
An Easy Setup for Parallel Medical Image
Processing: Using Taverna and ARC

Xin ZHOU a,1, Hajo KRABBENHÖFT b, Marko NIINIMÄKI a,
Adrien DEPEURSINGE a, Ste�en MÖLLER b and Henning MÜLLER a,c

aMedical Informatics, Geneva University Hospitals and University of Geneva,
Switzerland

b Institute for Neuro� and Bioinformatics, University of Lübeck, Germany
cBusiness Information Systems, University of Applied Sciences Western

Switzerland, Sierre, Switzerland

Abstract. Medical image processing is known as a computationally ex-
pensive and data intensive domain. It is thus well�suited for Grid com-
puting. However, Grid computing usually requires the applications to be
designed for parallel processing, which is a challenge for medical imaging
researchers in hospitals that are most often not used to this. Making par-
allel programming methods easier to apply can promote Grid technolo-
gies in clinical environments. Readily available, functional tools with an
intuitive interface are required to really promote health grids. Moreover,
the tools need to be well integrated with the Grid infrastructure.

To facilitate the adoption of Grids in the Geneva University Hospitals
we have set up a develop environment based on the Taverna work�ow
engine. Its usage with a medical imaging application on the hospital's
Grid cluster is presented in this paper.
Keywords. Grid networks, Taverna, medical imaging research, image
processing, ARC

1. Introduction

Images are produced in ever�increasing qualities in hospitals. Their automatic
analysis and processing is not possible with currently computing infrastructures,
particularly as few hospitals possess a research computing infrastructure. Paral-
lelization of image processing can help to use massively parallel infrastructures
such as Grid networks [1], that can consist of a large number of simple computer
that often exist in abundance in hospitals. However, parallel programming envi-
ronments are not trivial for the medical imaging community that generally fo-
cuses on the application itself. A parallel execution infrastructure has to be set
up and maintained and the programmers need to have experience in developing
parallel applications, which is only rarely the case.

1Corresponding Author: Medical Informatics, Geneva University Hospitals and University of
Geneva, 24 Rue Micheli�du�Crest, 1211 Geneva 14, Switzerland, xin.zhou@sim.hcuge.ch



The infrastructure questions have been addresses by Grid and batch process-
ing environments (also known as cluster computing systems or Local Resource
Management Systems, LRMS), such as BOINC [2] (Berkeley Open Infrastructure
for Network Computing), Condor [3], and others. Remote resources can be allo-
cated through Grid middlewares, for example ARC2 (Advanced Resource Con-
nector [4]) and gLite [5]. Previous work of the University Hospitals of Geneva
includes a simple�to�install local hospital grid based on the Condor LRMS and
the ARC middleware inside the Geneva University Hospitals. The idea was to use
the computing resources of desktop PCs inside the hospitals using virtualization
technologies [6] to clearly separate the computation part of desktops and the part
potentially treating patient data. Another approach described in [7] is under de-
velopment containing a pull�based distributed Grid system that does not require
the working nodes to have own IP (Internet Protocol) addresses.

This paper focuses on more intuitive ways for creating parallel medical imag-
ing applications to reduce the di�culties often due to the lack of parallel pro-
gramming expertise. Medical imaging research could pro�t from a layer which
masking the di�culties of parallelization. A more classical approach is to use well
known libraries, such as MPI (Message Passing Interface)3, PVM (Parallel Vir-
tual Machine)4 or openMP (Open Multi�Processing)5. Early work of the imaging
community has adapted these libraries to perform a low�level parallelization for
image processing, for example described in [8]. Despite some e�orts these solutions
were not widely spread in the imaging community for two reasons: (1) using these
approaches was still time�consuming and error prone for image processing devel-
opers arguing that a parallelization tool for the image processing community was
acceptable only if it hides all parallelism from the application programmer and
suggesting a fully sequential programming model [9]; (2) many proposed solutions
were bound to either speci�c applications or very speci�c infrastructures.

Using work�ow engines such as Taverna for scienti�c parallel programming
has become a new trend in several domains [10]. For medical imaging develop-
ment, important properties for develop environments are listed in [11]. Several
work�ow management engines (also called component�based application builders)
are compared in this text. Currently, the most widespread work�ow engine in the
bio�informatics community is probably Taverna6 [12].

Several bene�ts of using Taverna can be stated directly:
• It provides a graphical user interface presenting an intuitive overview of
parallel task execution.

• The work�ow elements are designed independently of applications and are
adaptable for di�erent high performance computing (HPC) infrastructures,
increasing the potential reusablility of work�ows.

• By decomposing the task into work�ow elements, both data�decomposition
and task�decomposition are possible. This decomposition gives a clear sep-
aration of a "sequential" mode and a "parallel" mode. Every work�ow ele-

2http://www.knowarc.eu/
3http://www-unix.mcs.anl.gov/mpi/
4http://www.csm.ornl.gov/pvm/
5http://openmp.org/
6http://taverna.sourceforge.net/



ment is developed as a sequential program and tested in a sequential envi-
ronment. The parallelization parameters are only con�gured in a work�ow
map.

• A well built work�ow can be imported as a work�ow element for another
work�ow, which allows multi�level work�ow composition to generate hier-
archical programs. This simpli�es both program design and development.

• Ready�to�use work�ow maps are shared by a large number of Taverna
users on the web side MyExperiment.org 7.

Using Taverna for biomedical image processing was already proposed in [13]. In
that article, the author proposed to combine Taverna with the EGEE8 (Enabling
Grids in E-Science in Europe) remote grid resources. However, medical images
are often subject to legal question preventing them from being sent outside of the
hospital for computation. Our application development uses a recent extension
(plug�in) [14] of Taverna that allows Taverna work�ow to be executed on ARC
clusters. This enables us to execute the work�ow in the hospital's local ARC
Grid as described in [6]. Moreover, since Taverna runs on Windows, the work�ow
software development can be performed completely on Windows even if all the
Grid software is Unix�based. This has undeniable advantages as the entire hospital
infrastructure is windows�based and thus most researchers equally use windows�
based developments.

The rest of the paper is organized as follows: In Section 2 we describe the
methods, thus the basic elements and data we use in this paper. Section 3 presents
the results, and thus the main novel parts of our approach. We �nalize the article
with a discussion and conclusions in Section 5.

2. Methods

In this section the setup for the development is explained. Computing resources
and develop environments are presented in details.

2.1. Computing resources available in the Geneva University Hospitals

The Geneva University Hospital like many medical institutions does not have
a dedicated research infrastructure. On the other hand, a very large number of
desktop computers is available that is renewed completely every four to �ve years.
Currently, around 6000 computers are available from a variety of generations,
with the slowest one currently containing 1 GB of main memory and a Pentium
IV with 2.8 GHz. By mid�2009 a majority of 5'000 PCs will have 2 GB of main
memory and dual core CPUs, where virtualisation is foreseen.

For testing purposes 20 old PCs were made available for us to create an inner�
hospital Grid (768M RAM and 2.8GHz CPU) A very compact Linux operating
system (OS) is installed on these PCs in a Virtual Machine (VMWare) to use
them as computing nodes. 50% of CPU time, and 350MB of memory are allocated

7http://www.myexperiment.org/
8http://www.eu-egee.org



for the for the virtual machine. The mini-cluster runs Condor on the nodes and
ARC as LRMS. 5 other PCs of di�ernt generations were also installed in a similar
setup to test the in�uence that such a virtual machine can have on a desktop user
when frequently being used for computing image processing jobs.

2.2. Traditional develop environment of imaging researchers

Imaging researchers generally use workstations with at least 1GB memory. The
most frequently used programming language is Java, for its platform independence
and large number of already available tools. Parallel programming was only rarely
used, as most developers do not have much knowledge of parallel environments
and using Grid systems is not always an easy task.

2.3. Parallel development environment

The setup for parallel application development proposed in this paper is composed
of the following parts:

• the Taverna work�ow engine;
• a plug�in provided by the KnowARC project that can be installed using the
Taverna plug�in manager and that connects taverna and an ARC resource;

• an environment adapted to the ARC�based Grid of virtual machines men-
tioned in Section 2.1 to test each component before putting it into the
Taverna work�ow (using thus the virtual machines with 350 MB of RAM
each);

• a web server to upload and share built components and work�ow maps.

3. Results

This section presents the main results of this article that are containing a variety
of di�erent parts.

3.1. Design approach for our Taverna�based parallelization of medical imaging

The fundamental concepts of Taverna�based application development is decom-
position of software systems into components. Two types of decomposition need
to be separated: component decomposition (also called task decomposition, con-
cerning the code parts) and data decomposition.

Component decomposition decomposes the application into elementary units,
which can be seen as a black box between de�ned input data and output data.
The way to decompose the application often follows these steps:

• decomposition of the application into conceptually independent compo-
nents for easier reusability of these building blocks;

• decomposition of large but independent components into smaller compo-
nents, wherever possible, creating check pointing data that can be used if
the task needs to be restarted;



• decomposition of each component by separating the input and output parts
to facilitate the data structure modi�cation;

• �nally, a decomposition of each obtained component into objects with a log
strategy to enable debugging and error tracking procedures.

Data decomposition is easy to understand and is related to the decomposed com-
ponents. A component executed with a part of the data forms a task. Data de-
composition has the following goals :

• tailoring of the intermediary data storage and transition for each task;
• tailoring of the memory usage for each task;
• tailoring of the execution time for each task.

In order to avoid bad parameter selection, the runtime environment (in our case
the virtual machine with 350M RAM) is simulated in develop environment (in
our case Eclipse). Thus "tailoring" step is performed under develop environment.

3.2. An example parallelization using Taverna and ARC

To try our approach with a concrete application, a content�based image retrieval
(CBIR) framework [?], named Parallelized Medical Image Retrieval (ParaMedIR)
is developed based on this setup. The data� and computationally most intensive
part of CBIR is to index databases of images using visual features. From each
image, key visual information called features are extracted. This information can
be simple color or texture features. In the approach newly developed for this
paper features are divided into groups called visual key words []. First of all, image
regions are determined (through a �xed grid, randomly or through interest point
detectors), and in neighborhoods of these regions visual features are extracted.
The extracted visual features are then clustered into a limited number of similar
visual key words. Statistical information on the appearance of those visual key
words in images (normally in the form of histograms) is subsequently analyzed for
each image to measure the similarity pairs of images. The entire process can be
called indexing in this context. It can conceptually be decomposed into three main
components: extraction of features from the images, clustering of the features
into visual key words, and generation of the histograms that are then stored in a
database or other indexing structure.

The initial work�ow decomposition for this process is shown in Figure 1. Each
conceptually separated component can still be computationally expensive and
might require further decomposition. The second decomposition step speci�es the
check points for large components in the process. In our application, the feature
clustering is a good example for such a large component. KMeans clustering is a
classical clustering algorithm that we use in this context, which is known to scale
badly for very large data sets. A staged parallel execution model [15] was selected
to perform the clustering in two steps. Intermediary results such as the collection
of features, the cluster centers, and the feature�cluster maps need to be stored.
This further decomposition can be seen in Figure 2. Unifying the Input/Output
(IO) modules and standardizing the data structures are important requirements
for the development as well. A typical design is to generate an IO package of
classes for all components. The IO package has to take into account the data



Workflow Outputs

Workflow Inputs

feature_extraction

feature_clustering

histogram_generation_per_image

index file for all images

Images

Figure 1. Conceptual decomposition of a medical imaging work�ow for feature extraction into
basic components.

Workflow Outputs

Workflow Inputs

merge_and_kmeans_step2

download_visual_key_wordvisual_key_word_listl

merge_and_kmeans_step1

kmeans_jar feature_list result_folder

Figure 2. A second decomposition step further details the components of the processing chain.

parallelization requirements. Data separation should be parameterizable meaning
that various �le formats should be checked and adapted. Another useful package
is the group of classes for log �le creation. Some general information, such as time
measurement, completeness of calculation percent, error messages are often useful
to include. In order to generate IO and log �le packages, IO operation and log
creation need to be isolated from the original components in the work�ow maps.
Following this approach, further components are added. Figure 3 is still based on
the feature clustering components but adds further components.



Workflow Outputs

Workflow Inputs

merge_and_kmeans_step2

download_visual_key_wordlog_to_txt visual_key_word_listl

merge_and_kmeans_step1

download_log_files

data_reading

data_separation

kmeans_jarfeature_list result_folderparameters

Figure 3. The �nal decomposition of the work�ow including log �les and debugging information.

3.3. Execution of the developed work�ow with Taverna

The execution of the application is started via Taverna and can use a variety of
available resources know to Taverna. After work�ow design, the researchers need
to develop sequential executables for each work�ow element and link them to the
�nished work�ow map. Most often such components already exist anyways, as
many research tools are simple scripts or components that are combined. Then,
the parallel execution needs to be con�gured for each work�ow element. The
Taverna user interface is shown in Figure 4. The upper left hand side (Part 1)
contains the list of available components of the work�ow. The lower left hand
side (Part 2) is dedicated to the parallel execution con�guration. The right hand
side (Part 3), �nally, is the work�ow window itself. Inside this window the �nal
work�ow map is shown.

Table 1 presents the parallel execution time tp analysis. To compare with
sequential execution time ts, a metric called speed�up factor f is used. This metric
shows how much the execution was accelerated:

f = ts/tp (1)

It should be mentioned that the KMeans clustering algorithm used is not the
same for the sequential and for the parallel execution. Sequential execution takes
all the features into account whereas the staged parallel mode divides the features
into small groups, and performs the clustering hierarchically. The execution time
of clustering is highly related to the quantity of data, which explains the high
value of f obtained. Concerning the histogram generation, as it requires frequent
reading and writing operations, it bene�ts less from the parallel execution.



Figure 4. The user interface of Taverna contains three distinctive parts and allows for an easy
con�guration of resources and work�ow for new applications

Table 1. Computation times on sever and on local ARC grid.

work�ow element Sequential execution ts Parallel execution tp Speed�up factor f

feature extraction 291 mins 45 mins 6.5
KMeans clustering 480 mins 30 mins 16 (di�erent algorithm)
histogram generation 61 mins 27 mins 2.2

4. Conclusions and future work

Hospitals are producers of extremely large amounts of digital information, includ-
ing images. Computational solutions such as Grids are necessary if these data
are attempted to be treated or analyzed to improve the care processes and pro-



vide diagnosis aid. Currently the clear tendency for high performance comput-
ing is towards parallel processing using standard components. The availability of
multi�core CPUs is also accelerating this process. Most researchers in hospitals
have only little experience with parallel development environments and thus only
rarely pro�t from the potentially large computing power that Grid networks can
o�er.

In the University Hospitals of Geneva, a small test Grid using ARC and Con-
dor was implemented and using this test bed several applications were griddi�ed.
It became quickly apparent that griddi�cation is non�trivial for researchers who
usually only have little time and avoid the overhead to learn new technologies.
Taverna�based griddi�cation was signi�cantly easier and besides the application
described in this paper, several other applications were adapted for Grid use,
usually taking have a day for all steps. This encouraged other people to use the
small test Grid in the hospitals and could be a general model for the adoption of
Grid technologies in environments such as a hospital.

Several further developments are still foreseen in this context, particularly
when connection such applications with other components of the web�services�
based patient record.

Acknowledgements

This work was partially supported by the EU 6th Framework Program in the
context of the KnowARC project (IST 032691) and by the Swiss National Sci-
ence Foundation (FNS) in the context of the Talisman�2 project (project 200020
118638).

References

[1] Müller, H., Pitkanen, M., Zhou, X., Depeursinge, A., Iavindrasana, J., Geissbuhler, A.:
Knowarc: Enabling Grid networks for the biomedical research community. In: Healthgrid
2007, Geneva, Switzerland (2007) 261�268

[2] Anderson, D.P.: BOINC: A System for Public-Resource Computing and Storage. In: Fifth
IEEE/ACM International Workshop on Grid Computing (GRID'04). (2004)

[3] Litzkov, M., Livny, M., Mutka, M.: Condor � a hunter of idle workstations. In: Proceed-
ings of the 8th international conference on distributed computing, San Jose, California,
USA (1988) 104�111

[4] Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Lindemann, J., Livenson, I., Lang-
gaard Nielsen, J., Niinimäki, M., Smirnova, O., Wäänänen, A.: Advanced resource connec-
tor middleware for lightweight computational Grids. Future Generation computer systems
23 (2007) 219�240

[5] Laure, E., Fisher, S.M., Frohner, A., Grandi, C., Kunszt, P.Z., Krenek, A., Mulmo, O.,
Pacini, F., Prelz, F., White, J., Barroso, M., Buncic, P., Hemmer, F., Di Meglio, A.,
Edlund, A.: Programming the grid using glite. COMPUTATIONAL METHODS IN
SCIENCE AND TECHNOLOGY 12 (2006) 33�45

[6] Niinimäki, M., Zhou, X., Depeursinge, A., Geissbuhler, A., Müller, H.: Building a com-
munity grid for medical image analysis inside a hospital, a case study. In Olabarriaga,
S.D., Lingrand, D., Montagnat, J., eds.: Medical imaging on grids: achievements and per-
spectives (Grid Workshop at MICCAI 2008), New York, USA (2008) 3�12



[7] Orellana, F., Niinimaki, M., Zhou, X., Rosendahl, P., Müller, H., Waananen, A.: Im-
age analysis on gridfactory desktop grid. In: 4th International Conference on Grid and
Pervasive Computing (GPC'09), Geneva, Switzerland (2009 � to appear)

[8] Squyres, J.M., Lumsdaine, A., Stevenson, R.L.: A toolkit for parallel image processing.
In: Proceedings of the SPIE Conference on Parallel and Distributed Methods for Image
processing, San Diego, CA (1998) 69�80

[9] Seinstra, F.J., Koelma, D.: User transparency: a fully sequential programming model
for e�cient data parallel image processing: Research articles. Concurr. Comput. : Pract.
Exper. 16 (2004) 611�644

[10] Zhao, Y., Raicu, I., Foster, I.: Scienti�c work�ow systems for 21st century, new bottle
or new wine? In: IEEE International Conference on Services Computing (SCC) 2008,
Honolulu, Hawaii (2008) 467�471

[11] Olabarriaga, S.D., Snel, J.G., Botha, C.P., Belleman, R.G.: Integrated support for medical
image analysis methods: from development to clinical application. IEEE Trans Inf Technol
Biomed 11 (2007) 47�57 (Special Issue on IMAGE MANAGEMENT IN HEALTHCARE
ENTREPRISES).

[12] Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,
K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment
of bioinformatics work�ows. Bioinformatics 20 (2004) 3045�3054

[13] Glatard, T., Montagnat, J., Pennec, X.: Grid�enabled work�ows for data intensive medical
applications. In: 18th IEEE Symposium on Computer�Based Medical Systems, Dublin,
Ireland (2005) 537�542

[14] Krabbenhöft, H.N.N., Möller, S., Bayer, D.: Integrating ARC Grid middleware with tav-
erna work�ows. Bioinformatics 24 (2008) 1221�1222

[15] Kraj, P., Sharma, A., Garge, N., Podolsky, R., McIndoe, R.: Parakmeans: Implementation
of a parallelized k-means algorithm suitable for general laboratory use. BMC Bioinfor-
matics 9 (2008) 200


