
NORDUGRID

NORDUGRID-MANUAL-14

28/9/2011

Chelonia User’s manual

Zsombor Nagy∗

Jon Nilsen†

Salman Zubair Toor ‡

∗zsombor@niif.hu
†j.k.nilsen@usit.uio.no
‡salman.toor@it.uu.se

Contents

1 Clients for Chelonia 2

1.1 chelonia . 2

1.1.1 stat . 3

1.1.2 makeCollection . 4

1.1.3 unmakeCollection . 4

1.1.4 list . 4

1.1.5 move . 4

1.1.6 putFile . 5

1.1.7 getFile . 5

1.1.8 delFile . 5

1.1.9 modify . 5

1.1.10 policy . 6

1.1.11 unlink . 7

1.1.12 credentialDelegation . 8

1.1.13 removeCredentials . 9

1.1.14 makeMountPoint . 9

1.1.15 unmakeMountPoint . 9

1

1 Clients for Chelonia

1.1 chelonia

chelonia is a client tool for accessing the Chelonia storage system. It is capable of creating, removing and
listing collections, uploading, downloading and removing files and moving and stating both, using Logical
Names (LN). Collections contain files and other collections, creating a hierarchical namespace.

chelonia [options] <method> [arguments]

(ARC 0.9)

Options:

-b URL URL of Bartender to connect

-x print SOAP XML messages

-v verbose mode

-z filename configuration file (default $HOME/.arc/client.conf)

-w allow to run without the ARC python client libraries
(with limited functionality)

Methods:

stat LN [LN ...] get detailed information about an entry or several

makeCollection, make, mkdir LN create a collection

unmakeCollection, unmake, rmdir LN remove an empty collection

list, ls LN list the content of a collection

move, mv source target move entries within the namespace (both LNs)

putFile, put source target upload a file from a source to a target (both specified
as LNs))

getFile, get source [target] download a file from a source to a target

delFile, del, rm LN [LN ...] remove file(s))

modify, mod string modify metadata

policy, pol string modify access policy rules

unlink string remove a link to an entry from a collection without
removing the entry itself

credentialsDelegation, cre string delegate credentials for using gateway

removeCredentials, rem string remove previously delegated credentials

makeMountPoint, makemount string create a mount point

Without arguments, each method prints its own help. Detailed explanation of each method is given below.

Examples:

chelonia list /

chelonia put orange /

chelonia stat /orange

chelonia get /orange /tmp

chelonia mkdir /fruits

chelonia mkdir /fruits/apple

chelonia mv /orange /fruits

chelonia ls /fruits

chelonia rmdir /fruits/apple

chelonia rmdir /fruits

2

chelonia rm /fruits/orange

chelonia policy / change ALL +read +addEntry

chelonia modify /pennys-orange set states neededReplicas 2

1.1.1 stat

With the stat method it is possible to get all the metadata about one or more entry (file, collection, etc.).
The entries are specified with their Logical Name (LN).

chelonia stat <LN> [<LN> ...]

The output contains key-value pairs grouped in sections. The ‘states’ section contains the size and the
checksum of a file, the number of needed replicas, and whether a collection is closed or not (a ‘closed’
collection should not be modified anymore, if it gets modified, its state becomes ‘broken’); the ‘entry’ section
contains the DN of the owner, the globally unique ID (GUID) of the entry, and the type of the entry (file,
collection, etc.); the ‘parents’ section contains the GUID of the parent collection(s) of this entry, and the
name of this entry in that collection separated with a ‘/’; the ‘locations’ sections contains the location of the
replicas of a file, which contains of the ID (the URL) of the storage element, the ID of the replica within
the storage element, and the state of the replica; the ‘timestamps’ section contains the creation time of the
entry; the ‘entries’ section contains the name and GUID of the entries of a collection. Example stat of a file:

$ chelonia stat /thing

’/thing’: found

states

checksumType: md5

neededReplicas: 3

size: 6

checksum: a0186a90393bd4a639a1ce35d8ef85f6

entry

owner: /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Nagy Zsombor

GUID: 398CBDEA-E282-4735-8DF6-2464CD00BE2D

type: file

parents

0/thing: parent

locations

https://localhost:60000/Shepherd D519F687-EF65-4AEA-9766-E6E2D42166C4: alive

timestamps

created: 1257351119.3

Example stat of a collection:

$ chelonia stat /

’/’: found

states

closed: no

entry

owner: /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Nagy Zsombor

GUID: 0

type: collection

timestamps

created: 1257351114.37

entries

thing: 398CBDEA-E282-4735-8DF6-2464CD00BE2D

3

1.1.2 makeCollection

With the makeCollection or mkdir method it is possible to create a new empty collection. The requested
Logical Name (LN) should be specified.

chelonia makeCollection <LN>

The parent collection of the requested Logical Name must exist.

Example output of the method:

$ chelonia mkdir /newcoll

Creating collection ’/newcoll’: done

$ chelonia mkdir /nonexistent/newcoll

Creating collection ’/nonexistent/newcoll’: parent does not exist

1.1.3 unmakeCollection

With the unmakeCollection or rmdir method it is possible to delete an empty collection which is specified
by its Logical Name (LN).

chelonia unmakeCollection <LN>

Example output of the method:

$ chelonia rmdir /newcoll

Removing collection ’/newcoll’: removed

$ chelonia rmdir /dir

Removing collection ’/dir’: collection is not empty

1.1.4 list

With the list or ls method it is possible to list the contents of one or more collections which are specified
by their Logical Name (LN).

chelonia list <LN> [<LN> ...]

Example output of the method:

$ chelonia list / /newcoll

’/newcoll’: collection

empty.

’/’: collection

thing <file>

dir <collection>

newcoll <collection>

1.1.5 move

With the move or mv method it is possible to move a file or collection within the namespace of chelonia
(including renaming the entry). The source path and the target path should be specified as Logical Names

4

chelonia move <sourceLN> <targetLN>

Example output of the method:

$ chelonia mv /thing /newcoll/

Moving ’/thing’ to ’/newcoll/’: moved

$ chelonia mv /newcoll/thing /newcoll/othername

Moving ’/newcoll/thing’ to ’/newcoll/othername’: moved

1.1.6 putFile

With the putFile or put method it is possible to upload a new file into the system creating a new Logical
Name (LN). It can upload directories recursively using the -r flag. It is also possible the specify the number
of needed replicas.

chelonia putFile [-r] <source filename> <target LN> [<number of replicas needed>]

Example output of the method:

$ chelonia put thing /newcoll/

’thing’ (6 bytes) uploaded as ’/newcoll/thing’.

1.1.7 getFile

With the getFile or get method it is possible to download a file specified with its Logical Name (LN). If the
target local path is not given, then the file will be put into the local directory. It can download collections
recursively using the -r flag.

chelonia getFile [-r] <source LN> [<target filename>]

Example output of the method:

$ chelonia get /newcoll/thing newlocalname

’/newcoll/thing’ (6 bytes) downloaded as ’newlocalname’.

1.1.8 delFile

With the delFile or rm method it is possible to delete one or more files from the system.

chelonia delFile <LN> [<LN> ...]

Example output of the method:

$ chelonia rm /newcoll/othername

/newcoll/othername: deleted

1.1.9 modify

With the modify or mod method it is possible to modify some metadata of an entry.

5

chelonia modify <LN> <changeType> <section> <property> <value>

The possible values of ‘changeType’ are ‘set’ (sets the property to value within the given section), ‘unset’
(removes the property from the given section - the ‘value’ does not matter) and ‘add’ (sets the property to
value within the given section only if it does not exist yet).

To change the number of needed replicas for a file:

chelonia modify <LN> set states neededReplicas <number of needed replicas>

To close a collection:

chelonia modify <LN> set states closed yes

A closed collection should not be modified later. If it gets modified its state becomes ‘broken’.

To change metadata key-value pairs:

chelonia modify <LN> set|unset|add metadata <key> <value>

1.1.10 policy

With the policy or pol method it is possible to modify the policy of the entry

chelonia policy <LN> <changeType> <identity> <action list>

The possible values of ‘changeType’ are ‘set’ (sets the action list to the given user overwriting the old one),
‘change’ (modify the current action list with adding and removing actions) and ‘clear’ (clear the action list
of the given user).

The ‘identity’ could be currently three things: the DN of a user; the name of a VO (with the syntax:
‘VOMS:<VO name>’); or ‘ALL’ for all users.

The ‘action list’ is a list of actions prefixed with ‘+’ or ‘-’, e.g. ‘+read +addEntry -delete’.

These are the actions which can be used for access control:

• read : user can get the list of entries in the collection; user can download the file

• addEntry : user can add a new entry to the collection;

• removeEntry : user can remove any entry from the collection

• delete: user can delete the collection if it is empty; user can delete a file

• modifyPolicy : user can modify the policy of the file/collection

• modifyStates: user can modify some special metadata of the file/collection (close the collection, change
the number of needed replica of the file)

• modifyMetadata: user can modify the arbitrary metadata section of the file/collection (these are
property-value pairs)

There is an implicit default policy: the owner always has all the rights. Checking the ‘stat’ of new collections:

$ chelonia stat /newcoll

’/newcoll’: found

states

closed: no

entry

6

owner: /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Nagy Zsombor

GUID: 41CBD461-09BE-46FD-8A1B-767C7D427AF9

type: collection

parents

0/newcoll: parent

timestamps

created: 1257435820.26

entries

thing: A63658B4-2C6E-46A3-8238-7D291F8F81C2

shows no policies, but it shows the owner. This collection has no additional policies just the default one:
the owner can do anything, noone else can do anything.

Let’s set it in a way that all users can read the contents of this collection:

$ chelonia policy /newcoll change ALL +read

Setting action list of ’/newcoll’ for user ALL to +read: set.

$ chelonia stat /newcoll

’/newcoll’: found

[...]

policy

ALL: +read

[...]

Then we can set that all the members of the knowarc VO would be able to add entries to this collection:

$ chelonia policy /newcoll change VOMS:knowarc +addEntry

Setting action list of ’/newcoll’ for user VOMS:knowarc to +addEntry: set.

$ chelonia stat /newcoll

’/newcoll’: found

[...]

policy

ALL: +read

VOMS:knowarc: +addEntry

[...]

And for example we can set a specific user to be able to remove entries from this collections:

$ chelonia policy /newcoll change \

"/C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=TestUser" +removeEntry

Setting action list of ’/newcoll’

for user /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=TestUser to +removeEntry: set.

$ chelonia stat /newcoll’/newcoll’: found

[...]

policy

/C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=TestUser: +removeEntry

ALL: +read

VOMS:knowarc: +addEntry

[...]

1.1.11 unlink

With the unlink method it is possible to remove a file or collection just from its parent collection without
removing the file or collection itself. This means that the file or collection wouldn’t be part of its former
parent collection anymore. It would be still possible to access it with its GUID, or if it was linked from
another collection too. NOTE: If we don’t know the GUID or the logical name of any other link, then we
cannot access the file or collection anymore.

7

chelonia unlink <LN>

If there is a file called ‘/newcoll/thing’, it is in the listing of the ‘/newcoll’ collection:

$ chelonia list /newcoll

’/newcoll’: collection

thing <file>

The file is in the entries of the collection:

$ chelonia stat /newcoll

’/newcoll’: found

entries

thing: A63658B4-2C6E-46A3-8238-7D291F8F81C2

[...]

It is possible the ‘stat’ the file with the Logical Name ‘/newcoll/thing’:

jim:~ zsombor$ chelonia stat /newcoll/thing

’/newcoll/thing’: found

states

checksumType: md5

neededReplicas: 3

size: 6

checksum: a0186a90393bd4a639a1ce35d8ef85f6

[...]

Now with the ‘unlink’ method it is possible to remove the file from the ‘/newcoll’ collection, but not from
the system:

$ chelonia unlink /newcoll/thing

Unlinking ’/newcoll/thing’: unset

Now the file is not in the collection anymore:

$ chelonia list /newcoll

’/newcoll’: collection

empty.

$ chelonia stat /newcoll/thing

’/newcoll/thing’: not found

But with the GUID of the file, it can still be accessed:

$ chelonia stat A63658B4-2C6E-46A3-8238-7D291F8F81C2

’A63658B4-2C6E-46A3-8238-7D291F8F81C2’: found

states

checksumType: md5

neededReplicas: 3

size: 6

checksum: a0186a90393bd4a639a1ce35d8ef85f6

[...]

1.1.12 credentialDelegation

With the credentialDelegation or cre method it is possible to delegate credentials to the Bartender.

8

chelonia credentialDelegation

1.1.13 removeCredentials

With the removeCredentials or rem method it is possible to remove the previously delegated credentials.

chelonia removeCredentials

1.1.14 makeMountPoint

With the makeMountPoint or makemount method it is possible to create a mount point within the namespace
of Chelonia which points to a GridFTP server.

chelonia makeMountPoint <LN> <URL>

The ‘LN’ is the requested Logical Name for the mount point, the ‘URL’ points to the GridFTP server.

1.1.15 unmakeMountPoint

With the unmakeMountPoint or unmount method it is possible to remove a previously created mount point.

chelonia unmakeMountPoint <LN>

The ‘LN’ is the Logical Name of the mount point.

9

	Clients for Chelonia
	chelonia
	stat
	makeCollection
	unmakeCollection
	list
	move
	putFile
	getFile
	delFile
	modify
	policy
	unlink
	credentialDelegation
	removeCredentials
	makeMountPoint
	unmakeMountPoint

