forum (OGF), using
the information stored in the job log files. The generated UR is an XML representation holding consumption
information for all commonly used resources and metrics. It can be extended by custom elements for non-
standard resources and/or other types of job metadata. For a list of UR properties and their sources in the
job log file, see Appendix A.

Some elements of UR are mandatory, these must all be present in the job log file to be able to generate
a UR. For example, the job log file generated upon job submission contains no status entry, so this file is
ignored, and no UR is generated from it.

An archiving functionality allows to store generated URs in a specified directory (see Section 7) on the disk.
If enabled, valid UR XMLs are written to files named “usagerecord/CAR].<ngjobid>.<random>", where
“ngjobid” and “random” match those of the source job log file. If a job log file is processed repeatedly —



for example because of temporary connection failures to a LUTS service — and a respective UR archive file
already exists, then the UR is not generated again. Instead, the contents of the archive file are used without
change (NB: the creation time stamp is also retained).

If interactive mode is not activated by the “-u” option (see Section 3.1), after successful submission to

a reporting destination, the job log file is deleted, thus preventing multiple insertion of usage records. If
submission fails, the log files are kept, so another attempt is made upon a subsequent run of JURA. This
mechanism will be repeated until the expiration time passes (see “-E” command line switch in Section 3.1),
at which point the next execution of JURA removes the file without processing.

3.3 Reporting to LUTS

In case of non-interactive invocation of JURA by A-REX, the generated URs are submitted to the accounting
services specified by the reporting destination configuration parameters and if present, to the destinations
specified in the job description as well. Under interactive mode of operation, they are submitted to the
services given via the “-u” command line option. Reporting URs to several destinations is possible.

LUTS has a simple custom web service interface loosely based on WS-ResourceProperties[3]. JURA uses the
insertion method of this interface to report URs. The corresponding job log files are deleted after receiving
a non-fault response from the service.

To increase communication efficiency JURA can send URs in batches provided that the server side supports
this feature. LUTS accepts a batch of URs in a single request. The batch is an XML element called
UsageRecords, containing elements representing URs.

The process of handling batches is the following: JURA does not send all usage records immediately after
generation, but instead collects them in a batch until reaching the maximal number of records or until
running out of job log files. The maximal number of URs in a batch can be set as a configuration parameter
of JURA (“jobreport_options”, see Section 7).

3.4 Reporting to APEL
Reporting mechanism is almost same as the LUTS but here are the different things:

e generated messages are XML based CAR records

e number of entries per messages is 1000

e message sending frequency is only ones per day (APEL suggestion)

e required the use_ssl:true archiving option by communication of the production server

e Before first time try to publish entries to the production server use the following bash command in the
< control_directry> /logs directory: sed -i ’s/use_ssl:false/use_ssl:true/g’ *

e APEL publisher[4] transfer the generated records

e APEL publisher[4] use different message path location for every destination where to put the generated
messages that will be transfer.

— path format: /var/spool/arc/ssm/<destination host name> /outgoing/00000000/
— generated file name format in this location: <YYYYMMDDhhmmss>

3.5 Re-reporting records

JURA able to re-report records to accounting server only from archived records. This functionality can
be use only from CLI with -r <RANGE> option but in this case the <control_dir> parameter must be a
<archived_dir> which is an input for a re-report function. This range can be specified in YYYY.MM.DD-
YYYY.MM.DD format. Month and day are optional.

for example:



e 2014
e 2014.9-2015.5
e 2014.9.12-2015.5.2

If you give only years months will be current month and day will be 1th by start and 31 by end date. If you
give only years and months day will be 1th by start and 31 by end date. Starting point is 0:00 by start day
and 23:59 by end date.

Some example how to use this functionality from CLI:

e jura -u <accounting_server_URL> [-t <topic>] -r 2014 <archived_dir>

e jura -u <accounting_server URL> [-t <topic>] -r 2014.9-2015.5 <archived dir>

e jura -u <accounting _server URL> [-t <topic>] -r 2014.9.3-2015.5 <archived_dir>
e jura -u <accounting server URL> [-t <topic>] -r 2014.9-2015.5.19 <archived_dir>

e jura -u <accounting_server URL> [-t <topic>] -r 2014.9.12-2015.5.2 <archived_dir>

4 Security

The JURA executable runs with the same user privileges as the A-REX. The owner of a job log file is the
local user mapped for the submitter entity of the corresponding job. Since these files contain confidential
data, A-REX restricts access to them allowing only read access for the job owner, thus when JURA is
executed by A-REX it is allowed to read and delete job log files.

All usage records are submitted using the X.509 credentials specified by the value of the jobreport_credentials
value of the A-REX configuration file. No proxies are used.

The only access restriction made by a LUTS service is matching the Distinguished Name of the client
(in this context JURA) with a set of trusted DNs. When access is granted, policies are then applied by
LUTS, allowing either publishing and/or querying rights. Clients with publishing right can insert any UR,
regardless of content. By default, querying right only allows retrieving URs pertaining to jobs submitted by
the querying entity.

5 Implementation and API

JURA as part of the ARC software stack is written in C++4, and utilizes the functionality provided by the
ARC libraries, including secure HTTPS communication provided by the ARC plugable TLS and HTTP
modules.

The modular design is also present in the usage reporting part of the JURA code, making it possible to
extend JURAs support of accounting services. To create a JURA module one should simply write a C+-+
class which inherits from the abstract Arc: :Destination class, and it must extend the two methods:

e static Arc::Destination* Arc::Destination::createDestination(Arc::JobLogFile&)

e void Arc::Destination::report(Arc::JobLogFile&)

The static createDestination method should initialize a object of the specialized class, using the configu-
ration options specified in the passed Arc: :LogFile object, and the memory allocated by the method should
be freed by the caller. Then the report method should carry out the transfer of the UR, represented by the
JobLogfile object, to the accounting service.



6 Installation and deployment

As part of ARC, JURA is distributed through usual ARC distribution channels, namely through Linux
(RedHat, Fedora, Debian and Ubuntu), NorduGrid, EMI and EGI repositories. JURA is part of the
nordugrid-arc-arex package and once installed the executable will be located in the /usr/lib/arc di-
rectory. Detailed install instructions can be found at the NorduGrid website.

Instructions on how to build JURA from source can also be found on the NorduGrid website.

The name of the reporting executable should be specified in the arc.conf, with the jobreport_publisher
configuration command. It has to be a relative path starting from the libexec/arc directory under the install
location. If it is not specified, the name jura is used.

The usage reporting can also be performed manually provided that access to the credentials are granted, by
executing JURA with the proper command line arguments (see Section 3.1). The example command below
will send generated usage records from the job log files in the standard location, “/tmp/jobstatus/logs” and
send them to LUTS services. Files older than a week are deleted without processing.

jura -E 7 /tmp/jobstatus

7 Configuration

JURA is configured through the configuration file of A-REX[2]. As it was already mentioned in Section 3.1,
JURA does not process the A-REX configuration file directly; the configuration values are propagated to
JURA through the job log files. The following configuration commands in the “grid-manager” block of the
A-REX configuration file are relevant for JURA:

e jobreport=[URL ... number] — specifies reporting destination URLs. Multiple entries and multiple
URLs are allowed. number specifies for how many days the old records have to be kept if failed to be
reported.

e jobreport_period =number — specifies the frequency of message publishing. This value is in seconds.
Default value is 3600 seconds.

e jobreport_logfile =path — specifies the path of JURA’s log messages location. Log rotation has been
set for /var/log/arc/accounting-jura.log location.

e jobreport_vo_filters=VO URL[, VO URLJ... — it is a filter option where can be set which VO will be
send to the given SGAS URL. When add new URL here (that no exist in the list of jobreport) need to
add this URL into the jobreport element. It is possible to have multiple entries, by seperating entries
with a comma BUT only just one jobreport_vo_filters is allowed.

e jobreport_publisher =filename — specifies the name of the executable which will be run by the A-REX
periodically to publish job reports if a jobreport URL is specified. The executable will be searched in
the nordugrid libezec directory. The default name is jura.

e jobreport_credentials=[key_file [cert_file [ca_dir]]] — specifies the credentials for accessing the ac-
counting service. Respectively path to private key (key_file), path to certificate (cert_file), and
path to CA certificates directory (ca_dir).”

e jobreport_options=[options] — specifies additional options for JURA.

The jobreport_options configuration command allows passing a generic option string to JURA verbatim.
This string is interpreted by JURA as a comma-separated list of “name:value” pairs (note the colon!), which
represent service-related settings and extended reporting parameters. The job reporting options currently
defined are:

e General options:

— archiving :dir — enables archiving of generated URs in the given directory. If the directory does
not exist, an attempt is made to create it. If this option is absent, no archiving is performed.



— wurbatch :size — sets the maximal number of URs in the batch sent within one request. Zero value
means unlimited batch size. Default is 50 by SGAS or 1000 by APEL.

— vo_group:attribute of VO — here can be set additional VO group attribute by usage records.
Only just one entry set from this option if you set multiple entries always the latest will be apply.

— vomsless_vo :vo_name#vo_issuer — here can be set VOMS value for VOMS less grid-proxy’s job.
First part of this value is a name of the VO, second part is the issuer of this VO. These two value
separated with ”#” character.

e APEL specific options:

— topic:name of the topic — here can be set a name of the APEL topic where would like to publish
an accounting records. When not set this option then a JURA will be use a default APEL topic.

— gocdb_name:GOCDB name of CE — here can be set a GOCDB name of the resource that would
be see as Site attribute in the generated APEL record. When not set this option then a JURA
will be use a hostname (uppercase, ”.” replaced with ”-”) as default Site name.

— benchmark_type :type of benchmark — here can be set a name of benchmark that would be
published to an accounting records. CAR related option. for example: Si2k, Sf2k, HEPSPEC

— benchmark_value:value of benchmark — here can be set a value of benchmark that would be
published to an accounting records. Type of this value is float. CAR related option.

— benchmark_description :additional description for a benchmark — here can be set any other
description for a benchmark that would be important to publish in the CAR.

— wuse_ssl:true or false — here can be set true value for the SSM communication that require for a
production APEL accounting server. False will be used if not set this option.

e SGAS specific options:

— localid_prefix :prefix string — here can be set prefix value for the LocalJobID by the SGAS usage
records.

The example below is a part of the “grid-manager” block of the A-REX configuration. It enables logging of
URs to two hosts, using the host credential files (placed in the standard locations), with a maximum of 50
URs per batch. Generated URs are archived in the directory /var/urs”. Job log files expire after a week.

jobreport="https://lutsl.nordugrid.org:8443/wsrf/services/sgas/LUTS"

jobreport="https://luts2.nordugrid.org:8443/wsrf/services/sgas/LUTS 7"

jobreport="APEL:https://apel.cern.ch:2170"

jobreport_period="86400"

jobreport_logfile="/var/log/arc/accounting-jura.log"

jobreport_vo_filters="bio.ndgf.org https://luts2.nordugrid.org:8443/wsrf/services/sgas/LUTS"

jobreport_credentials="/etc/grid-security/hostkey.pem /etc/grid-security/hostcert.pem

/etc/grid-security/certificates"

jobreport_publisher="jura"

jobreport_options="urbatch:50,archiving:/var/urs,topic:/queue/cpu,
gocdb_name : SE-NGI-CE-GOCDB-NAME,
vomsless_vo:fgi.csc.fi#vomss://voms.fgi.csc.f1:8443/voms/fgi.csc.fi"

8 Limitations and future plans
In the following list some issues which limits the functionality of JURA is described:

e The number of user-supplied reporting destinations is limited for the sake of robustness. This upper
limit is hardcoded in A-REX: max. 3 destinations are parsed from JSDL, and max. 1 from RSL.



e The current implementation of JURA and A-REX supports only one expiration time for all the re-
porting destinations. Even though the configuration enables the specification of different expiration
values per reporting destination, it is not taken into account by the system, the last value is used as
the common expiration time value.

e [t is not possible to use different credentials per destinations.
e Some optional UR properties are not supported (see App. A).

e Memory is not reported correctly. A bug in GNU “time” results in all memory usage set incorrectly
as zero.

e Some necessary extensions to the generated UR are not yet filled though the information is already
collected in the job log files.

e Detailed user identity information based on the X.509 proxy certificate content or other submitted
credentials is missing from URs.

There is also plan to extend JURA with the following features:

e Extend JURA to be able to read credentials from the command line in interactive mode.
e Enable generating coarser-grained “Aggregate URs” from multiple URs.

e Investigate the subject of project-related charging: who is responsible for determining the “charge”
value; what rules should be applied?



A Generated Usage Record

The following table shows which properties in OGF UR are filled, what data source was used for them, and
which properties are missing.



Generated Source Information content
UR Property (job log entry)
RecordId nodename, Globally unique identifier for UR
ngjobid
GlobalJobld globalid Globally unique identifier of job:
XML element as defined by BES
LocalJobld localid CE-specific identifier of job
GlobalUserName usersn DN of submitting user’s certificate
LocalUserld localuser POSIX user on CE executing the job
JobName jobname Name of job, as given in job description
Status status Status of job
WallDuration usedwalltime [s] Wall-clock time used by job
[ISO 8601 duration]
CpuDuration usedcputime s CPU time used by job
[ISO 8601 duration]
StartTime submissiontime Time instant the job started
[ISO 8601 time stamp] | [ISO 8601 time stamp]
EndTime endtime Time instant the job ended
[ISO 8601 time stamp] | [ISO 8601 time stamp]
MachineName nodename Name of the machine where the job ran
(first node from colon-separated list put into element)
Host nodename System hostname(s) where the job ran
(nodes from colon-separated list put into separate elements)
SubmitHost clienthost System hostname the job was submitted from
Queue Irms Name of the queue from which the job was executed
ProjectName projectname Name of project, as given in job description
Memory usedmemory [kB] Average total memory used by job

[average virtual, kB]

Memory
[max physical, kB|

usedmaxresident [kB]

Maximal resident memory used by job

Memory usedaverageresident Average resident memory used by job

[average physical, kB] | [kB]

NodeCount nodecount Number of nodes (physical machines) involved in the job
ProcessID MISSING The process ID(s) of the job

Charge MISSING Total charge of the job (money or abstract credits)
Network MISSING Network usage of job

Disk MISSING Disk usage of job

Swap MISSING Swap usage of job

Processors MISSING Number of processors used or requested
TimeDuration MISSING Additionally measured time duration(s)
Timelnstant MISSING Additionally identified time instant(s)
ServiceLevel MISSING Quality of service associated with usage
Extended Source Description

UR Property

(job log entry)

RuntimeEnvironment | runtimeenvironment Requested runtime environment, specified in job description
(RTEs from space-separated list put into separate elements)
FileTransfers inputfile File transfer statistics for defined input and output files
outputfile

10




References

[1] Andrea Guarise. Definition of the Compute Accounting Record - 1.2 . CAR 1.2 technical documentation,
2012. URL https://twiki.cern.ch/twiki/pub/EMI/ComputeAccounting/CAR-EMI-tech-doc-1.2.
doc.

[2] A. Konstantinov. The ARC Computational Job Management Module - A-REX. URL http://wuw.
nordugrid.org/documents/a-rex.pdf. NORDUGRID-TECH-14.

[3] OASIS. OASIS Web Services ResourceProperties specification. April 2006. URL http://docs.
oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf.

[4] Will Rogers. APEL publisher. Secure Stomp Messenger (SSM). URL https://wiki.egi.eu/wiki/
APEL/SSM.

11


https://twiki.cern.ch/twiki/pub/EMI/ComputeAccounting/CAR-EMI-tech-doc-1.2.doc
https://twiki.cern.ch/twiki/pub/EMI/ComputeAccounting/CAR-EMI-tech-doc-1.2.doc
http://www.nordugrid.org/documents/a-rex.pdf
http://www.nordugrid.org/documents/a-rex.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
https://wiki.egi.eu/wiki/APEL/SSM
https://wiki.egi.eu/wiki/APEL/SSM

	Introduction
	Overview of functionality
	Operation
	Invocation
	Processing job log files
	Reporting to LUTS
	Reporting to APEL
	Re-reporting records

	Security
	Implementation and API
	Installation and deployment
	Configuration
	Limitations and future plans
	Generated Usage Record

