
NORDUGRID

NORDUGRID-MANUAL-11

28/11/2009

Dynamic Runtime Environments with Janitor

This document is still under development, but don’t hesitate sending your comments and suggestions to

moeller@inb.uni-luebeck.de.

Michael Glodek∗, Daniel Bayer, Steffen Möller†

∗michael.glodek@uni-ulm.de
†moeller@inb.uni-luebeck.de



2



Contents

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Installation 7
2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Usage 11
3.1 Janitor with A-REX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Janitor without A-REX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Maintenance 15
4.1 Catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 HTML interface of the catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Introducing new packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Debian Etch (tar based) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Automated transformation of install directory to dRTE . . . . . . . . . . . . . . . . . 18
4.3.3 Protoypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Technical Motivation and Concepts 21
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Choice of Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2 Modular structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1 States of runtime environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.2 Subset of that functionality as implemented today . . . . . . . . . . . . . . . . . . . . 24

5.3 Job states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4 Integration with AREX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 WebService Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5.1 What happens during installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5.2 Security Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Outlook 29
6.1 Representation of dynamic RTEs in the information model . . . . . . . . . . . . . . . . . . . 29
6.2 Integration with Workflow Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Implementation of a Catalog service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Integration with the Virtualization work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Appendix 31
7.1 Useful tutorials and documentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3



Contents

4



1 Introduction

The Janitor is a service for an automated installation of runtime environments (RTEs) for grid computing
elements. It is addressed transparently via the A-REX service for job submission but can also be used as a
standalone tool.

1.1 Motivation

A major motivation for grid projects is to stimulate new communities to adopt the technology to start
sharing their resources. From the current grid user’s viewpoint, the admission of users of a very different
education will suddenly impose difficulties in the communication between site maintainers. One will not
even understand the respective other side’s research aims. Hence, the proper installation of non-standard
software (runtime environments, RTEs) is not guaranteed. And the available time for manual labour plus
self-education is scarse.

A core problem remains to distribute a locally working solution, the Know-How, quickly across all con-
tributing sites, i.e., without manual interference. Every scientific discipline has its respective own set of
technologies for the distribution of work load. E.g. research in bioinformatics requires access to so many
different tools and databases, that few sites, if any, install them all. Instead, the use of web services be-
came a commodity, with all their intrinsic problems as there are bottlenecks and restrictions of repeated
access. The EU project KnowARC∗ amongst other challenges with the here presented work extends the
NorduGrid’s Advanced Research Connector (ARC) grid middleware [?] towards an infrastructure for the
automated installation of software packages.

An automation of the software installation, referred to as dynamic Runtime Environments (dRTEs), seems
the only approach to use the computational grid to its full potential. Components of workflows shall be
spawned as jobs in a computational grid using dRTEs rather than accessing a web service at one par-
ticular machine that is shared amongst all users. The grid introduces an extra level of parallelism that
web services cannot provide. The demands for short response times and the heterogeneous education of
site-administrators on a grid demand an automatism for the installation of software and databases without
manual interference [?].

1.2 Overview

This document first dedicates a chapter on how to set-up the Janitor locally. It is followed by a chapter that
gives further instructions on how to use the Janitor with A-REX and/or without A-REX. Afterwards, in
the third chapter, the maintenance of the program will be presented, which is basically covering the method
how to prepare new dRTEs. Deeper insights on the design of the Janitor will be given by the forth chapter.
The document ends with an outlook to anticipated future developments and opportunities.

Abbreviations

RTE –Runtime Environment

dRTE–dynamic Runtime Environment

RDF –Resource Description Framework (supporting the RTE Catalog)

∗http://www.knowarc.eu

5

http://www.knowarc.eu


1 Introduction

6



2 Installation

The Janitor requires the two perl packages listed in table 2.1. To have the WebService interface for the
Janitor, the packages listed in the table 2.2 need to be installed before the build process is. The Perl
modules are available on CPAN and ship with all major Linux distributions.

Table 2.1: Required perl packages for Janitor. Log4perl is used for the internal logging of Janitor, while the
Redland RDF library is used for accessing the catalogue of Runtime Environments.

liblog-log4perl-perl Log4perl is a port of the log4j logging package

librdf-perl Perl language bindings for the Redland RDF
library

Table 2.2: Optional libraries for the Janitor. The library libperl-dev provides the required header files to link
the WebService to the Perl interpreter.

libperl-dev Perl library: development files

The Janitor will be installed by default along with ARC-NOX. Support for the dynamic REs can be com-
pletely disabled at compile time by using the configure flags –disable-janitor-service for the complete janitor
or –disable-janitor-webservice to only disable the Janitor’s Web Service.

Furthermore it is recommended to install the ontology editor Protègè∗ in order to be to easily maintain the
knowledge database of installable packages. At the time of writing, no Linux distribution is offering packages
for this fine tool.

2.1 Configuration

The current version of the Janitor can be configured using the common file arc.conf. It is expected in
the configuration directory etc. The Janitor is using the environment variable NORDUGRID CONFIG to
determine the location of the corresponding file. If that variable is not set, the default location /etc/arc.conf
will be used. The configuration is assigned by the section [janitor]. Table 2.3 describes the available tags for
Janitor’s configuration.

∗http://protege.stanford.edu

7

http://protege.stanford.edu


2 Installation

T
a
b
le

2
.3

:
T

a
g
s

u
sa

b
le

in
a
rc

.c
o
n
f

w
it

h
in

th
e

se
c
ti

o
n

ja
n
it

o
r.

T
a
g
s

u
sa

b
le

in
a
rc

.c
o
n
f

w
it

h
in

th
e

se
ct

io
n

ja
n
it

o
r.

ta
g

ex
am

p
le

d
es

cr
ip

ti
on

en
ab

le
d

”1
”

B
oo

le
an

fla
g

w
hi

ch
en

ab
le

s
or

di
sa

bl
es

ja
ni

to
r

in
A

-R
E

X
.

ui
d

”r
oo

t”
T

he
eff

ec
ti

ve
ui

d.

gi
d

”0
”

T
he

eff
ec

ti
ve

gi
d.

re
gi

st
ra

ti
on

di
r

”/
va

r/
sp

oo
l/

no
rd

ug
ri

d/
ja

ni
to

r”
D

ir
ec

to
ry

w
he

re
w

e
th

e
cu

rr
en

t
st

at
es

of
jo

bs
ar

e
ke

pt
.

ca
ta

lo
g

”/
va

r/
sp

oo
l/

no
rd

ug
ri

d/
ja

ni
to

r/
ca

ta
lo

g/
kn

ow
ar

c.
rd

f”
U

R
L

of
th

e
ca

ta
lo

g
co

nt
ai

ni
ng

th
e

pa
ck

ag
e

in
fo

rm
at

io
n.

do
w

nl
oa

dd
ir

”/
va

r/
sp

oo
l/

no
rd

ug
ri

d/
ja

ni
to

r/
do

w
nl

oa
d”

D
ir

ec
to

ry
fo

r
do

w
nl

oa
ds

in
st

al
la

ti
on

di
r

”/
va

r/
sp

oo
l/

no
rd

ug
ri

d/
ja

ni
to

r/
ru

nt
im

e”
D

ir
ec

to
ry

fo
r

in
st

al
la

ti
on

of
pa

ck
ag

es

jo
be

xp
ir

yt
im

e
”7

20
0”

If
a

jo
b

is
ol

de
r

th
an

th
is

,
it

is
co

ns
id

er
ed

de
ad

an
d

as
si

gn
ed

to
be

re
m

ov
al

pe
nd

in
g.

rt
ee

xp
ir

yt
im

e
”3

6”
If

a
ru

nt
im

e
en

vi
ro

nm
en

t
w

as
no

t
us

ed
fo

r
th

is
ti

m
e,

it
w

ill
be

as
si

gn
ed

to
be

re
m

ov
al

pe
nd

in
g.

al
lo

w
ba

se
”*

”
A

llo
w

ru
le

fo
r

ba
se

pa
ck

ag
es

.

de
ny

ba
se

”d
eb

ia
n:

:e
tc

h”
D

en
y

ru
le

fo
r

ba
se

pa
ck

ag
es

.

al
lo

w
rt

e
”*

”
A

llo
w

ru
le

fo
r

ba
se

pa
ck

ag
es

.

de
ny

rt
e

”A
P

P
S/

M
A

T
H

/E
L

M
E

R
-5

.0
.2

”
D

en
y

ru
le

fo
r

ba
se

pa
ck

ag
es

.

lo
gc

on
f

”/
op

t/
no

rd
ug

ri
d/

et
c/

lo
g.

co
nf

”
L

oc
at

io
n

of
th

e
lo

gg
in

g
co

nfi
gu

ra
ti

on
fil

e
fo

r
ja

ni
to

r.

8



2.1 Configuration

The parameter enabled specifies whether the Janitor shall be used within A-REX or not. Use the value
"0" to disable Janitor. The uid and the gid are defining which effective user id (uid) and group id (gid)
shall be used for the Janitor.† The registrationdir describes the directory in which the subdirectories
jobs and rtes will be created. In these directories the states of the jobs and the runtime environments
will be stored. The knowledge base of installable packages is specified by the parameter catalog. Its value
can be any kind of URL pointing to a file written in the Resource Description Framework (RDF) format.
The specification of the RDF file will be explained in detail in section 4.3. The parameter downloaddir
assigns the directory in which the installation files will be saved after they have been downloaded or copied
from the repository which was specified by the catalog. The installationdir finally specifies the directory
into which all packages will be installed and should be available for all computing elements, i.e. by using
a shared volume. If the configuration file furthermore contains the runtimedir tag within the section
grid-manager, the Janitor will also create a symbolic link in the runtimedir pointing to the configuration
script of the installation performed by the Janitor. The tags jobexpirytime and rteexpirytime are used
for an automated cleanup and is defined in seconds. The default value for the jobexpirytime is seven days
and for the rteexpirytime three days. The additional tags allow base deny base allow rte and deny rte
are used to include or exclude certain base packages or runtime environments of the catalog. This feature is
useful, if the catalog is maintained by a higher organization. The path to the log4perl configuration file is
defined by the tag logconf. An example how to configure ARC and log4perl is provided in the Listings 2.1
and 2.2.

Listing 2.1: Example arc.conf settings for janitor.

1 [janitor]
2 enabled ="1"
3 logconf ="/opt/nordugrid/etc/log.conf"
4 registrationdir ="/var/spool/nordugrid/janitor"
5 installationdir ="/var/spool/nordugrid/janitor/runtime"
6 downloaddir ="/var/spool/nordugrid/janitor/download"
7 jobexpirytime ="7200"
8 rteexpirytime ="36"
9 uid="root"

10 gid ="0"
11 allow_base ="*"
12 allow_rte ="*"
13
14 [janitor/nordugrid]
15 catalog ="/var/spool/nordugrid/janitor/catalog/knowarc.rdf"

It should be noted that the downloaddir or the installationdir specified in arc.conf could be any directory.
Those will not be prepared by the package for the Linux distribution but need be created by the administrator
manually after the Janitor has been installed. This also holds for the catalog.

When working with several catalogs, then the multiple catalog lines can be placed into the same arc.conf
file. But every must go into its own block as separated with

janitor/someName

directives.

Listing 2.2: Example log.conf settings for janitor.

1 # Master Loglevel
2 # [OFF | DEBUG | INFO | WARN | ERROR | FATAL]
3 #log4perl.threshold = OFF
4
5 log4perl.rootLogger = WARN , DebugLog , MainLog , ErrorLog
6 log4perl.appender.DebugLog = Log:: Log4perl :: Appender :: Screen
7 log4perl.appender.DebugLog.layout = PatternLayout
8 log4perl.appender.DebugLog.layout.ConversionPattern = [%C] %d %p> %m%n
9

10 log4perl.appender.MainLog = Log:: Log4perl :: Appender ::File
11 log4perl.appender.MainLog.Threshold = DEBUG
12 log4perl.appender.MainLog.filename = /var/log/janitor.log
13 log4perl.appender.MainLog.layout = PatternLayout
14 log4perl.appender.MainLog.layout.ConversionPattern = %d %p> %m%n
15
16 log4perl.appender.ErrorLog = Log:: Log4perl :: Appender ::File
17 log4perl.appender.ErrorLog.Threshold = ERROR
18 log4perl.appender.ErrorLog.filename = /var/log/janitor_error.log

†For the time speaking, you need to have started the ARC services as root to allow the Janitor to change into those IDs.

9



2 Installation

19
20 log4perl.appender.ErrorLog.layout = PatternLayout
21 log4perl.appender.ErrorLog.layout.ConversionPattern = %d %p> %m%n

2.2 Limitations

The Janitor is designed to be used on Linux distributions. Its porting to other platforms has not yet been
addressed.

The ARC middleware is not ultimately essential for dynamic Runtime Environments. All the Perl code
would be functional with any Grid middleware.

10



3 Usage

The Janitor can be used either with or without the A-REX service. In case A-REX is used, the invocation
of the Janitor will be performed in an automated manner. It is then triggered by incoming jobs that request
a particular RTE for their execution. If it is not already installed, but available via the Janitor, then it will
be installed without further manual intervention.

3.1 Janitor with A-REX

Runtime Environments can be specified using the supported job description languages. The most represen-
tative two common languages shall be explained at this point: xRSL and JSDL. Listing 3.1 shows the xRSL
example in which two runtime environments are requested.

Listing 3.1: Job submission using the xRSL job description language.

1 &
2 (executable = "run.sh" )
3 (arguments = "weka.classifiers.trees.J48" "-t" "weather.arff")
4 (" inputfiles" = (" weather.arff" "" ))
5 (" stderr" = "stderr" )
6 (" stdout" = "stdout" )
7 ("gmlog" = "gmlog" )
8 (" runtimeenvironment" = "APPS/BIO/WEKA -3.4.10")
9 (" runtimeenvironment" = "APPS/BIO/WISE -2.4.1 -5")

The runtime environment names are composed out a directory name, the package name and the version
number.

A comprehensive reference manual of the Extended Resource Specification Language (XRSL) can be
found at www.nordugrid.org/documents/xrsl.pdf [?]. Within Listing 3.2 an example using JSDL is pro-
vided. The specification of assigning runtime environments in JSDL is currently only defined within the
nordugrid jsdl-arc schema http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/a-rex/grid-
manager/jobdesc/jsdl/jsdl arc.xsd.

Listing 3.2: Job submission using JSDL.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <JobDefinition
3 xmlns="http:// schemas.ggf.org/jsdl /2005/11/ jsdl"
4 xmlns:posix="http:// schemas.ggf.org/jsdl /2005/11/ jsdl -posix"
5 xmlns:arc="http: //www.nordugrid.org/ws/schemas/jsdl -arc">
6 <JobDescription >
7 <Application >
8 <posix:POSIXApplication >
9 <posix:Executable >/bin/sleep</posix:Executable >

10 <posix:Argument >120</posix:Argument >
11 </posix:POSIXApplication >
12 </Application >
13 <DataStaging >
14 <FileName >test.sh</FileName >
15 <Source/>
16 <Target/>
17 </DataStaging >
18 <DataStaging >
19 <FileName >transferGSI -small</FileName >
20 <Source >
21 <URI>gsiftp: // pgs02.grid.upjs.sk:2811/unixacl/transferGSI -small</URI>
22 </Source >
23 <Target/>
24 </DataStaging >
25 <Resources >
26 <arc:RunTimeEnvironment >
27 <arc:Name >APPS/BIO/WISE -2.4.1 -5</arc:Name >
28 <arc:Version ><Exact>2.4.1 </Exact></arc:Version >

11

http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/a-rex/grid-manager/jobdesc/jsdl/jsdl_arc.xsd
http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/a-rex/grid-manager/jobdesc/jsdl/jsdl_arc.xsd


3 Usage

29 </arc:RunTimeEnvironment >
30 <arc:RunTimeEnvironment >
31 <arc:Name >APPS/BIO/APPS/BIO/WEKA -3.4.10 </arc:Name >
32 <arc:Version ><Exact>3.4</Exact ></arc:Version >
33 </arc:RunTimeEnvironment >
34 </Resources >
35 </JobDescription >
36 </JobDefinition >

3.2 Janitor without A-REX

In addition to using the Janitor together with A-REX, the Janitor can also be used as a standalone command
line tool. The available commands are listed in table ??.

Table 3.1: Overview about the available commands in Janitor.

janitor [COMMAND] [JOB-ID] [RTE] . . .

Command:

register Registers a job and a set of runtime environments in the Janitor
database. Requires the parameters [JOB-ID] and a list of [RTE]s.

deploy Downloads and installs the desired runtime environments. Requires the
name of an already registered [JOB-ID].

remove Removes the placeholder of the job on the runtime environments. If
no more jobs are using the runtime environment and the lifespan of
the runtime environment has be expired, the runtime environment can
be removed using the sweep command. Requires the [JOB-ID] to be
removed.

sweep Removes unused runtime environments. No further arguements are re-
quired. Using the option --force enforces the removal of all unused
runtime environments. Runtime environments having the state FAILED
will not be removed.

setstate Changes the state of a dynamically installed runtime environment. This
might be useful in case a runtime environment with a state FAILED shall
be removed (new state might be REMOVAL PENDING). Requires the
argument [STATE] followd by a list of [RTE]s.

search Performs a simple search in the catalog and the manually installed run-
time environments (runtimedir). Requires no [JOB-ID] nor [RTE]s, but
only a list of string to be searched for.

list Lists all information about jobs, automatically installed runtime envi-
ronments and manually installed runtime environments. No additional
parameters have to be passed.

info Renders information about a job. Requires the parameter [JOB-ID].

Job id:

A unique sequence of numbers. Once Janitor registered a job id, it
cannot register a second job having the same job id.

Runtime environments:

Runtime environments are defined by a continuous string. The name
of valid runtime environment names can be investigated using the list
or the search commands. They are defined in the catalog or by the
directories and scripts of the runtimedir of the grid-manager.

12



3.2 Janitor without A-REX

The most important commands for the Janitor are register, deploy and remove. To register a job along
with a set of runtime environments in Janitor, the first command register followed by a job identifier
and a list of runtime environments has to be used. A job is identified by a sequence of numbers. Runtime
environments are specified by a string containing the name as it is defined within the Catalog (resp. the
runtime directory of the grid-manager). The command deploy extracts the necessary dependencies of the
desired runtime environments to then download and install the required packages.

In order to remove jobs registered in the Janitor, the command remove has to be used. The command only
removes the job entry and the lock on the runtime environment. If there are no more locks on the runtime
environment it is ok to be deleted also physically from the disk. The demand to pass a job number for the
removal of a RTE is irritating at first. This shall prevent the removal of runtime envrironments that are still
being used by jobs in the system. Instead, the janitor is informed about a job’s termination and is requested
to remove the assignment of that job to the runtime environment. Only those RTEs with no job-assignment
are eligible for being sweeped. RTEs come with an expiry time or the command may be performed via the
command line.

Easy command line examples are provided in Listing 3.3.

Every command has a certain behaviour for its exit status. Table 3.2 lists the possible outcomes.

Table 3.2: Possible exit states of Janitor

Exit status:

The exit status of Janitor depends on the used command.

register 0 Registration was successful. No noteworthy occurrences.

1 Registration was successful but some runtime environments aren’t in-
stalled yet. Deploy is mandatory.

2 An error occured.

deploy 0 Sucessfully initialized job.

1 Can’t provide requested runtime environments.

remove 0 Sucessfully removed job or no such job.

1 Can’t provide requested runtime environments.

sweep 0 Always returns this exit code.

setstate 0 Changing the state was successful.

1 Can not change the state.

search 0 Search sucessfully finished.

list 0 Successfully retrieved information.

info 0 Successfully retrieved job information.

1 No such job.

2 Error while retrieving job information.

Listing 3.3: Example log.conf settings for janitor.

# janitor register 1999 APP/BIO/JASPAR -CORE -1.0 APPS/BIO/APPS/BIO/WEKA -3.4.10
# janitor deploy 1999
# janitor remove 1999

13



3 Usage

# janitor sweep --force
# janitor setstate REMOVAL_PENDING APP/BIO/JASPAR -CORE -1.0 APPS/BIO/APPS/BIO/WEKA -3.4.10

# janitor search JASPAR WEKA
# janitor list
# janitor info 1999

3.3 Example

14



4 Maintenance

This chapter explains how to maintain the Catalog and the Janitor itself. It gives detailed instructions how
to create new packages for the Janitor. To administrate the catalog, it is strongly recommended (but not
ultimately required) to use the ontology editor Protègè, as explained in the next section. In the last section,
a typical use case in maintaining the Janitor will be shown.

4.1 Catalog

The Catalog describes runtime environments and is either served through a web server or is dis-
tributed together with the Janitor as a regular file. It is specifed by a (Resource Descrip-
tion Framework) RDF file assigned to Janitor using the tag catalog within the configuration
file (see 2.1). The format of the RDF file is defined by an RDF schema file knowarc.rdfs
which can be found along with an RDF example file knowarc.rdf in the Janitor source directory
http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/janitor/resources/catalog/.

To edit the catalog, the ontology editor Protègè should be used. Figure 4.1 shows the editor while the
MetaPackage APPS/BIO/JASPAR-CORE-1.0 of the example file has been selected.

On the left side of the editor the class browser is placed. Three main classes are prepared: MetaPackage,
Note and Package. The Metapackage is a general platform-independent description of a Package. It has
one or more instances of the class Package and is described by the subclasses of Note. The class Note has
two subclasses: BaseSystem and Tag to describe the MetaPackage. The BaseSystem describes the Debian
release a Package refers to (i.e. here etch or sid), i.e. the name of a common installation or a virtual
image. The class Tag provides small keywords which can be assigned to MetaPackages such that they can
be found more easily. TarPackage and DebianPackage or currently the only subclasses of Package. They
are representing the necessary information (i.e. URL or Packagename) for the installation. In order to have
an overview how the classes are interacting with each other the tables 4.1, 4.2, 4.3, 4.4 and 4.5 are pictured.

Table 4.1: Specification of the class Metapackage.

Name Cardinality Type

description single String

homepage single String

instance multiple Instance of Package

lastupdated single String

name required single String

tag multiple Instance of Tag

4.2 HTML interface of the catalog

The dynamic Runtime Environments stored in the Catalog are presented on the aforementioned dedicated
web page∗. This site also links to both the formal Catalog in RDF syntax and its automated transformation to
HTML. The latter mimics the traditional site describing Runtime Environments in the Runtime Environment
Registry† in order to minimise issues with an eventual transition to the new system. That page collects

∗http://dre.knowarc.eu:8080/list.pl
†http://gridrer.csc.fi/

15

http://svn.nordugrid.org/repos/nordugrid/arc1/trunk/src/services/janitor/resources/catalog/


4 Maintenance

Figure 4.1: Example of a RDF catalog file as displayed in the program Protègè.

Table 4.2: Specification of the class Basesystem.

Name Cardinality Type

description single String

distribution required single String

name required single String

short description required single String

url required single String

Table 4.3: Specification of the class Tag.

Name Cardinality Type

description single String

name required single String

descriptions for Runtime Environments to encourage human site administrators to install these. This HTML
page listing the manually or automatically installable REs is prepared by the script web/list.pl. This script is
meant to be run by a mod perl-enabled Apache. The script itself does not contribute to the core functionality
of the Janitor. In the first lines of the script some variables specific to the site are set. To configure the
script these have to be changed [?, p. 9].

16



4.3 Introducing new packages

Table 4.4: Specification of the class DebianPackage.

Name Cardinality Type

basesystem required single Instance of BaseSystem

debconf multiple String

depends multiple Instance of MetaPackage or Package

package required multiple String

Table 4.5: Specification of the class TarPackage.

Name Cardinality Type

basesystem required single Instance of BaseSystem

depends multiple Instance of MetaPackage or Package

environ multiple String

url required multiple String

4.3 Introducing new packages

This section describes how to add new packages to the Catalog. In the current implementation, only tar
based packages are processed by the Janitor. Within the example they are assigned to be used together with
Debian Etch. This limitation is only literal. There is no restriction for newer Debian distributions.

4.3.1 Debian Etch (tar based)

At the time of writing, only the tape archive (tar) file format is accepted for dynamic Runtime Environment
installation, a well accepted file format throughout the UNIX community. The concept reflects the traditional
manual approach towards RTE in ARC, for which one directory is made available to all compute nodes. This
section explains the inner structure of the tar files. Subdirectories are visualised in Figure 4.2.

The tar file contains two directories, named control and data. Software is stored in the latter subdirectory,
while the files formally specifying how to deal with such packages are stored in the prior. Upon installation,
the content of the data directory is extracted to some directory $BAR. After this unpacking of the tar file,
the Janitor executes the install script provided in the control directory. It is executed within the working
directory $BAR. The job of this skript is to perform any necessary post-processing. The Janitor stores the
file control/remove. It will be executed in the same way as control/install just before the tar-package

foo.tar.gz

control/

install

remove

runtime

data/

Figure 4.2: Directory structure in the tar files for automated installation.

17



4 Maintenance

is removed. In most cases control/remove will be empty. Finally, the file control/runtime is sourced
multiple times by the Grid Manager’s job-submit script. After installing the package, the Janitor changes
all occurences of %BASEDIR% in the runtime script to $BAR. Once the tar file was prepared, it must its
entry to a RTE Catalogue [?, p. 10].

From such Catalogs, the Janitor finds all information to install packages that possibly have never been
installed on the site before. The offers of RTEs in a Catalog are cross-checked against the local infrastructure
and a subset of the available packages will be accepted as ”installable”. This list of installable RTEs is
forwarded to the grid information system.

4.3.2 Automated transformation of install directory to dRTE

The script ’prepareDRE.pl’ was created to help with the transformation of a readily installed software into
a dynamic runtime environment. I also prepares a complete catalog file that can be offered individually or
next to other catalogs. See the associated man page prepareDRE(8) for details.

4.3.3 Protoypes

In order to have an impression how the tar files are created, several prototypes are provided at http:
//dre.knowarc.eu.

The WEKA package for machine learning [?] and the Java Runtime Environment are available as dynamic
Runtime Environments. Further packages for bioinformatics comprise dynamic variants of tools for the
analysis of transcription factor binding sites. These are already offered for manual installation via the prior
mentioned traditional page representing Runtime Environments for ARC. The corresponding tar file is named
somewhat??. The data directory simply contains a ZIP file which needs to be unzipped in the installation
directory. For that reason, the control/install script is written as follows:

#!/bin/sh
set -e # Makes the script to terminate at the first line it fails.

WEKA_ZIP="weka-3-4-8a.zip"
unzip $WEKA_ZIP
rm -f $WEKA_ZIP

The runtime script sets the environment variable of the Java Classpath:

#!/bin/sh

WEKA_JAR="weka-3-4-8a/weka.jar"
case "\$1" in
0) # Just before job submission
# none
;;
1) # Just before job execution
# Initialize the java environment
CLASSPATH="%BASEDIR%/$WEKA_JAR:$CLASSPATH"
export CLASSPATH
;;
2) # After job termination
# none
;;
*)
return 1
;;
esac

18

http://dre.knowarc.eu
http://dre.knowarc.eu


4.3 Introducing new packages

The remove script, which will be executed right before WEKA is deinstalled, is empty. Janitor will delete
the directory, so there is nothing more to be done.

To address the concerns of the physicists using ARC, a dynamic runtime environment for the ATLAS
software suite was prepared. It extends prior work on an automated installation that is available at
http://guts.uio.no/atlas/12.0.6/. The preparation comprised the following steps:

� The file system path specifications in the automated installation scripts were modified using the Janitor
path variables.

� A tarball was prepared containing a directory structure as illustrated in Figure 4.2. The data directory
was empty, since the automatic installation script downloads the software from a remote server.

� An entry was added to the Catalog file.

What sets High Energy Physics software apart is it’s sheer size. The package in question takes up more
than 5 GB. This was a test illustrating the feasibility of using dynamic REs in High Energy Physics. The
application of the dynamic RE for ATLAS needs to wait for the planned web service extension of the Catalog.
With such a service, e.g. a software manager of a big experiment will be able to deploy software packages
on production sites simply by creating a tarball and adding an entry to the Catalog.

19

http://guts.uio.no/atlas/12.0.6/


4 Maintenance

20



5 Technical Motivation and Concepts

The current implementation, using the rather advanced concepts of the semantic web, may seem unexpected.
They were chosen since they are expected to scale with all the extra demands forseen for the Janitor.

5.1 Implementation

5.1.1 Choice of Perl

The main language for the implementation of the functionality of the dRTE’s functionality is Perl. And it is
solely required (exceptions are the integration with the Grid Manager and the Web server) for the Janitor.
The language was perceived a side-issue, the complexity of the data expected was of major concern.

5.1.2 Modular structure

In the pre-web-service implementation the Catalog remains a static web page. The Perl code is split into
multiple modules as depicted in Figure ??. The modules can be separated into two functional groups. One
addresses the retrieval of information from the Catalog’s RDF file in the left major branch of the figure. The
other addresses the process of fetching and installing the packages.

21



5 Technical Motivation and Concepts

F
ig

u
re

5
.1

:
M

o
d
u
le

s
o
f

th
e

J
a
n
it

o
r

a
n
d

th
e
ir

d
e
p

e
n
d
e
n
c
ie

s

22



5.2 Concepts

In order to get a more detailed view on the full functionality of the envisioned system it is suggested to
consult the Design Document∗.

5.2 Concepts

In the following, some paragraphs fail render it difficult to clearly distinguish between conceptional truths
and the state of the current implementation. Please read carefully.

5.2.1 States of runtime environments

A major motivation for the managed, manual initiation of dynamic RE installation is the subsequent manual
verification of the installed packages – prior to their use in production. It would be nice to see the Janitor
and/or the Catalog prepare for reviews by selected users. This has not yet been implemented.

With an automation of the installation, the verification of that process shall be performed externally to that
process. At this time, only the automation of the installation has been implemented. To reflect the progress
the external verification has made, REs are said to be in states. The current implementation lists installable
REs aside the installed REs in the grid information system, in order to stimulate grid clients to submit
packages. The here described states will be represented to the clients in upcoming developments.

These states are specific for every compute element (CE) and communicated between the Janitor and the
Execution Service. Table 5.1 shows all possible states, while Figure 5.5 displays the transitions between the
states that a Runtime Environment may be in during its life time at a particular CE. ?at a particular CE?

State Description

UNAVAILABLE The RE is not available for the BaseSystem (see ??) the site uses.

INSTALLABLE The RE is available for the BaseSystem the site uses and it will be automatically
installed once a job requests it.

INSTALLING/a A job requested the RE and it is currently being installed

INSTALLING/m The RE-adminstrator requested the installation of the RE. Its currently being
installed.

FAILED The installation process failed.

INSTALLED/a The RE is installed dynamically.

INSTALLED/m The RE ist installed manually by the RE-administrator

BROKEN/m The RE is installed but failed tests of the RE-administrator

VALIDATED/m The RE is installed and successfully passed the tests of the RE-administrator

REMOVAL PENDING The RE is still installed but will be removed as soon as possible. It is not
available to new jobs.

REMOVING The RE is currently being removed.

INSTALLED/s The RE was installed in the traditional way by the site administrator.

BROKEN/s The RE was installed in the traditional way and failed validation by the RE-
administrator,

VALIDATED/s The RE was installed in the traditional way and was successfully verified.

Table 5.1: States a Runtime Environment can possibly be in.

The manually induced transitions are marked in red, he automated transitions in black. A transition between
states can be induced automatically (i. e. by the advent of a job requesting a particular dynamic RE) or
manually by the site’s supervisor or an individual with respective rights to use the Janitor’s web service.

∗http://www.knowarc.eu/documents/Knowarc D1.1-1 07.pdf

23

http://www.knowarc.eu/documents/Knowarc_D1.1-1_07.pdf


5 Technical Motivation and Concepts

Figure 5.2: Relationships between the possible states of Runtime Environments. Red arcs represent
human interaction. The distinction between /a, /m and /s states does not need to be visible for all
clients.

5.2.2 Subset of that functionality as implemented today

Upon presentation of a the package name to a Catalog, from which details about the package are retrieved,
a CE may classify a package to be INSTALLABLE if all the dependencies are installable or already INSTALLED.
The installation can be performed manually (INSTALLING/m) or in an automated fashion (. . . /a). Should
the installation process return an error, then the installation has FAILED. Once the installation succeeded,
the installed package is validated for its correctness. Should that process fail, then the package’s state it is
said to be BROKEN.

Automatically installed packages can be removed by the automatism. A manually installed package or one
that has failed to be installed, can only be removed upon manual induction. The . . . /s states represent those
Runtime Environments that are installed in the original manual way of RE installation in ARC 0.6.

5.3 Job states

The Janitor manages the states that the runtime environments at a particular compute element are in.
However, it is also most important for the Janitor to be aware of the jobs that depend on the installtion of
a RE. REs still in use should not be removed until the respective job has completed its computations. The
installation or removal of REs by the Janitor is perceived as a mere consequene of jobs demanding a RE or
not, thus, the communcation between the job-manager AREX and the Janitor will be performed on that
’job level’.

The Janitor has two states for jobs: PREPARED and INITIALIZED. After a job has been succesfully registered
in the Janitor, its state will be set to PREPARED. Invalid jobs are not cached. After the Janitor is requested to
deploy the runtime environment, the state of the job will change to INITIALIZED. If an unforeseen exception
occures during that process, the Janitor will drop the job from its database and set the affected runtime
environments to the state FAILED.

24



5.4 Integration with AREX

5.4 Integration with AREX

The integration into AREX is not completed yet!
Thus, there will be bigger changes here in this section. . .

Undefined

Accept

Preparing

Submitting

INLRMS

Finishing

Finished

Check if RE available

Invoke installation of RE

Wait until RE installed

Remove installed RE

Figure 5.3:

Grid-Manager
Janitor

Info-System

Uploader

Downloader

register 1999 APPS/BIO/SEQ

deploy 1999

remove 1999

queries catalog via:
HostInfoJanitor.pm

info 1999

2

13
4

6

(1) The RuntimeEnvironment.pl queries the catalog very fast, such that I assume a 
      fork or a cache is currently not needed.
(2) In order to enable the Grid-Manager to invoke Janitor, a wrapper rJanitor.c has
      already been written by Daniel. This wrapper gives Janitor the necessary rights.
(3) ...
(4) The function "check" was ment to return the information about a runtime 
      environment. It may be possible to merge it with the deploy function, 
      if desired. (The Janitor source code will remain the same, only the interface will 
      be changed.)
(5) The information about the runtime environments is passed to the backend
      script. (It is not specifed yet how this has to be done)
       o Installation directories
       o Script to set environment variables
(6) Once the grid job has been finished, the token on the runtime environment will
      be removed. (If no tokens left, the environment may be deinstalled)

o ARC source code can not be compile on debian for six days now
   => Unable to examine possible ways of Janitor integration - 
         I will start to track the error on my own now.
o The folder /grid/runtime/config/ contains subfolders in which scripts are provided.
   These scripts are able to check, if a runtime environment is available or not.
   When talking about symbolic links, I assumed that this folder is the one, in which 
   they shall be created into. Thus for me this makes no sense anymore, I am not able
   to guess which folder you intended.
o GLUE2 specification: Balazs like to have an interface for Janitor. This task is 
   put on the agenda. It is still unclear how the interaction with that interface shall be 
   realised. Janitor can only access data concerning the class ApplicationEnvironment.
   Shall a XML snippet be returned?

Can you once more explain me the information flow between the Downloader and
the Backend Script, such that I am able to do further preparations?
o How shall "check" provide the desired information?
o Where shall I create the  desired symbolic links?

As it seems, my time in Lübeck is very limited. I will try to proceed with Janitor as fast
as possible.

Figure 5.4:

5.5 WebService Interface

Default port number: 55555
Client command equal, except assignment of HED.xml
(from /arc1/trunk:12561)

Proposal for SOAP messages:
namespace: dynamicruntime or janitor
Create WSDL files for that Permission concepts: Depending on certificates. Certain certificates may sweep.
Defined in service HED.xml. Evaluated in:??

Listing 5.1: Example arc.conf settings for janitor.

1 <Request action="SEARCH|SWEEP|LIST|DEPLOY|REMOVE|CHECK|REGISTER">
2 <Initiator jobid="1234"/> <!-- Needed for: CHECK|REGISTER|DEPLOY|REMOVE -->
3 <!-- May contain no jobID in this case a new one will
4 be created and returned via the response message -->
5
6 <Runtimeenvironment type="dynamic"> <!-- Needed for: SEARCH|REGISTER -->
7 <Package name="APPS/BIO/WEKA -3.4.10"/>
8 <Package name="APPS/BIO/WEKA -3.4.11"/>
9 </Runtimeenvironment >

10 <!-- SWEEP and LIST only works , if the TLS - adminstrator
identity

25



5 Technical Motivation and Concepts

Child
mit Perl Interpreter

Web Service

TaskQueue

TaskSet

PerlProcessor

Thread 1

Thread 2

Thread 3

...

C++ Child
mit Perl Interpreter

C++ Child
mit Perl Interpreter

C++ Child
mit Perl Interpreter

Janitor

Janitor

Janitor

Kommunikation über Pipes

Kommunikation über Eval-Aufruf
Parameteranzahl beliebig
Ein Rückgabewert

Task Task Objekt
hält die incoming
und outgoing
Messages als Pointer
zur direkten Manipulation
im PerlProcessor

Figure 5.5: To be translated and beautificated. SVG file is missing!

11 (which is assigned in the arched configuration file)
is

12 to be found by the SecHandler . Both need neither
initiator

13 nor runtimeenvironment elements -->
14 </Request >

Listing 5.2: Example arc.conf settings for janitor.

1 <response action="SEARCH|SWEEP|LIST|DEPLOY|REMOVE|CHECK|REGISTER">
2 <initiator jobid="1234"/> <!-- Needed for REMOVE|REGISTER|DEPLOY|CHECK -->
3 <result code="0" message="Sucessfully initailized job."> <!-- -->
4 <jobs> <!--LIST|CHECK -->
5 <job jobid="1234">
6 <created >1234567890 </created > <!-- in unix time -->
7 <age>0</age> <!-- in seconds -->
8 <runtimeenvironment >
9 <package >APPS/BIO/WEKA -3.4.10 </package >

10 </runtimeenvironment >
11 <state>INITIALIZED </state>
12 </job>
13 <job jobid="4321">
14 <created >1234567891 </created >
15 <age>0</age>
16 <package >APPS/BIO/WEKA -3.4.10 </package >
17 <state>INITIALIZED </state>
18 <runtimeenvironmentkey >APPS_BIO_WEKA_3_4_10 -835614 b62c98c4eb6cb03d74d3161b5d </

runtimeenvironmentkey > <!-- at least CHECK -->
19 <uses>/nfshome/knowarc/dredesign/src/services/dRE3/perl/spool/runtime/

jre__57T1ke1UVz/runtime </uses> <!-- at least CHECK -->
20 <uses>/nfshome/knowarc/dredesign/src/services/dRE3/perl/spool/runtime/

weka_wHfyytarlE/runtime </uses> <!-- at least CHECK -->
21 </job>
22 </jobs>
23
24 <runtimeenvironment type="local"> <!-- Needed for: LIST|SEARCH -->
25 <package name="APPS/BIO/MUSTANG -3.0-1"/>
26 <package name="APPS/BIO/EXONERATE -2.1.0 -1"/>
27 </runtimeenvironment >
28
29 <runtimeenvironment type="dynamic"> <!-- Needed for: LIST -->
30 <package name="APPS/BIO/WEKA -3.4.11">
31 <state>INSTALLED_A </state>
32 <lastused >1234567890 </lastused >
33 <jobid>1234</jobid>
34 </package >
35 <package name="APPS/BIO/WEKA -3.4.10">
36 <state>INSTALLED_A </state>
37 <lastused >1234567890 </lastused >
38 <jobid>1234</jobid>
39 <jobid>4321</jobid>
40 </package >
41 </runtimeenvironment >
42
43 <runtimeenvironment type="installable"> <!-- Needed for: LIST -->
44 <package name="APPS/GRAPH/POVRAY -3.6">
45 <description >The Persistence of Vision Raytracer </description >
46 <lastupdate >1234567890 </lastupdate >
47 </package >
48 <package name="APPS/BIO/WEKA -3.4.8A">

26



5.5 WebService Interface

49 <description >WEKA Machine Learning Software </description >
50 <lastupdate >1234567890 </lastupdate >
51 </package >
52 </runtimeenvironment >
53
54 </response >

5.5.1 What happens during installation

Register

1. Look up Catalog and find corresponding runtime environments.

2. Check if dependcies are available (installed or installable)

3. Store job in registrationdir

Deploy

1. Load job out of registrationdir

2. Look up Catalog and find corresponding runtime environments.

3. Check if dependcies are available (installed or installable)

4. Download RTEs into the downloaddir

5. [ to be continued or skipped ]

5.5.2 Security Consideration

Security is a major concern for grid systems. Any additional feature and especially an automatic software
installation inheritently introduces security threats. This section addresses those and describes the available
solutions to limit security risks.

In the current installation, every user authorised to execute a job is also authorised to install a REs. Restric-
tions are only imposed on the set of dynamic REs that are available for installation. Restrictions are imposed
by the site admininistrators on the descriptions that are given by the Catalog that is offering the package.
These descriptions may explicitly mention dynamic REs’ names, e.g. a regular expression on these, or refer
to tags of packages that categorise these. However, the core of these controls lies with the maintainers of
the Catalog, who needs to be trusted.

All dynamic REs are installed in separate directories. The provisioning of disk space is the duty of the site
administrator. In the current implementation, the installation is completely transparent to the user:

� Dynamic REs are not distinguished between installed and installable in the information system.

� No status information is given at the time a dynamic RE is installed.

Malevolent regular users with respective training in using system exploits to gain root access are likely to
find security holes by regularly submitted scripts. The authentication and authentification of users, together
with respective logging, is the major defense against such attacks. What is consequently left to be protected
against are unwanted side-effects by the installation of software.

The worst case scenario would be the installation of a RE that overwrites system files. With the current
implementation, which is based solely on tar files, this is barely possible, unless such is performed by the
install scripts that accompany the tar files. However, hereto the installation would have to be performed by
a user with system priviledges, for which there is no technical requirement.

The installation of packages from the Debian distribution (or other packages of mainstream Linux distribu-
tions) is seeked to reduce the complexity and burden in the maintenance for dynamic REs. In the current
implementation, Debian packages may be installed only by their transformation into tar files. With the
advent of the interface for the virtualisation of the grid infrastructure, it is anticipated to work with native
packages of the Debian Linux distribution. The reuse of packages that passed many eyeballs - as it is the
case with packages from major Linux distribution - security is further increased or becomes as high as with
the operating system underneath virtual clients.

27



5 Technical Motivation and Concepts

Summarising, there is general concern about the security of grid computing. Dynamic REs introduce new
dangers since a manual control at the grid site is substituted by a remote process that is out the direct
supervision of a local site administrator. The signing of packages by known and directly or indirectly trusted
developers is a good indicator that no malevolent individuals have tampered with the binary. The site
administrators can limit the sources of packages and specify packages that are eligible or excluded from
installations.

28



6 Outlook

6.1 Representation of dynamic RTEs in the information model

Dynamic RTEs require an extended representation in the information model. The Application Software
description should be able to distinguish installed RTEs from installable RTEs, potentially offer description
of extended RTE state-like information. This work is planned to be carried out as part of the Glue-2.0 effort
of OGF∗.

6.2 Integration with Workflow Management

Future development of ARC aims at integrating grid computing with workflow tools for the web services
that have a growing user base in bioinformatics. The challenge is to prepare RTEs for programs or databases
and to offer such concisely to users of the workflow environments. In the bioinformatics community, such
are today offered as web services. This anticipated development instead fosters the dynamic installation
on the grid whenever appropriate to allow for special computational demands in high-throughput analyses.
Conversely, because of the increased complexity of workflows with respect to the already today not manually
manageable number of RTEs, without an automatism for the automated installation of software packages
on the grid, the use of workflows in grid computing seems mute.

6.3 Implementation of a Catalog service

A Catalog service is planed to be implemented on top of the ARC HED component. This service will
render the currently used locally accessible RDF file externally accessible. Selected users are then allowed
to remotely add/edit/remove REs to/from to it. The Janitor will access the content of the Catalog through
a well-defined Web Service interface.

6.4 Integration with the Virtualization work

The RDF schema nicely prepares for the upcoming virtualisation of worker nodes. Hereto, the BaseSystem
indicates a virtual image to which further packages, the dynamic REs, would then be added. How exactly
the dynamics are integrated will depend on how dynamic the virtualisation of the nodes is. In the simplest
scenario, a worker node’s CPU will only be occupied by a single virtual machine and that will not be changed.
In this case, there is no difference to the setup of the Janitor with today’s static setups.

However, if the BaseSystems can be substituted dynamically, then a RE can possibly be offered via multiple
BaseSystems. The RDF Schema describes BaseSystems as separate instances and as such differs from the
current RE registry. Heuristics that prefer one BaseSystem for another can make direct use of the data that
is presented in the schema. The integration of packages from Linux distributions in the description of REs is
essential to have a means to decide for the equivalence of manual additions and the functionality that comes
with BaseSystem.

∗OGF GLUE: https://forge.gridforum.org/sf/projects/glue-wg

29



6 Outlook

30



7 Appendix

7.1 Useful tutorials and documentations

� Another document describing Janitor.
D2.5-1 RDF Based Semantic Runtime Environment (RE) Description And Dynamic RE Management
Framework Including Creating Proof Of Concept Bioinformatics REs, Daniel Bayer and Steffen Mller
and Frederik Orellana[?]

31


