
NORDUGRID

NORDUGRID-MANUAL-18

2/5/2017

WS-ARC service configuration manual

Martin Skou Andersen∗

∗skou@nbi.dk

Contents

1 Introduction 3

1.1 How to read this manual . 3

2 INI configuration 3

2.1 Examples . 4

2.1.1 Echo service . 4

2.1.2 Other service . 4

2.2 Limitations . 4

3 XML configuration 5

3.1 Overview . 5

3.2 Service configuration . 5

3.3 Message Chain . 5

3.3.1 TCP MCC . 6

3.3.2 TLS MCC . 7

3.3.3 GSI MCC . 8

3.3.4 HTTP MCC . 8

3.3.5 SOAP MCC . 8

3.3.6 Plexer . 8

3.4 Security Handlers . 9

3.4.1 ARC Authorization . 9

3.4.2 Identity Mapping . 10

3.4.3 Delegation Collector . 10

3.4.4 UsernameToken . 10

3.4.5 X.509 Token . 11

3.4.6 SAML Token . 11

3.4.7 SAML Single Sign-On . 11

3.5 Policy Decision Points . 11

3.5.1 Allow . 11

3.5.2 Deny . 12

3.5.3 Simple List . 12

3.5.4 ARC . 12

3.5.5 GACL . 12

3.5.6 XACML . 13

3.5.7 Delegation . 13

3.5.8 Service Invoker . 13

3.6 General Daemon Configuration . 13

3.7 Examples . 14

3.7.1 Echo Service . 14

4 Profiles 15

1

5 The arched daemon 17

A List of standard profiles in WS-ARC 17

A.1 A-REX . 17

A.2 Chelonia . 18

A.3 ISIS . 18

A.4 Charon . 18

A.5 Hopi . 18

A.6 Combined services . 18

A.7 Testing . 19

B Profile attributes naming convention 19

2

1 Introduction

The Web Service (WS) Advanced Resource Connector (ARC) provides a great deal of services which all
share a common configuration interface. One or more services can be specified in a configuration and the
arched daemon should then be used for starting the service(s). The configuration should be specified in a
file using either the relatively simple INI format, or the more complex XML format.

INI configuration is the recommended way of configuring services for people who are new to ARC or unfa-
miliar with WS-ARC configuration. However it is limited in the sense that it relies on profiles. A profile is a
configuration template setup for one or more services, and common use case profiles exist for most services
and are installed per default. The limitation lies in the fact that only services and options which are speci-
fied in the profile can be configured in INI configuration, however the installed profiles should give enough
flexibility for common use cases. For a detailed description on INI configuration see section 2. Profiles are
further discussed in section 4.

XML configuration is the core format of WS-ARC configuration – it is used internally – and thus it gives full
flexibility when configuring services. A detailed description of XML configuration can be found in section 3.

The arched daemon, which is used to start WS-ARC services according to the configuration is briefly
discussed in section 5.

1.1 How to read this manual

This manual is divided into the three independent sections INI configuration, XML configuration and Profiles,
and these can be read independent of each other. Additionally the arched section describe the command
with the same name.

It should be noted that words typeset with the typewriter font should be typed as written.

2 INI configuration

As mentioned in the introduction, INI configuration directly relies on profiles, and a profile is a configuration
template setup for one or more services. So when creating a INI configuration file a choice of profile must be
made. Only one profile can be used in a given INI configuration. A standard WS-ARC installation comes
with a set of profiles and the list in appendix A gives a short description of these. The profiles will per
default be installed into the /usr/share/arc/profiles folder, where it is also possible to find an example
INI configuration file for each of the profiles.

A INI configuration file basically consist of sections, attribute-value pairs and maybe comments and blank
lines. In the following code-listing the syntax of an INI configuration file is shown:

A comment

[common]

profile = <profilename > or <path -to -profile >

<attribute > = <value >

...

...

Another comment

[<section -name >]

<attribute > = <value >

...

...

[<another -section >]

<attribute > = <value >

...

...

3

A section is specified by putting the name of the section inside brackets ([and]), where the left bracket
([) must be the first non white space character on the line. Any white space character after the left bracket
and before the right will not be part of the section name. Every attribute-value pair belongs to the section
which has be been defined previously. If the file starts without declaring a section, then following attributes
will belong to the common section. Multiple sections with identical names are different sections, except for
the common section, which is special in this respect and if multiple common sections exist these will be
considered as one.

The profile attribute is also special, as it is used to indicate which profile the INI configuration uses. Its
value should either be the name of a WS-ARC profile (no xml suffix), see appendix A or it should be the
absolute path to a profile (with xml suffix). The profile attribute must be located in the common section.
If multiple profile attributes exist only the first attribute will be used.

Attribute-value pairs are defined by specifying the name of the attribute followed by an equal sign and then
the value the attribute should take. It is the first equal sign which separates the attribute from the value. If a
line, not defining a section, does not contain an equal then it will be ignored and if it contains multiple equal
signs then all but first equal sign will be part of the value. Any white space before and after the attribute
and value will be ignored. Only attributes which have been defined in the selected profile will be consideren
by arched. For each profile in WS-ARC a corresponding INI configuration file exist which defines sensible
values and at the time list all configurable attributes. When it comes to multiple attributes with identical
names defined in the same section, it is the selected profile which determines if multiple attributes is allowed
and will be interpreted or not. It is possible that attributes from one section can override attributes from
another section, however this behaviour is completely determined by the profile.

Comments in the INI configuration file are specified by letting the first non white space character be the
sharp character (#), and these will be ignored by arched.

2.1 Examples

2.1.1 Echo service

profile = /usr/share/arc/profiles/EchoService.xml

pidfile = /tmp/arched.pid

logfile = /tmp/arched.log

loglevel = INFO

port = 60000

cacert = /etc/grid -security/certificates

host_cert = /etc/grid -security/hostcert.pem

host_key = /etc/grid -security/hostkey.pem

[echo]

prefix = {{

suffix = }}

2.1.2 Other service

2.2 Limitations

Configuring WS-ARC services in INI format may pose some limitations, since this configuration format
depend on profiles. If one wants to configure a service setup which is not covered by any of the available
profiles, it is simply not possible to configure that service setup in INI format and one has to use the XML
format described in section 3. It should however be noted that it is easy to switch from INI to XML format
since the arched command provide a way to convert a INI configuration into XML. See section 5 for further
details.

4

3 XML configuration

3.1 Overview

XML configuration in WS-ARC provides full flexibility for configuring services, and to construct an adequate
configuration one need to address the following subjects. If not done already, a choice on which service(s)
being setup need to be made and a short discussion of the available WS-ARC services is given in section 3.2.
Upon the choice of service(s) the proper message chain need to be configured and a discussion about message
chains is given in section 3.3. Most people also want some kind of security setup capable of allowing/denying
certain users, which can be done with security handlers and is discussed in section 3.4. Common configuration
options like specifying plugins required for instance by the message chain, and configuring logging, is discussed
in section 3.6. In section 3.7 example XML configuration files are given.

3.2 Service configuration

The following services are part of WS-ARC and specific configuration details for these are given in the
respective references below:

A-REX - configuration manual in ”The ARC Computational Job Management Module - A-REX” [5],

Chelonia storage multi-service - ”Chelonia Adminstrator’s Manual” [9],

ISIS distributed P2P information service - ”ARC Information System” [6],

Charon authorization service - currently described in ”Security Framework of ARC NOX” [15],

HOPI lightweight HTTP webserver - ”The HOPI Manual” [8] and also partially described in ”Chelonia
Administrator’s Manual” [9].

3.3 Message Chain

To configure WS-ARC services, a basic knowledge about how these are communicating with clients or other
services is needed. WS-ARC uses a chain of message components (MCCs) which serves different levels of
functionality. In one end it accepts messages from an interface and in the other a service processes them
and produce a response. Two types of MCCs exist, and they differ in that the first type should be able
to listen on some interface for messages, while the other simply receives messages from another MCC. The
MCC then process the message and pass it on to a single or multiple other MCCs or services. MCCs should
be configured using the XML element Component, where the name attribute specifies the MCC to use. The
following MCCs are part of WS-ARC:

tcp.service Listens on the TCP interface, see section 3.3.1,

tls.service Adds encryption layer to communication, see section 3.3.2,

http.service Processes HTTP messages, see section 3.3.4,

gsi.service Processes GSI messages as implemented in Globus toolkit [4], see section 3.3.3,

soap.service Processes SOAP messages, see section 3.3.5.

Additionally a special MCC, the Plexer, exists which is able to pass messages to different components simply
based on the endpoint the messages was sent to, and it should be configured using the Plexer element, see
section 3.3.6. In the end of the chain a service should be specified, using the Service element, where the
name attribute indicates the given service.

A working configuration should then link a set of MCCs and services, starting with a MCC that receives
messages from some interface. The MCCs and services should be uniquely identifiable, by setting the id

attributes of these elements. A MCC links to another or several MCCs or services using the next element,
where the id attribute specifies the id of that MCC or service. Some MCCs support multiple next elements

5

with textual label inside. Those are used by such MCCs to perform internal routing of processed message.
But most MCCs do not do any routing and hence require single next without label.

The message chain should be contained in the root element ArcConfig, which is shown in the conceptual
configuration example below:

...

<Component name="mcc1.service" id="mcc1">

<next id="mcc2"/>

</Component >

<Component name="mcc2.service" id="mcc2">

<next id="service"/>

</Component >

<Service name="service" id="service"/>

...

For readability the message chain can be grouped into a Chain element in one or more levels.

More technical information about available MCCs and the messages their process may be found in the
Hosting Environment technical manual [3].

3.3.1 TCP MCC

The TCP message component is named tcp.service and should be the first component in a chain. It is
used to setup a server socket which will listen for incoming connections. The socket can be configured using
the Listen element, which can occur multiple times and under each element the following child elements
can be specified:

Interface This element specifies the interface which socket should listen on. If this element is not specified
then the socket will listen on all available interfaces.

Port The port which the socket should bind to should be specified with this element. If no port is specified
an error will be reported and this Listen element will be ignored.

Version The IP version can be specified by this element, and by default both version 4 and 6 will be used.
It is possible to specify version 4 or 6 only.

NoDelay By default Nagle’s algorithm is used for sending data, however if the NoDelay element is set to
true data will be sent when ready. This is mainly used for optimizing connections for communication
patterns which involve a lot of very short messages exchanged by service and client.

Timeout Specifies how much time, in seconds, data sending or receiving may take. If time is exceeded MCC
reports error and in most cases connection is dropped. The default value is 60 seconds.

It is also possible to put a limit on number of incoming connections, and how these should be handled if
the limit is reached. The limit can only be put on all configured interfaces, and not per interface. The
Limit element specifies the limit on incoming connections, and the drop attribute specifies whether new
connections, above the limit, will be put on hold (default) or if they should be dropped, which is specified
by setting the attribute to true.

An example of a TCP MCC configuration using the described elements is shown below:

...

<Component name="tcp.service" id="tcp">

<Listen >

<Interface >w.x.y.z</Interface >

<Port>44444</Port>

<Version >4</Version >

<NoDelay >true</NoDelay >

<Timeout >120</Timeout >

</Listen >

<Listen >

6

<Interface >a:b:c:d:e:f:g:h </Interface >

<Port>55555</Port>

<Version >6</Version >

<NoDelay >false</NoDelay >

<Timeout >20</Timeout >

</Listen >

<Limit drop="true">30</Limit >

</Component >

...

3.3.2 TLS MCC

A security layer can be configured with the TLS MCC, named tls.service, which is based on the OpenSSL
library [2], and it should be put on top of a TCP MCC. By default it is able to understand the SSLv2
(hadshake only), SSLv3 and TLSv1 protocols, however the Handshake element can be used to specify another
behaviour. The supported values for the Handshake element are TLS (default) and SSLv3, where specifying
the latter will configure a MCC which only understand the SSLv3 protocol. If other values than the mentioned
ones are given, then TLS will be used.

For the TLS MCC to function, it should have access to a host key-certificate pair. The key should be
the private one, and it should not be password protected. The path to the key-certificate pair can be
specified by using the KeyPath and CertificatePath elements. If the KeyPath element is not specified the
default path /etc/grid-security/hostkey.pem will be used, and likewise if the CertificatePath element
is not specified the default path /etc/grid-security/hostcert.pem will be used. The supported key and
certificate formats are PEM and DER.

When establishing a connection with a client, the client certificate are per default verified against the
Certificate Authority (CA) certificates, known to the TLS MCC. The CA certificates used for verification
can be specified with either the CACertificatesDir or the CACertificatePath element, or both elements
can be used. The CACertificatesDir element should point to a directory containing one or more CA
certificates (in PEM format). The files should each contain exactly one certificate, and should be named
by the hash value of the CA subject name. CA certificates provided by NorduGrid uses this option. The
CACertificatePath element should point to a file containing one or more CA certificates (in PEM format)
identified by:

-----BEGIN CERTIFICATE -----

... (CA certificate in base64 encoding) ...

-----END CERTIFICATE -----

sequences. If both elements have been specified, CA certificates will first be looked up in the file pointed
to by the CACertificatePath element and then in the directory pointed to by the CACertificatesDir

element. If none of the two elements have been specified, then the CACertificatesDir element will be
initialised to the /etc/grid-security/certificates location. Client certificate verification can also be
skipped, which is done by setting the ClientAuthn element to false.

...

<Component name="tls.service" id="tls">

<KeyPath ></KeyPath >

<CertificatePath ></CertificatePath >

<CACertificatePath ></CACertificatePath >

<CACertificatesDir ></CACertificatesDir >

<ClientAuthn ></ClientAuthn >

<Handshake >SSLv3 </Handshake >

</Component >

...

If element CACertificatesDir have attribute PolicyGlobus set to ”true” additional verification of client
credentials is performed. Client credentials are restricted to be signed by specific Certification Authorities

7

as specified in additional configuration files. Those files are stored in the location specified by the ele-
ment CACertificatesDir and have names made of the hash of the subject of CA certificate followed by
.signing policy suffix. Information about format of those files may be found at http://dev.globus.org/wiki/Signing Policy.

3.3.3 GSI MCC

At its purpose MCC is similar to TLS described in section 3.3.2. It provides security layer using Globus
implementation of GSS-API and corresponding communication protocol.

Its configuration element KeyPath and CertificatePath are identical to those of TLS MCC. This MCC
is implemented using libraries of Globus Toolkit and its functionality and requirements are better to be
described by descrition of Globus gssapi library.

Use of this MCC is not recommended due to non-standard origin of underlying protocol.

3.3.4 HTTP MCC

The HTTP protocol is supported by the HTTP MCC named http.service, and it should either be put on
top of the TCP or TLS MCC. A working configuration of this MCC is simple, since it should only use the
next element. Differently from most other MCCs this one may have multiple next with content being name
of HTTP method in uppercase. Depending on method client requested message may be routed to different
components. Most services of WS-ARC support GET and PUT for data communication and POST for
SOAP. Some also support HEAD.

An example of a HTTP MCC configuration is shown below.

...

<Component name="http.service">

<next id="component1">GET</next>

<next id="component2">POST</next>

<next id="component3">PUT</next>

</Component >

...

3.3.5 SOAP MCC

SOAP is supported by the SOAP MCC, named soap.service. It parses and processes incoming messages
as SOAP messages. This component should be put right after the HTTP MCC in the message chain. The
component is needed by most of the services in WS-ARC. The only option which should be configured for
the SOAP MCC is to which component or service the valid SOAP messages should be directed to, and it is
done with the next element as for the other components.

3.3.6 Plexer

The Plexer is a special MCC which filters messages based on their URL endpoints. It supports multiple next
elements with content being regular expressions (POSIX extended) used to filter incoming messages. The
message is forwarded to the component or service specified by the id attribute of the corresponding next

element which mathed the endpoint URL of the message. At the first match the message will be forwarded
to the respective component or service and no more expressions will be tried. The next elements are tried in
order they are specified in configuration. If the message did not match any of the regular expressions then
it is discarded and an error is returned to the client. An example of a Plexer configuration is shown below.

...

<Plexer >

<next>^/arex$</next>
<next>^/[eE][cC][hH][oO]$</next>

</Plexer >

...

8

3.4 Security Handlers

Security Handlers are components which extract security related properties of the message, collect then and
use for making authorization decisions.

The Security Handlers are assigned MCCs and are arranged in queues. Each queue is processing specific
messages. Usually MCCs implement two queues named ”incoming” and ”outgoing” for the messages going
through chain to service and returning back respectively.

The Security Handlers in each queue are applied sequentially and if any produces negative result processing
stops are error is raised.

The Security Handlers are added to MCCs through SecHandler configuration element put inside Component

or Service elements. The name attribute specifies which plugin to be used. And queue is specified by event

attribute. Each configured instance can be optionally assigned identifier through id attribute. Tne content
of SecHandler is specific for every kind of plugin. Example is below:

...

<Component name="mcc1.service" id="mcc1">

<next id="mcc2"/>

<SecHandler name="handler1" event="incoming" id="id1">

</SecHandler >

</Component >

...

For more technical information about security-related attributes of the message and the Security Handlers
please see [15].

3.4.1 ARC Authorization

This Security Handler applies set of Policy Decision Point (PDP) element to the message and then produces
decision result using combining algorithm specified in action attribute of SecHandler element. For descip-
tion of PDP elements see section 3.5. The plugin name of this Secirity hadler is arc.authz and it resides in
arcshc loadable module.

Available combining algorithms are:

breakOnDeny - processing stops when PDP returns Deny decision. The SecHandler produces negative
result. This is a default algorith.

breakOnAllow - processing stopr when PDP return Allow decision. The SecHandler produces positive
result.

breakAlways - processing stops after first PDP. Produced result is used as result of SecHandler.

breakNever - all PDPs are applied. Result of last PDP is used as result of SecHandler.

Here is an example of of ARC Authorization Security Handler configuration.

...

<SecHandler name="arc.authz" event="incoming" id="authz">

<PDP name="arc.pdp">

...

</PDP>

<PDP name="xacml.pdp">

...

</PDP>

</SecHandler >

...

9

3.4.2 Identity Mapping

The Identity Mapping plugin applies set of associated PDPs to the message being processed and depending on
result assigns local account to the message. Its plugin name is identity.map and it resides in identitymap

loading module.

This Security Handler works in a similar way to ARC Authorization (see section 3.4.1). But instead of
passing results of PDPs as final processing result it applies local account mapping algorithm associated with
particular PDP.

Configuration is also similar with only difference being that inside each PDP configuration element there is
additional element representing mapping algorithm used for producing local account name. Available are
following mapping algorithms:

LocalName - maps to specified account name.

...

<PDP name="arc.pdp">

<LocalName >nobody </LocalName >

...

</PDP>

...

LocalList - uses subject of X.509 certificate presented by client to perform mapping. Element content
provides path to local file containing pairs of subjects and account names. One pair per line separated
by blank space.

...

<PDP name="arc.pdp">

<LocalList >/etc/grid -security/grid -mapfile </LocalList >

...

</PDP>

...

LocalSimplePool - manages dynamic mapping of X.509 client subject to a set of local accont names.
Content of element point to directory containing file named pool. This file contains list of local
account available for mapping one per line. This directory is also used fro storing currently active
mappings.

...

<PDP name="arc.pdp">

<LocalSimplePool >/etc/grid -security/mappool </LocalSimplePool >

...

</PDP>

...

3.4.3 Delegation Collector

This plugin processes chain of X.509 certificates and extracts embedded policies. Policies are attached to
the message and may be later used by Delegation PDP described in section 3.5.7. The plugin name of this
Security Handler is delegation.collector and it resides in mcctls loadable module. It has no configuration
parameters.

3.4.4 UsernameToken

The UsernameToken Security Handler processes information in the SOAP Header stored according to
”Web Services Security UsernameToken Profile 1.0” [13]. The plugin name of this Security Handler is
usernametoken.handler and it resides in arcshc loadable module.

10

The configuration element Process defines type of processing to be performed. Possible values are:

extract - parse and process elements in SOAP Header. This option shoudl be used for service side config-
uration.

generate - create UsernameToken. This option is only used for client side.

Only another configuration element relevant for service side processing is PasswordSource. It specifies path
to local file containing list of usernames and passwords (one pair per line) which are accepted by plugin. If
there is no pair in file matching one SOAP Header this Security Handler will raise an error.

3.4.5 X.509 Token

The X.509 Token Security Handler processes information in the SOAP Header stored according to ”Web Ser-
vices Security: X.509 Token Profile 1.0” [10]. The plugin name of this Security Handler is x509token.handler
and it resides in arcshc loadable module.

The configuration element Process defines type of processing to be performed. Possible values are:

extract - parse and process elements in SOAP Header. This option shoudl be used for service side config-
uration.

generate - create X.509 Token. This option is only used for client side.

In extract mode this plugin process X.509 Token from SOAP Header and validates contained credetials
against locally stored CA certificates. Following configuration elements specify location of trusted CA
certificates:

CACertificatePath - path to file containing CA certificate.

CACertificatesDir - path to directory containing files with CA certificates.

If provided credentials failed verification this Security Handler will raise an error.

3.4.6 SAML Token

The SAML Token Security Handler processes information in the SOAP Header stored according to ”Web Ser-
vices Security: SAML Token Profile 1.1” [12]. The plugin name of this Security Handler is samltoken.handler
and it resides in arcshc loadable module.

The configuration of this plugin is identical to previously described X.509 Token Security Handler. It
supports configuration elements Process, CACertificatePath and CACertificatesDir.

The information collected by this plugin may then be used in ARC Policy Decision Point and Service Invoker
Policy Decision Point plugins.

3.4.7 SAML Single Sign-On

3.5 Policy Decision Points

The Policy Decision Point component is responsible for applying particular policy or any kind of authorization
evaluation algorithm to properties of the message and providing authorization decision which then used by
other components - usually by the Security Handlers implementing functionality of Policy Enforcement Point.

3.5.1 Allow

This PDP always returns positive result. Its plugin name is allow.pdp and it resides in arcshc loadable
module.

11

3.5.2 Deny

This PDP always returns negative result. Its plugin name is deny.pdp and it resides in arcshc loadable
module.

3.5.3 Simple List

This PDP matches X.509 subject of client certificate to list of predefined values. Its plugin name is
simplelist.pdp and it resides in arcshc loadable module.

Multiple configuration elements DN specify accepted subjects. Also attribute location may be used to
point to a file containing list of subjects, one per line. If client’s subject is not listed neither in DN nor in
location PDP returns negative result. Otherwise result is positive. Below is configuration example for
simple authorization by grid-mapfile:

...

<PDP name="simplelist.pdp" location="/etc/grid -security/grid -mapfile">

<DN>/O=Grid/O=NorduGrid/CN=Service Admin </DN>

</PDP>

...

3.5.4 ARC

This plugin applies authorization policy written in ARC Policy language to attributes of the message. Its
plugin name is arc.pdp and it resides in arcshc loadable module. For more information about ARC Policy
language please see ”Security Framework of ARC NOX” [14]. That docment also describes security attributes
produced by different components of ARC which can be included in policies.

The configuration element PolicyStore specifies locations of policy. Its Location subelement provides path
to file storing policy. Also policy can be directly embedded into configuration by using Policy configuration
element.

The PolicyCombiningAlg element specifies how results from multiple policies are combined. For detailed
explanation please refer to [14].

It is also possible to limit number of message attributes which are matched to policy using Filter config-
uration element. This may be needed to achieve better evaluation performance. The multiple subelements
Select and Reject allow to either use only specific attributes or remove specific attributes. If neither Select
not Reject are specified then all attribites are used.

Example of simple ARC PDP reading policy from external file is below:

...

<PDP name="arc.pdp">

<PolicyStore >

<Location >/etc/grid -security/policy.xml</Location >

</PolicyStore >

</PDP>

...

3.5.5 GACL

This PDP shares configuration parameters and provides functionality similar to ARC PDP described in the
section 3.5.4. Its plugin name is gacl.pdp and it resides in the same arcshc loadable module.

This plugin accepts policies written in GACL instead of ARC language. For more information about GACL
prease check ”The Gridsite Web” [7] and ”GACL Mini-Howto” [1].

12

3.5.6 XACML

This plugin’s configuration and functionality are similar to previously described ARC and GACL PDPs. Its
plugin name is xacml.pdp and it resides in the same arcshc loadable module.

This plugin accepts policies written in subset of XACML language [11]. Currently XACML functionality is
not complete yet. For more information see [14].

3.5.7 Delegation

This plugin applies authorization policy written in ARC Policy language and obtained from cahin of X.509
Proxy Certificates of client to attributes of the message. Its plugin name is delegation.pdp and it resides
in arcshc loadable module.

Functionality wise it is very similar to ARC PDP described in section 3.5.4 but uses policy internally obtained
from message. Hence it has only Filter configuration element.

For detailed explanation how policy document is embedded into X.509 Proxy Certificate please refer to [14].

3.5.8 Service Invoker

This plugin comunicates with possibly remote authorization service by passing it authorization request
and getting back authorization decision. Its plugin name is pdpservice.invoker and it resides in arcshc

loadable module.

The configuration element Filter is similar to those in other PDPs.

To specify service to be contacted ServiceEndpoint element is used. It contains contact URL of ser-
vice. Service is expected to accept SOAP over HTTP(S) messages conforming to protocol defined in
TransferProtocol configuration element. Possible options are arc for ARC own protocol and saml for
”SAML 2.0 Profile of the XACML 2.0” kind of exchange. The format of payload - authorization request and
response - is controlled using RequestFormat element. Implemented are xacml and arc options for XACML
conforming or ARC specific formats respectively.

For establishing TLS communication channel to the service PDP needs to apply X.509 credentials. For that
configuration elements CertificatePath and KeyPath are used. Alternatively if PDP uses X.509 Proxy
Certificate path to file containing proxy may be specified in ProxyPath.

For verifying credentials presented by service trusted CA certificates are specified through CACertificatePath

and CACertificatesDir for single file and directory containing multiple files respectively.

3.6 General Daemon Configuration

The following options configures the arched daemon, and thus applies to all services. Some of the options
can also be set using command line arguments, and if used these will override the configuration file options.
See section 5 for a description of the arched daemon.

Under the Server element the file to store the PID in, can be specified using the PidFile element, if not
specified the PID will be stored in the file /var/run/arched.pid. This options can also be set using a
command line argument. If the Foreground element is present under the Server element, arched will run
in foreground and thus the PidFile element will be ignored. It is also posible to specify that arched should
run in foreground on the command line, however it is not posible to specify that it should run as a daemon,
if configured to run in foreground in the configuration file. Also under the Server the user and group owning
the arched process can be specified, which is accomplished with the User and Group elements. These can
also be set on the command line.

Logging options should be specified under the Logger element under the Server element. The File el-
ement specifies which file to write log messages to and if not present log messages will be written to the
/var/log/arc/arched.log file. Each log message is associated with a log level which indicates the serverity
of the message. The following log levels exist in WS-ARC, ordered by serverity: FATAL, ERROR, WARNING,
INFO, VERBOSE and DEBUG. With the Level element the level of messages being reported can be specified.

13

Log messages with a higher or same level as specified by the Level element will be written to the log file.
The default log level is WARNING.

The log messages are also assigned different domains. Domain is a string indicating where message came
from. Domains follow hierarchical layout with top level called Arc and subdomains added to it separated by
dot - like Arc.MCC.TCP. It is possible to assign different logging levels to different domains by using multiple
Level elemets each with Domain attribute containing affected domain name. The Level without Domain

is assigned to Arc domain and is inherited by all other domains unless they have theirs levels specified
explicitely.

By default the log file is not limited in size, neither will any log rotation be done. The Maxsize and Backups

elements can be used to change this behaviour. The Maxsize element sets the maximum file size of the log
file in bytes, while the Backups element specifies the number of files used for log rotation. When the size
of the log file exceeds the limit specified by the Maxsize element the log file is renamed to <log-file>.1.
If this file exist it is renamed to <log-file>.2 and so forth up to the number specified by Backups, which
means that the last file will be deleted. The log file size is only allowed to exceed the specified limit by the
size of one log message. If the Maxsize element have been specified and no Backups element is specified
then log rotation will not be carried out, thus the log file is truncated when the limit is exceeded.

By default log file is kept continiously open. For compatibility with external log rotating utilities it is possible
to force log file being closed after every log record is written and re-opened for new one. For that optional
Reopen element is used. If set to true it turns compatibility mode on.

Plugins which should be used later in the configuration should be specified under the Plugins element where
the Name element specifies the name of the plugin. The Path element under the ModuleManager element
specifies where to locate the plugins.

The following example show the use of the above configuration options:

<?xml version="1.0"?>

<ArcConfig >

<Server >

<PidFile >/tmp/arched.pid</PidFile >

<User></User>

<Group></Group>

<Logger >

<File>/tmp/arched.log</File>

<Level >WARNING </Level >

<Level Domain="Arc.MCC.TCP">DEBUG </Level >

<MaxSize >1000000 </MaxSize >

<Backups >5</Backups >

<Reopen >false </Reopen >

</Logger >

</Server >

<ModuleManager >

<Path>/usr/lib/arc</Path>

</ModuleManager >

<Plugins >

<Name>plugin1 </Name>

<Name>plugin2 </Name>

...

</Plugins >

...

</ArcConfig >

3.7 Examples

3.7.1 Echo Service

<?xml version="1.0"?>

<cfg:ArcConfig xmlns="http: //www.nordugrid.org/schemas/loader /2009/08"

xmlns:cfg="http://www.nordugrid.org/schemas/arcconfig /2009/08"

14

xmlns:tcp="http://www.nordugrid.org/schemas/tcp /2009/08"

xmlns:tls="http://www.nordugrid.org/schemas/tls /2009/08"

xmlns:echo="http://www.nordugrid.org/schemas/echo /2009/08"

xmlns:infosys="http://www.nordugrid.org/schemas/infosys /2009/08"

>

<cfg:Server >

<cfg:PidFile >/tmp/arched.pid</cfg:PidFile >

<cfg:Logger >

<cfg:File >/var/log/arc/arched.log</cfg:File >

<cfg:Level >WARNING </cfg:Level >

</cfg:Logger >

</cfg:Server >

<ModuleManager >

<Path>/usr/lib/arc</Path>

</ModuleManager >

<Plugins >

<Name>mcctls </Name>

<Name>mcchttp </Name>

<Name>mccsoap </Name>

<Name>mcctcp </Name>

</Plugins >

<Chain >

<Component name="tcp.service" id="tcp">

<next id="http"/>

<tcp:Listen >

<tcp:Interface >0.0.0.0 </tcp:Interface >

<tcp:Version >4</tcp:Version >

</tcp:Listen >

</Component >

<Component name="http.service" id="http">

<next id="soap">POST</next>

<next id="plexer">GET</next>

</Component >

<Component name="soap.service" id="soap">

<next id="plexer"/>

</Component >

<Plexer id="plexer">

<next id="echo">/Echo</next>

</Plexer >

<Service name="echo" id="echo">

<echo:prefix >[</echo:prefix >

<echo:suffix >]</echo:suffix >

</Service >

</Chain >

</cfg:ArcConfig >

4 Profiles

In WS-ARC the concept of profiles have been introduced. A profile is a complete XML configuration
template, for a specific service setup and it is used when configuring services in INI format. The core of
WS-ARC uses an XML struture for service initialization, which makes the XML format the apparent choice
for configuration. However the XML language is not simple and easy to use, which is why WS-ARC utilizes
profiles, namely to provide a configuration format (the INI format) easy to use.

To write a profile, some knowledge on the INI (see section 2) and XML configuration formats (see section 3)
is needed. Not necessaray to say, knowledge on the desired service setup is also needed. A XML configuration
file is only a profile if it defines a option mapping from INI format to XML, thus making it possible to utilise
the XML configuration through the INI format.

Two XML attributes have been introduced to be able to create a mapping, and these are inisections

and initag. XML elements which should be configurable in INI format must specify these attributes.

15

The initag attribute defines the name of the tag which represent the respective XML element in the INI
configuration file, and the inisections attribute is used to specify, as a space separated list, which sections
the tag can occur in. The list is ordered, in the sense that the listed sections is searched, in the specified
order, for the tag specified by the initag attribute, and if found in a section no further sections will be
searched. Only leaf XML elements (elements with no child elements) should be mapped, mapping non leaf
element result in a undefined behaviour. A profile example of a XML element mapping is shown in the
listing below:

ElementMapping.xml

...

<Server >

...

<Logger >

<File inisections="special common"

initag="logfile">/var/log/arc/arched.log</File>

...

</Logger >

</Server >

...

And this example profile can then be utilised in a INI configuration file as:

ElementMapping.ini

profile=ElementMapping.xml

logfile =/etc/arc/arched.log

...

[special]

logfile =/var/arc/arched.log

...

And the resulting XML configuration will look like:

...

<Server >

...

<Logger >

<File>/var/arc/arched.log</File>

...

</Logger >

</Server >

...

To be able to map XML attributes the use of a new XML element AttributeRepresentation have been
introduced. The element should have three attributes set, the two attributes inisections and initag used
as described above, and a new attribute id which specifies which attribute of the parent element is being
mapped. A profile example of a XML attribute is shown in the listing below:

AttributeMapping.xml

...

<Component name="tcp.service">

...

<Limit drop="false">

<AttributeRepresentation id="drop" inisections="common" initag="drop"/>

100

</Limit >

</Component >

...

And this example profile can then be utilised in a INI configuration file as:

16

AttributeMapping.ini

profile=AttributeMappingExample.xml

drop=true

...

And the resulting XML configuration will look like:

...

<Component name="tcp.service">

...

<Limit drop="true">100</Limit >

</Component >

...

5 The arched daemon

The arched daemon is the daemon which is used to host every service in WS-ARC. It will load a configuration
file, and host the services specified herein.

arched [OPTION...]

(ARC 0.9)

-f, --foreground run daemon in foreground

-c, --xml-config path full path of XML configuration file

-i, --ini-config path fill path of INI configuration file

-d, --config-dump dump generated XML configuration

-p, --pid-file path full path of PID file

-u, --user user user name

-g, --group group group name

-s, --schema path full path of XML schema file

-h, --help Show help options

If no configuration file is specified, arched first looks for the /etc/arc/server.ini INI configuration file if
it does not exist then the /etc/arc/server.xml XML configuration file is tried. If none of these is found
arched will abort with an error and exit code 1.

A INI configuration file can be specified with the -i option, while the -c option makes it possible to specify
a XML configuration file. If both options are given, the INI configuration will be chosen.

arched also has the capability of printing the XML configuration which will be generated from a given INI
configuration. By specifying the -d option along with the -i option and the path to the INI configuration
arched will transform the INI configuration to XML and dump the output to standard out and exit.

A List of standard profiles in WS-ARC

A.1 A-REX

ComputingElementWithFork MINIMAL configuration template for a secure standalone Computing El-
ement (CE) with a fork queue.

17

InsecureComputingElement

ComputingElementWithMapfile

ComputingElementWithMapfileAndPBSBackend

ComputingElement DNlist

ComputingElement VOMS

A.2 Chelonia

CheloniaAllCentralizedAHash

CheloniaAllCentralizedAHashWithISIS

CheloniaAllReplicatedAHash

CheloniaAllReplicatedAHashGatewayVOMSWithISIS

CheloniaAllReplicatedAHashWithISIS

CheloniaReplicatedAHash

CheloniaShepherdWithHopi

InsecureNonDistributedStorageElement

NonDistributedStorageElement DNlist

NonDistributedStorageElement VOMS

A.3 ISIS

InsecureP2PIIS

InsecureStandaloneIIS

P2PIIS

StandaloneIIS

A.4 Charon

Charon

A.5 Hopi

Hopi

HopiInsecure

HopiWithPlexer

HopiWithPlexerInsecure

A.6 Combined services

InsecureComputingAndStorageElement

ComputingAndStorageElement DNlist

ComputingAndStorageElement VOMS

18

A.7 Testing

Echo

EchoInsecure

EchoPython

EchoPythonInsecure

EchoSAMLToken

EchoUsernameToken

EchoX509Token

InsecureHopiService

B Profile attributes naming convention

Since profiles defines a mapping of XML elements or attributes to INI tags, they control the naming of the
tags. So for consistency tags in different profiles reprensenting the same XML element or attribute should not
be named differently. A naming convention list for the XML elements and attributes described in section 3
is presented below. Note that there are only conventions for leaf XML elements (element with no children).

XML element/attribute INI tag Default value

/Server/PidFile pidfile /var/run/arched.pid

/Server/User user None

/Server/Group group None

/Server/Logger/File logfile /var/log/arc/arched.log

/Server/Logger/Level loglevel WARNING

/Server/Logger/Maxsize logmaxsize None

/Server/Logger/Backups logbackups None

/ModuleManager/Path libpath None

/Plexer/next endpointpattern None

TCP MCC

/Component/Listen/Interface interface 0.0.0.0

/Component/Listen/Port port 60000

/Component/Listen/Version ipversion None

/Component/Listen/NoDelay nodelay false

/Component/Listen/Timeout timeout None

/Component/Limit limit None

/Component/Limit.drop drop None

TLS MCC

/Component/KeyPath x509 host key /etc/grid-security/hostkey.pem

/Component/CertificatePath x509 host cert /etc/grid-security/hostcert.pem

/Component/CACertificatePath x509 cacert path None

/Component/CACertificatesDir x509 cacert dir /etc/grid-security/certificates

/Component/ClientAuthn clientauthn true

/Component/Handshake handshake TLS

19

Acknowledgements

This work was supported in parts by the EU KnowARC project (Contract nr. 032691) and the EU EMI
project (Grant agreement nr. 261611).

References

[1] GACL Mini-Howto. Web site. URL http://www.nordugrid.org/documents/gacl_mini_howto.html.

[2] The Open Source toolkit for SSL/TLS. Web site. URL http://www.openssl.org/.

[3] D. Cameron et al. The Hosting Environment of the Advanced Resource Connector middleware. URL
http://www.nordugrid.org/documents/ARCHED_article.pdf. NORDUGRID-TECH-19.

[4] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International Journal
of Supercomputer Applications, 11(2):115–128, 1997. Available at: http://www.globus.org.

[5] A. Konstantinov. The ARC Computational Job Management Module – A-REX. The NorduGrid Col-
laboration. URL http://www.nordugrid.org/documents/a-rex.pdf. NORDUGRID-TECH-14.

[6] I. Márton. ARC Information System. The NorduGrid Collaboration. URL http://www.nordugrid.

org/documents/infosys_technical.pdf. NORDUGRID-TECH-21.

[7] A. McNab. The GridSite Web/Grid security system: Research Articles. Softw. Pract. Exper., 35(9):
827–834, 2005. ISSN 0038-0644.

[8] Zs. Nagy. The HOPI Manual. The NorduGrid Collaboration. URL http://www.nordugrid.org/

documents/hopi-manual.pdf. NORDUGRID-MANUAL-15.

[9] Zs. Nagy, J. K. Nilsen, and S. Z. Toor. Chelonia Administrator’s Manual. The NorduGrid Collaboration.
URL http://www.nordugrid.org/documents/arc-storage-manual.pdf. NORDUGRID-MANUAL-
10.

[10] OASIS. OASIS Web Services Security: X.509 Token Profile 1.0, Errata 1.0. December 2005. URL
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf.

[11] OASIS. OASIS eXtensible Access Control Markup Language. February 2005. URL http://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

[12] OASIS. OASIS Web Services Security: SAML Token Profile 1.1. February 2006. URL http://www.

oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf.

[13] OASIS. OASIS Web Services Security UsernameToken Profile 1.1. February 2006. URL http://docs.

oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf.

[14] W. Qiang and A. Konstantinov. Security Framework of ARC NOX, . URL http://www.nordugrid.

org/documents/arc-security-documentation.pdf. NORDUGRID-TECH-16.

[15] W. Qiang and A. Konstantinov. Security framework of ARC. The NorduGrid Collaboration, . URL
http://www.nordugrid.org/documents/arc-security-documentation.pdf. NORDUGRID-TECH-
16.

20

http://www.nordugrid.org/documents/gacl_mini_howto.html
http://www.openssl.org/
http://www.nordugrid.org/documents/ARCHED_article.pdf
http://www.nordugrid.org/documents/a-rex.pdf
http://www.nordugrid.org/documents/infosys_technical.pdf
http://www.nordugrid.org/documents/infosys_technical.pdf
http://www.nordugrid.org/documents/hopi-manual.pdf
http://www.nordugrid.org/documents/hopi-manual.pdf
http://www.nordugrid.org/documents/arc-storage-manual.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0. pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTo kenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTo kenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-UsernameTokenProfile.pdf
http://www.nordugrid.org/documents/arc-security-documentation.pdf
http://www.nordugrid.org/documents/arc-security-documentation.pdf
http://www.nordugrid.org/documents/arc-security-documentation.pdf

	Introduction
	How to read this manual

	INI configuration
	Examples
	Echo service
	Other service

	Limitations

	XML configuration
	Overview
	Service configuration
	Message Chain
	TCP MCC
	TLS MCC
	GSI MCC
	HTTP MCC
	SOAP MCC
	Plexer

	Security Handlers
	ARC Authorization
	Identity Mapping
	Delegation Collector
	UsernameToken
	X.509 Token
	SAML Token
	SAML Single Sign-On

	Policy Decision Points
	Allow
	Deny
	Simple List
	ARC
	GACL
	XACML
	Delegation
	Service Invoker

	General Daemon Configuration
	Examples
	Echo Service

	Profiles
	The arched daemon
	List of standard profiles in WS-ARC
	A-REX
	Chelonia
	ISIS
	Charon
	Hopi
	Combined services
	Testing

	Profile attributes naming convention

