-

/7 " NORDUGRID

NORDUGRID-TECH-22
18/8/2008

THE GLITE GATEWAY PLUGINS OF ARCLIB AND RELATED COMMAND
LINE TOOLS

Technical description and user manual

Mattias Ellert!
Ivan Marton?
Péter Stefan®

Imattias.ellert@fysast.uu.se
2martoni@niif.hu
3stefan@niif.hu

Contents

1 Introduction 2
2 Overview 2
2.1 The supported gLite CE interface: CREAM2 3
3 External dependencies and installation instruction 3
4 ARCLIB gLite gateway plugins 3
4.1 Wrapper classes e 4
4.2 Job description translators L L e 4
4.3 CREAMCIlient base class 0 i i e e e e 4
5 ARC command line tools for gLite CREAM2 CE 6
5.1 glitedelegate oL 6
5.2 glitesub L e e 7
5.3 glitestat L L e 8
5.4 glitekill L e e 8
5.5 gliteclean 9
5.6 gliteundelegate L 9
5.7 Skeleton of a temporary example glite client oL 9
6 Open issues 10
6.1 Current limitations L e e e e 10
6.2 Conceptual problems L e e e 10
A Installation from Debian binary packages 11

1 Introduction

The purpose of this document is to describe gLite [I] specific plugins of ARCLIB [2] and to present the related
command line utilities built on top of them. The gateway library together with these tools enables seemless
interoparability with glite computing elements (CE). It is possible, that relevant sections of this document
will be moved into the ARC1 user guide and into the ARCLIB technical documentation. Interoperability
with gLite storage elements (SE) is provided by another subset of ARC library. This data library provides
native interfaces to GridFTP [3] and SRM [4] which are the main bulding blocks of a gLite storage element.
Storage interopability is out of scope of this library.

2 Overview

Interoperability has been one of the most important goals in recent grid middleware development. This term
is often used in the sense of accessing resources operated by one kind of grid middleware (e.g. gLite) from a
user interface operated by another kind (e.g. ARC). There are two main ways to achieve this result:

e either to use a special infrastructure element, the gateway, which performs a full data structure and
protocol translation between the two interoperating grid middleware solutions,

e or to explicitly implement the interface of the other side in the client.

The latter solution has been chosen by ARC developers, the glLite gateway library module has been im-
plemented in the ARCLIB and the gateway functionality will be transparently offered via the usual ARC
command line tools.

An overview of the implemented soulution is presented in Figure 1. The gLite gateway functionality in-
tegrated into the ARCLIB and thus into the ARC client, allows the user to transparently access glite
computing resources via the usual ARC command line tools. The user will be able to express the job re-
quirements in the job description document using any of the xRSL [5], JDL or JSDL [6] languages. The
ARC client library will perform an automatic translation. The gLite modules perform authentication, cre-
dential delegation and job submission to a CREAM2 [7] CE. CREAM2 CE may perform the necessary input
file download from different storage elements. The library module gets job information through CREAM2
and sends management commands, like killing a job or undelegating credentials. Note that not all the
functionality described in the overview figure is implemented yet, for the current limitations see Section 6.1.

job
description

push the job and input files;
ARC delegate credentials
storage
download input files

. glite gateway
ARC pluging polljob status registers service
lient information
clien .
discover CREAM2-enabled gBIBtlel
ARC resources resources

gLite resources

Figure 1: This chart illustrates how the ARC1— gLite gateway library module based approach works.

2.1 The supported glLite CE interface: CREAM?2

The gLite computing element (CE) offers several interfaces. Some of them are only suitabe for the gLite
workload management system and were not meant to be used by 3rd party clients. Fortunately, gLite comes
with a Web Service based computing element interface, known as the CREAM CE [7]. The CREAM has
undergone several major revisions. The current CREAM version has recently entered the EGEE certification
process, nevertheless its full-scale deplomeyment on the EGEE worldwide grid has not taken place yet.
CREAM?2 is currently available on several preproduction and testing grid sites. KnowARC has chosen the
CREAM version 2 (CREAM2) as the target gLite computing element interface.

In particular, the gateway library was developed against version glite-ce-cream_R_1_8_3_0%.

CREAM2 was chosen for the following reasons:

¢ CREAM2 has a Web Service interface that fits the Web Service based ARC.

o CREAM2 enables direct access to the gLite computing element without the need of going through the
gLite workload management system.

e CREAM2 contains numerous improvements when compared to the earlier CREAM versions.
e Unlike other gLite CE interfaces it supports direct job status queries.

e It is an official interface to glite computing elements and as EGEE evolves it is expected that more
and more computing elements will be deployed with CREAM2 interface.

e CREAM2 offers a convenient way of handling input and output files through accessing the input and
output sandbox via GridFTP.

In the near future CREAM will offer yet another interface which will be based on the BES [§], JSDL and
GLUE [9] OGF standards. This CREAM BES interface will coexist with CREAM2 too.

3 External dependencies and installation instruction

The ARCLIB gLite plugins have only one dependency: GridFTP components of the Globus Toolkit [10]
are needed to enable data staging functionality to those CREAM2 computing elements which offer input
and output sandbox over a GridFTP enabled storage. Unfortunately, the gateway library only works to-
gether with a strongly patched Globus verion. The NorduGrid patched Globus can be dowloaded from the
NorduGrid download area®. Further information about the NorduGrid Globus patches can be read on the
NorduGrid page®. Tt is worth mentioning that the user would need a VOMS [I1] proxy certificate in order to
use command line tools against a CREAM2 service. This VOMS proxy can be generated by using standard
VOMS client tools. It is only the VOMS enabled proxy certificate that is needed here, apart from this no
VOMS components are needed.

The ARC—gLite gateway plugins library and the temporary command line utilities are incorporated into
ARC releases. The source code is available from the ARC1 SVN repository’ and binary packages are
provided in the NorduGrid download area. Build and installation instructions are given in the README
file distributed together with the software. A step-by-step guide for Debian binary installation can be found
in Appendix A Installation from Debian binary packages.

4 ARCLIB glLite gateway plugins

The ARCLIB gLite gateway plugins constist of the wrapper classes, the job description handling facility
and the glLite specific CREAMClient base class. The wrapper classes convey the function provided by the
CREAMClient to ARCLIB. The job description handling framework makes a general job request representation

4http://grid.pd.infn.it/cream/field.php?n=Main.ReleaseNotes
Shttp://download.nordugrid.org/software/globus/
Shttp://wiki.nordugrid.org/index.php/Globus_Libraries
"http://svn.nordugrid.org/repos/nordugrid/arcl/

http://grid.pd.infn.it/cream/field.php?n=Main.ReleaseNotes
http://download.nordugrid.org/software/globus/
http://wiki.nordugrid.org/index.php/Globus_Libraries
http://svn.nordugrid.org/repos/nordugrid/arc1/

available for the other classes. CREAMClient base class implements the interface towards CREAM2 computing
elements.

This client object has an easy-to-use and intuitive interface. It uses VOMS proxy certificates to build the
secure channel to the server and also to sign that of the server.

Different functions throw CRFEAMC ClientError exceptions that should be caught in the application.

The following sections present the set of functions provided by the library.

4.1 Wrapper classes

The gLite gateway library can be integrated into ARCLIB as a plugin. To expose the CREAM?2 functionality
into the generic ARCLIB target object functions, the following three wrapper classes have been implemented:
the JobController, the Submitter and the TargetRetriever.

The JobControllerCREAM wrapper class provides the basic functions related to job management, such as
getting job information or killing and cleaning the job on the remote CE.

The SubmitterCREAM instantiates the gLite client library and calls the CREAM?2-specific submitter function
in there.

Class TargetRetrieverCREAM performs a gLite BDII database query and extracts possible CREAM?2 target
objects.

Unfortunately, handling CREAM?2 target objects does not perfectly fit into the philosophy of ARCLIB. There
are several functions, such as proxy credential delegation or CREAM2-specific job information retrieval, that
behave differently on an ARC and on a CREAM2 target. The wrapper classes have to provide solutions for
these special cases.

4.2 Job description translators

When addressing interoperability it is of paramount importance to transparently address grid job descriptions
written in different job description languages by translating them automatically. In the gLite gateway library
code this functionality is implemented in class JobDescription. This is a generic class that takes a job
description as input in any supported format (currently xRSL, JDL, JSDL), converts and stores it in a
JSDL-like internal job description format. Then different operations, like getting the description in other
formats or getting job-related information, can be performed using the description-independent functions of
this class.

JobDescription has tree back-end classes, sometimes are referred to as back-end modules or translator
modules, corresponding to the three supported job description languages above. The back-end classes are
used for parsing and also for generating the job descriptions. These classes do not store information and are
not intended to be used directly, instead, the generic class uses them.

There is a class called JobDescriptionOrderer which tries to find out the format of the input file by pattern
matching; the generic class uses this piece of information to choose the appropriate back-end.

4.3 CREAMClient base class

The client object uses the VOMS proxy certificate to build the secure channel to the server and also to sign
that of the server.

To establish SOAP connection via the secure channel, the library uses the native ARC HED® Message
Chain Component (MCC), that provides full integration with the ARC core and corresponding services.
This replaces the former gSOAP-based [12] communication libraries, thus completely eliminating gSOAP
dependency.

8https ://www.knowarc.eu/documents/Knowarci_D1.1-1_07.pdf

https://www.knowarc.eu/documents/Knowarci_D1.1-1_07.pdf

‘ JobDescriptionOrderer ‘

2. Give me the format! C)3. My guess: XRSL, JOL, JSDL

1. Input text -
JobDescription

5. OK ((/;arse as XRSL
|

Figure 2: The figure shows how the different classes participating in the job description translation process inter-
relate in an example about xRSL parsing.

[
aﬁl
T

|

XRSL handler

CREAMClient(Arc::URL, Arc::MCCConfig)®

The constructor of the class performs the necessary initialization work. It receives two arguments: the service
URL and the ARC message chain component configuration file to establish the communication channel to
the server. These pieces of information are indispensable to create the client and to communicate with the
remote site.

setDelegationld (std::string)

Besides the constructor this is the other generic-purpose function that can be used in CREAM?2 client
applications. This function sets the previously registered and referred delegation ID on the client. The
function is simple: it sets a private variable and returns with no value.

createDelegation(std::string)

The createDelegation function performs the whole delegation registration process. It sends a getProzyReq
message having the requested delegation ID, signs the received certificate and sends it back in a putProzy
SOAP message to the server. These three steps constitute the delegation registration process.

As almost every funtion, this one has no return value either. If there are any problems during the com-
munication, either locally in the channel or at the remote site, the function throws CREAMClientError
described previously. If there are no exceptions thrown, then the command is considered to have successfully
completed.

destroyDelegation(std::string)

This method has the reverse functionality of function createDelegation. It sends the destroy message of
CREAM2 to the remote server.

submit(std::string)

The submit function is the most complex part of the class. It translates the job description received as the
argument, registers the job with a JobRegisterRequest message, uploads the locally stored files, if necessary,
then launches the job execution on the server by sending a JobStartRequest message. Finally it returns with
a creamJobInfo object that contains a jobld (job indetifier), a creamURL (as the service URL), an ISB

9For class references, see: http://wuw.knowarc.eu/download/D1.2-2_documentation.pdf

http://www.knowarc.eu/download/D1.2-2_documentation.pdf

(reference to the Input Sandbox) and an OSB (Output Sandbox) member to describe the registered job. In
the glitesub command (See Section 5.2 for details) these pieces of information are stored in the information
file.

stat(std::string)

This method queries the job status from the gLite CREAM2 server. The return value is the job status
translated to the ARC terminology. The possible values are presented in the section of the glitestat
command line tool (see Section 5.3).

cancel(std::string)

The cancel function sends a JobCancelRequest SOAP message to the server and handles the emerging
exceptions. It can be used for canceling a remotely registered and possibly running job.

purge(std::string)

The purge function sends a JobPurgeRequest message to the server and throws an exception in case of any
emerging problems.

5 ARC command line tools for glLite CREAM2 CE

The well known ARC commands (ngsub, ngget, see The NorduGrid/ARC User Guide[I3]!) will provide
seemless access and integration with glLite computing elements. Full transparency will be achieved through
the gLite gateway ARCLIB plugins. An ordinary user will use the same set of commands regardless of what
type of CE is accessed. The user will be able to specify grid jobs described both in gLite (JDL) and ARC
(JSDL, xRSL) job description languages. The client will perform automatic translation between the different
job description languages.

Unfortunately, the interoperability features offered by the gLite gateway library are not yet integrated into
the ARC commands. Also, the current version of ARCLIB does not offer the full spectrum of language
transformations yet.

Currently, only a set of temporary command line tools exposing the available features of the library are
provided. These temporary commands make the already existing interoparabilily features usable for ordinary
users.

There are seven different commands for using the gLite gateway functions. In this section these commands
will be presented in details through examples. Job descriptions and services shown are just simple examples,
their arguments might be different in real-life usage.

Every tool has a short manual page being accessible by using the man on-line manual reader command; some
more help can be achieved by using the <command> -? command line option.

5.1 glitedelegate

In order to use glite resources user must have a VOMS proxy. This proxy can be generated by command
voms-prozy-init.

For example:

$ voms-proxy-init -voms knowarc.eu

Once a VOMS proxy has been generated, everything is in place to submit a new job. If one wants submit a
job to a gLite server, first has to own a valid delegation on the remote site. This can either be an old, but
still valid delegation identifier, or can be a new one. There is a command line tool to register a delegation
on the CE to be used.

The usage of command glitedelegate is straighforward. All needed is a working CREAM2 delegation
service URL, and a locally unique arbitrary delegation ID. This delegation ID will be associated to the
remote resource. If you are not sure whether your favourite delegation ID is occupied or not, then try to
delete it before registering it again (see Section 5.6 for further details). The delegation command has the
following syntax:

$ glitedelegate <delegation ID> <delegation service URL>

For example:

$ glitedelegate test_delegation \
https://cream.grid.upjs.sk:8443/ce-cream/services/gridsite-delegation

5.2 glitesub

The current command only supports direct job submission to a known CE, that is, the user must know service
endpoints. These kind of endpoints are usually stored in LDAP/BDII databases. Ordinary ldapsearch can
be used to find such an endpoint. Below comes an example:

$ ldapsearch -x -h 1lxbra2305.cern.ch -p 2170 -b mds-vo-name=local,o=grid \
> (GlueCEUniqueID=*cream*)’ | grep GlueCEInfoContactString | \
awk ’{print $2}’ | sort | uniq

The glitesub command implements the actual job submission in three phases: registration of a job, uploading
the local files to the input sandbox URL received during the registration, and starting the job.

The glitesub command requires a valid delegation. See Section 5.1 how to create one. By the way, this is
the only command which needs the delegation ID.

The next step is to prepare the necessary input files and the job description.

The glitesub command syntax is the following (please note that the service URL, job description, info file
are mandatory and can only be given in the specified order):

$ glitesub -D <delegation ID> <service URL> <job description> <info file>

Here the delegation ID is the identification registered previously. The service URL will be different than in
the delegation example above, because this is not the URL of the delegation, but the execution service. The
job description must be in JDL format like in the example below. The info file stores information about the
job submitted. It should be a non-existing file otherwise it will be overwritten. This file contains the job ID,
the input sandbox URL, the output sandbox URL and the service URL.

Below is a JDL file example. Note that the VirtualOrganisation and QueueName attributes should be the
same as your virtual organisation name and the corresponding queue name on the server side.

L

Executable = "/bin/hostname";

StdInput = "std.in";

StdOutput = "std.out";

StdError = "std.err";

BatchSystem = "pbs";
VirtualOrganisation = "knowarc.eu";
InputSandbox = {"std.in"};
OutputSandbox = {"std.out","std.err"};
QueueName = "knowarc.eu";
OutputSandboxDestURI = { "gsiftp://localhost/std.out", "gsiftp://localhost/std.err" };
]

An example how to use this command:

$ glitesub -D test_delegation \
https://cream.grid.upjs.sk:8443/ce-cream/services/CREAM2 description.jdl job.info

After successful completion the command reports success and tells the user where the job related data are
stored. Otherwise the message written to the output contains the reason of the failure.

5.3 glitestat

The glitestat command contacts the CREAM2 service on the service URL and queries status of a job
specified by the job ID given in the info file.

Usage:

$ glitestat <info file>

For example:

$ glitestat job.info

The glitesub command implements job status mapping between gLite and ARC job status semantics. The
possible responses and their meanings are the following:

e ACCEPTING - the job submission is completed but the job is not yet scheduled

e SUBMITTING - scheduling in progress

e INLRMS:Q - the job is already at the local resource manager system and it is queued
e INLRMS:R - the job is waiting at the local resource manager system for running

e INLRMS:S - the job is running

e KILLED - the job was terminated

e FINISHED - the job has finished

e FAILED - the job had some failure

e FAILES - the job had some failure at LRMS level

e EXECUTED - the job has been finished and there is no state information available

5.4 glitekill
The glitekill command can be used for killing a remote job running in the underlying batch system. The
only necessary argument needed is the information file made by glitesub (see Section 5.2 for further details).

This command initiates stopping the job in the batch system. You can check the effect by using glitestat
(see Section 5.3 for its usage).

Usage:

$ glitekill <info file>

For example:

$ glitekill job.info

5.5 gliteclean

Either after killing a job or because some remote error occurs, garbage files may remain on the server. These
files can be removed by using command gliteclean. If you intentionally kill a job on a computing node,
the job related stuff might also remain as garbage in the remote queue. This command also removes the
job from the underlying batch system on the gLite computing element. It is important to note that this
command removes the local information file as well. It might be useful to run this command after killing a
job (see Section 5.4).

Usage:

$ gliteclean <info file>

For example:

$ gliteclean job.info

5.6 gliteundelegate

After the job execution is completed, it is possible to unregister and delete the delegation entry from the
remote site by using command gliteundelegate. It can also be used when one needs to register a delegation
ID but is unsure whether it is already used or not. Put the delegation service URL into the argument!

Usage:

$ gliteundelegate <delegation ID> <delegation service URL>

For example:

$ gliteundelegate test_delegation \
https://cream.grid.upjs.sk:8443/ce-cream/services/gridsite-delegation

5.7 Skeleton of a temporary example gLite client
Finally, here is an example code which shows how easy and simple it is to write a new client using the

CREAMClient class (see Section 4.3). This code sample requests the job status of a previously submitted
remote job, and writes it to the standard output. The client is written in C++.

#include "CREAMClient.h"
#include <iostream>

int main(int argc, char* argv[]){
Arc::URL url(SERVICE_URL);
Arc::MCCConfig cfg;

Arc::Cream: :CREAMClient gLiteClient(url,cfg);
try {
std::cout << "Job status: " << gLiteClient.stat(JOBID) << std::endl;
} catch (CREAMClienException& cce) {
std::cerr << "ERROR: " << cce.what() << std::endl;
return 1;
}

return 0O;

It is of course mandatory to set SERVICE_URL and JOBID strings to their real values to obtain the proper
functionality.

6 Open issues

In order to achieve the full scale transparent interoperability width the gLite computing element offered
through the ARC client, a couple of issues still need to be resolved. Most of these are related to the
incomplete integration of the glite gateway library into the ARCLIB framework, even though it is ready
for production use. There are also some conceptual challenges due to the incompatible nature of the two
systems, which require workarounds.

6.1 Current limitations

Full ARC client integration would mean that the temporary commands developed on top of the CREAMClient
presented in Section 4.3 will be overridden by the ordinary ARC commands built on top of the ARCLIB.
To achieve this, the Wrapper class integration of the gLite gateway plugins library should be finalized and
exposed to extensive testing.

Some of the Wrapper class methods and data structures should be extracted from the information available
in the CREAMClient class. In particular, detailed job representation needed for job monitoring is an open
area.

The CREAMClient class will be extended to support operations such as suspend available both in the
CREAM?2 interface and the ARCLIB’s jobcontrol component.

Due to the incomplete ARCLIB integration, currently only direct job submission to a manually selected
CE is possible. The ARCLIB integration will combine the existing resource discovery (see Section 4.1) and
job submission functionality of the glite gateway plugins with the brokering module of ARCLIB, which is
currently under development. The combination of these ARCLIB modules will provide intelligent brokered
job submission over gLite and ARC computing element.

For a fully transparent integration, automatic translation among JSDL/xRSL and JDL should also be
provided. A user should be able to specify her job request in any of these languages and the gateway should
perform the necessary translations. The existing language translator module currently is not capable of
generating JDL output. Therefore, the user still needs to use JDL to submit jobs to CREAM2.

Further investigation is needed on how a CREAM2 service handles data staging and whether the data
movement related ARC libraries can be used to manage data staging on the client side, or development of
special data staging wrapper scripts executed on the computing element is needed.

A set of temporary workaround command line clients have been developed (the glite* commands; see Sec-
tion 5) due to a discovered OpenSSL version conflict. The conflict appeared when we tried to integrate the
CREAMClient gateway library into the rest of ARCLIB. A tedious and time-consuming debugging process
took place. It revealed the following: a VOMS proxy certificate delegation method was implemented in
the CREAMClient gateway library. During this process it was needed to sign a certificate and the original
OpenSSL was used for this purpose. In the communication library used and taken from the ARC1 framework
there is a built-in Message Chain Component (MCC) which already utilizes the Globus Toolkit OpenSSL
functions to enable establishing secure communication. Linking the CREAMClient library directly against the
standard OpenSSL libs caused congesting SSL functions. In order to resolve the OpenSSL conflict and to
make possible the complete ARCLIB integration a Globus patch has been worked out. Once the OpenSSL
conflict is resolved, the ARCLIB integration will be completed, this way overriding the temporary glite*
commands.

6.2 Conceptual problems

During the development of the gateway library a few conceptual incompatibilities were found. These are
typical when one of the systems offers richer capabilities not available in the other. These conceptual gaps
can only be bridged by developing customized case-by-case workarounds. Still, the interoperation will always
result in some information or functionality loss in these cases.

Below are the most important challenges for which solution is still sought:

10

Expressing file staging in job description

The xRSL offers richer capability to describe input and output data of a job than JDL. Especially, in xRSL it
is possible for input files downloaded from storage servers to have their names changed. This is not possible
in JDL. So in xRSL user might ask for this:

(inputfiles=(gsiftp://interop.dcgc.dk/storage/datafilel.txtinput.txt))

This is not possible to express in JDL. It only allows the file to be downloaded as datafilel.txt. This
could be solved by a wrapper script that renames files according to the xRSL specication. This however
does not solve the problem completely. For example, if a user wants to concatenate standard outputs from
two jobs, she would write something like the following in xRSL:

(inputfiles=(gsiftp://interop.dcgc.dk/storage/jobl/output.txtinputl.txt)
(gsiftp://interop.dcgc.dk/storage/job2/output.txtinput2.txt))

This cannot be solved just using the renaming method, because both input files would be retrieved before
the renaming and they would therefore overwrite each other.

A possible solution is to recognize jobs of this type and simply barring them from using glite resources or to
let such jobs fail with an error message explaining that the user has to express their job in a different way.

RunTime Environments related issues

Many grid jobs rely on software being available at the execution location. The requirement as well as the
initialization of such software is expressed through the use of Run-Time Environments (RTEs). While the
library is capable of translating the RTE request itself, it is not capable of translating the name of the
RTE. No standardized cross-grid nomenclature has been adopted, nor are the authors aware of any such

activity. A temporary solution would be to have a remotely accessible list of RTEs and their names in each
job description language. This could then be used for translating jobs.

A Installation from Debian binary packages

This section contains instructions on how to install the gateway libraries and glite* command line tools on
Debian Linux.

1. Put the Debian repository into the APT source files (/etc/apt/sources.list). This repository in
Luebeck is maintained as long as the KnowARC project continues.

$ echo "deb http://pc02.inb.uni-luebeck.de:8080/ moeller/debian/stable ./" \
>> /etc/apt/sources.list

2. Update the package list and install the necessary dependencies:

$ aptitude update
$ aptitude install voms globus globus-dev globus-doc

3. Add the Globus libraries to the system path:

$ echo "/opt/globus/1lib" > /etc/ld.so.conf.d/globus.conf
$ ldconfig

4. Install ARCI1 client.

11

$ aptitude install nordugrid-arcl-client

5. Create the vomses directory

$ mkdir -p /opt/glite/etc/

and copy these lines into the vomses file located at /opt/glite/etc/vomses

"gin.ggf.org" ‘"kuiken.nikhef.nl" "15050" "/O=dutchgrid/O=hosts/0U=nikhef.nl/CN=kuiken.nikhef.nl" "gin.ggf.org"

"knowarc.eu" "arthur.hep.lu.se" "15001" "/0=Grid/0=NorduGrid/CN=host/arthur.hep.lu.se" "knowarc.eu"
"atlas" "voms.cern.ch" "15001" "/DC=ch/DC=cern/0U=computers/CN=voms.cern.ch" "atlas"
"nordugrid.org" "voms.uninett.no" "15015" "/0=Grid/0=NorduGrid/CN=host/voms.ndgf.org" "nordugrid.org"

6. Create SHOME/.globus directory and move the user certificate-key pair into there.

References

[1]

[2]

[3]

[4]

“gLite, Lightweight Middleware for Grid Computing,” Web site. [Online]. Available: http:
//glite.web.cern.ch/glite/

M. Ellert et al., WS-based ARC Clients, The NorduGrid Collaboration, NORDUGRID-TECH-20, doc-
ument in preparation.

W. Allcock et al., “Data management and transfer in high-performance computational grid environ-
ments,” Parallel Comput., vol. 28, no. 5, pp. 749-771, 2002.

A. Sim, A. Shoshani and others, “The Storage Resource Manager Interface (SRM) Specification v2.2,”
May 2008, GFD-R-P.129. [Online]. Available: |http://www.ggf.org/documents/GFD.129.pdf

O. Smirnova, Extended Resource Specification Language, The NorduGrid Collaboration, NORDUGRID-
MANUAL-4. [Online]. Available: http://www.nordugrid.org/documents/xrsl.pdf

A. Anjomshoaa et al., “Job Submission Description Language (JSDL) Specification, Version 1.0 (first
errata update),” July 2008, GFD-R.136. [Online]. Available: http://www.gridforum.org/documents/
GFD.136.pdf

C. Aiftimiei et al., “Job Submission and Management Through Web Services: the Experience with the
CREAM Service,” in Proc. of CHEP 2007, J. Phys.: Conf. Ser. 119 062004, R. Sobie, R. Tafirout and
J. Thomson, Ed. IOP, 2008. [Online]. Available: http://dx.doi.org/10.1088/1742-6596,/119/6/062004

I. Foster et al., “OGSA™ Basic Execution Service Version 1.0,” August 2007, GFD-R-P.108. [Online].
Available: http://www.ogf.org/documents/GFD.108.pdf

“GLUE Working Group,” Web site. [Online|. Available: http://forge.gridforum.org/sf/projects/glue-wg

I. Foster and C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit,” International Journal
of Supercomputer Applications, vol. 11, no. 2, pp. 115-128, 1997, available at: http://www.globus.org.

R. Alfieri et al., “From gridmap-file to VOMS: managing authorization in a Grid environment,” Future
Gener. Comput. Syst., vol. 21, no. 4, pp. 549-558, 2005.

R.A. van Engelen and others, “gSOAP.” [Online]. Available: http://www.cs.fsu.edu/ engelen/soap.
html

The NorduGrid/ARC User Guide, The NorduGrid Collaboration, NORDUGRID-MANUAL-6. [Online].
Available: http://www.nordugrid.org/documents/userguide.pdf

12

http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/
http://www.ggf.org/documents/GFD.129.pdf
http://www.nordugrid.org/documents/xrsl.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://dx.doi.org/10.1088/1742-6596/119/6/062004
http://www.ogf.org/documents/GFD.108.pdf
http://forge.gridforum.org/sf/projects/glue-wg
http://www.cs.fsu.edu/~engelen/soap.html
http://www.cs.fsu.edu/~engelen/soap.html
http://www.nordugrid.org/documents/userguide.pdf

	Introduction
	Overview
	The supported gLite CE interface: CREAM2

	External dependencies and installation instruction
	ARCLIB gLite gateway plugins
	Wrapper classes
	Job description translators
	CREAMClient base class

	ARC command line tools for gLite CREAM2 CE
	glitedelegate
	glitesub
	glitestat
	glitekill
	gliteclean
	gliteundelegate
	Skeleton of a temporary example gLite client

	Open issues
	Current limitations
	Conceptual problems

	Installation from Debian binary packages

