
Dynamic Runtime Environments for Grid
Computing

D. Bayer1, T. Bhimdi1,2, G. Oechsler1, F. Orellana3, A. Wäänänen3, B. Kónya4, and

S. Möller1

1 University of Lübeck, Institute for Neuro- and Bioinformatics, Lübeck, Germany
2 George Mason University, Fairfax, Virginia, United States

3 Copenhagen University, Niels Bohr Institute, Copenhagen, Denmark
4 University of Lund, Department of Physics, Lund, Sweden

email: [bayer,moeller]@inb.uni-luebeck.de

phone: +49 451 500 5514, fax: +49 451 500 5502

Abstract

In a grid computing context the execution of jobs on remote machines
of collaborating institutes often requires the provisioning of more than
mere CPU time. Besides libraries and utilities distributed with the
operating system in question, further software may be required by the
jobs and in such cases need to be installed prior to the job’s execution.
In grid computing this problem is aggravated by decreased personal
contacts among collaborators.
Currently, Virtual Organisations of existing production grids typically
agree on a set of runtime environments that participating sites install
manually. The challenge is to automate this process, thus easing the
burden of the site’s maintainers and allowing grid-wide software up-
dates with immediate effect. This paper presents an RDF based schema
for the description of runtime environments and the implementation of
a service for their automated and dynamic installation.

Keywords: grid computing, runtime environment, automated installation

Abbreviations: ARC (Advanced Resource Connector), GIS (Grid Informa-
tion System), LRMS (Local Resource Management System), RDF (Resource
Description Framework), RE (Runtime Environment), RER (Runtime Environ-
ment Registry), VO (Virtual Organisation)

Availability: http://dre.knowarc.eu

1 Introduction

Computing has become an integral part of several fields of science and engi-
neering, comprising in silico simulations, data mining or general data analysis.
Other progress has been made in data acquisition. Databases beyond giga- and
terabytes in size are no longer an exception. For some research questions, e. g.,
in the biological sciences, it is especially the combination of information sources



from which new insights are gained. This led to the employment of agent [12]
and workflow technologies [16].

For a grid to be successful, jobs should find well-equipped hosts easily. The
provision of runtime resources, i. e., utilities, libraries, databases or tools for
their accession should be prepared and tested before a job is executed. The
Advanced Resource Connector (ARC) middleware [4] of NorduGrid [3] allows
the specification and seamless usage of so called Runtime Environments (REs)
in grid jobs. Grid jobs are directed to exactly those sites at which the requested
REs are available.

For today’s grid sites, the actual selection and installation of the software is
still left to the human maintainers. In the NorduGrid, the information needed for
installation is provided by the so-called Runtime Environment Registry (RER)
[11]. With an increased acceptance of Grid computing across scientific disciplines
and the associated diversification of software to be installed and maintained.
This manual process imposes an unbearable amount of work on the site’s main-
tainers. Thus missing or outdated installations of REs often render resources
unusable.

We speak of automated installations if the RE installation runs unattended
after being initiated. An installation is dynamic if it is not started by a human
but by the acceptance of a grid job requesting the particular RE. This paper
describes a generic approach for an automated installation of software or its
updates, implementing the dynamic provision of runtime environments for the
ARC grid middleware.

Using this scheme a Virtual Organisation (VO) will no longer need to contact
the grid site’s administrators to install their software and its updates. They will
simply manage their own machine-readable software catalogue which is used by
the middleware to deploy the needed REs. Virtualisation, although not strictly
required, is an important part of this concept, as it allows to easily set up
an environment that is specifically tailored for the job. It also provides extra
security for the site providing the resources.

2 Methods

The here laid out principle was implemented in Perl. No ARC specific li-
braries were used. We are using the the resource description framework (RDF)
technology [17] to describe REs. This description is read with help of the Red-
land RDF library1. It is the only required non-standard Perl module. The RDF
files themselves are distributed by an http server. For the human observer the
same data is offered reformatted as HTML. None of the changes to the middle-
ware are visible to ordinary clients.

1http://librdf.org/



3 Results

The ARC middleware does not contain a special broker service. Instead the
brokering is done by the user’s grid client. The user specifies which REs the job
needs and the client searches in the Grid Information System (GIS) [8] for sites
announcing the requested REs. Upon submission, the job’s specification is sent
to the selected grid site’s Grid Manager [7].

With the introduction of the dynamic installation of runtime environments,
the Grid Manager needs to distinguish between REs that are installed, those
that are installable and those that are not eligible. To decide on the eligibility of
a runtime environment for installation on a site, the Grid Manager first requests
details about that runtime environment. This comprises technical information,
i. e., the installation means and dependencies on other runtime environments.
But also the field of application or the maintainer of the package may be im-
portant. Site maintainers can constrain the dynamically installable packages by
these RE’s attributes.

3.1 The RDF Schema used to describe REs

The automation of the installation process requires its formal description.
Most importantly this comprises the dependencies of the particular RE. The
collection of these formal descriptions is called the Catalogue. It is represented
as an RDF document. The RDF schema used contains four different types of
entries. These are referred to as MetaPackage, Package, Tag and BaseSystem.

The MetaPackage nodes describe the REs. In the previous system, informal
specifications of each commonly used RE within the ARC community were col-
lected in the RER. Its entries contain the RE’s ID, its version information and
a short description. For installation instructions it links to regular web pages
describing the manual installation procedure. In the Catalogue this information
is stored in MetaPackage nodes. To ease the specification of constraints, Meta-
Package nodes can have an arbitrary number of associated Tag nodes, which
describe the MetaPackage in more detail.

The BaseSystem nodes are used to distinguish the operating systems of the
worker nodes. The last type of nodes is the Package node. The Package nodes
describe how to deploy a MetaPackage on a system with a specific BaseSystem.
So each MetaPackage links to at least one Package which in turn links to exactly
one BaseSystem.

An example is given in Fig. 1. It describes how to deploy the RE named
APPS/BIO/WEKA on Debian Sid using the tar packages weka-3.4.8.tar.gz
[18] and jre 1.5-1.tar.gz. The figure only shows the most basic nodes. Some
descriptions and constraints are omitted. The TarPackage node in the figure is
a special subclass of Package.



kb#1

WEKA

APPS/BIO/WEKA

kb#MetaPackage

kb#description

kb#name

ns#typekb#2

type::app

kb#Tag

kb#tag
ns#name

ns#type

kb#3
http://.../weka-3.4.8.tar.gz

kb#TarPackage

kb#instance

kb#url

ns#type

kb#4
http://.../jre 1.5-1.tar.gz

kb#depends

kb#url

ns#typekb#5

Debian Sid

debian::sid

kb#BaseSystem

kb#basesystem

kb#basesystem

kb#short description

kb#name

ns#type

Fig. 1: Subset of RDF triplets of a Catalogue describing the runtime environment
WEKA and its installation. kb#1 represents the software (MetaPackage). kb#3
offers its installation from a tar file on Debian Sid (kb#5), if Java (kb#4) is also
installed. These tar files can be downloaded from the given URLs.

3.2 Deployment

The Catalogue is used by a service called the Janitor. It manages REs on be-
half of the Grid Manager or the site’s administrator and provides an information
system for the states of the REs.

The Janitor has three different interfaces. For the
Grid Manager: An interface used to register jobs and to trigger the automatic

installation of REs just before job execution.
Grid Infosystem: An interface used to query the list of supported REs.
Site Admin: An interface used for removing unused REs and retrieving state

information.
The site’s administrator determines which Catalogues the Janitor is allowed

to access. He also configures which base system the worker nodes are using.
Additionally the administrator can specify for each RE individually if it is eligible
or not.

With this information given, REs are automatically installed by the Janitor
before a job is executed. An interaction diagram for this case is given in figure
2: After a job’s submission, the Grid Manager registers the job with the Janitor
(figure 2, step 2). The Janitor checks if all requested REs are installed, deploy-
able or unavailable. If they are deployable the Grid Manager asks the Janitor
to do so (step 3); otherwise the job fails. Upon successful installation, the Grid
Manager calls the LRMS helper (step 4) which prepares the job for submission
to the LRMS. For this it needs to know how to use the REs. This information
is retrieved from the Janitor (step 5). Finally, when job execution has finished,
the job is unregistered from the Janitor (step 7).



Job

Grid Manager

Grid Information System

Janitor

LRMS helper

LRMS

1. submit

requests list
of REs

2. registers Job

3. deploys REs

7. unregisters Job
4. calles
LRMS helper

5. retrieves
RE info

6. submit

Fig. 2: Interaction of the Janitor with the ARC middleware. Upon submission
(1) a job is registered with the Janitor (2), and the needed REs are installed if
necessary (3). The LRMS helper is started (4) which retrieves information on
the used REs (5) and submits the job to the local batch system (6). If the job is
done it is unregistered (7). The Grid Informations System periodically requests
the list of available REs.

Another component interacting with the Janitor is the Grid Information
System. It periodically polls the Janitor to get the current list of available REs.

The RE’s installation process itself highly depends on the kind of Package
which is to be installed. A well-suited approach for small grid sites is to use a
shared directory for deploying software to the worker nodes. In this case simple
TAR packages can be used. To install such a package, the Janitor (i) creates
a subdirectory on the shared storage, (ii) extracts the tar-file containing the
software into it and (iii) executes a bundled install script.

3.3 Overhead introduced by the Janitor

Basically, the operations the Janitor performs can be categorised into two
groups. A first group of operations only touches the metadata on installed REs
and registered jobs. A second changes the REs themselves. Operations which
belong to the latter can take an arbitrarily2 long time. For each job three
operations of group one and maybe one operation of group two are needed.

Often an RE will be used by many jobs. So the vast majority of operations
performed by the Janitor belong to the first group. The simplest way to use the
Janitor is to start a new process for each operation. Implemented this way and
running on a recent system3 the Janitor needs about 900 ms for operations of
this group. Most of this time is spent during startup. Another possibility is to

2E. g., to install an RE, files from remote sites must be downloaded.
3AMD Athlon X2 4200+ processor



run the Janitor as a daemon and fork a child for each operation. Implemented
this way, it takes about 40 ms to perform a single operation.

4 Discussion

Applicability for other grid middlewares and site configurations The
concept presented is not dependent on ARC-specific features. The Janitor has
a generic interface which can be easily integrated with other grid middleware
stacks.

The ARC middleware is known as light-weight and non-invasive, supporting
many different batch systems and network setups. Thus, a framework for dy-
namic REs used by ARC has to be very flexible, too. The formal descriptions
presented consequently allow to describe dynamic REs for very different site
setups, ranging from small-scale grid sites using a shared network folder for soft-
ware deployment to large sites using virtualisation technologies and job-specific
images.

Package management The concept to have libraries and tools added dynam-
ically with respect to dynamically specified dependencies has been implemented
for many years in the build daemon infrastructure of the Debian Linux distri-
bution [14]. Any Debian developer can submit new software packages that are
eventually built automatically for the 11 supported platforms. The here pre-
sented work extends this principle for arbitrary grid computation. The Debian
distribution is much respected for this achievement and to indicate such may
foster the acceptance of dynamic runtime environments in the grid community.

Software Catalogues Our approach is related to the Configuration Descrip-
tion, Deployment, and Lifecycle Management (CDDLM) specification [2] of the
Open Grid Forum. But being designed to deploy whole grid services, this speci-
fication is considerably more complex then the Catalogue, which only describes
how to install a selection of libraries or programs.

Virtualisation The use of virtualisation provides the job with an environment
which is completely different from the installed operation system on the worker
node. The most basic form of virtualisation is the usage of a chroot environment.
But in this case the separation of the job-specific environment from the system
of the worker node is weak. The job directly uses the same kernel and only
the filesystem is virtualised. So it can see and interact with processes running
outside the chroot environment. Easy ways to break this kind of virtualisation
are well known [15]. Consequently, a chroot environment is usefull for jobs which
only need specific libraries and are trusted not to try to break into the system
environment. E. g., the Debian build daemons use chroot environments.

Over the last years multiple new virtualisation technologies were developed.
They are superior to chroot as they create a complete virtual system. These
can be used to create sandboxes which reduce potential harm by malicious jobs.



This is especially important if dynamic REs are used and third party software is
installed automatically. One of these virtualisation technologies is Xen [1], which
uses paravirtualisation, thus yielding a negligible overhead. These technologies
were already used to provide grid jobs with hand-crafted virtual environments
(e. g., [5, 6]).

In general, images for virtual machines contain the installation of the oper-
ating system and the needed additional software. Creating them is possible by
remote-controlling the bootstrap procedure of the operating system. This has
been achieved by projects like, e. g., FAI [10], several years ago. For the Janitor,
this was implemented in a prototype.

An anticipated future scenario is to let grid sites use virtualisation technolo-
gies to automatically create job-specific images. In the Catalogue this can be
described by a special subclass of Package and the BaseSystem entry linking to
a basic disk image. To create a specific image for, e. g., Debian, a copy of the
basic image is mounted in a chroot environment and packages provided by the
Debian distribution are installed by Debian-specific means. As redoing this for
every job is much to expensive, mechanisms for caching [9] should be used.

5 Conclusion

By using the here presented framework, a VO after being accredited at a grid
site will no longer be required to ask the site’s administrators to install software
but simply manage their own Catalogue. Thus, the process of deploying updates
to all grid sites is simplified, the availability of grid resources to the user improved
and the potential userbase increased [13].

Acknowledgements

Many thanks go to Alexandr Konstantinov, Péter Stefán and Ferenc Szalai
for their comments. This work is funded by the EU FP6 project “KnowARC”.

References

1. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating systems principles,
pages 164–177, New York, NY, USA, 2003. ACM Press.

2. CDDLM Working Group. Configuration description, deployment, and life-
cycle management – smartfrog-based language specification, 2005. GFD 51,
http://www.ogf.org/documents/GFD.51.pdf.

3. P. Eerola, B. Kónya, O. Smirnova, T. Ekelof, M. Ellert, J. R. Hansen, J. L. Nielsen,
A. Waananen, A. Konstantinov, and F. Ould-Saada. Building a Production Grid
in Scandinavia. IEEE Internet Computing, 7(4):27–35, 2003.

4. M. Ellert, M. Grønager, A. Konstantinov, B. Kónya, J. Lindemann, I. Livenson,
J. L. Nielsen, M. Niinimäki, O. Smirnova, and A. Wäänänen. Advanced Resource
Connector middleware for lightweight computational Grids. Future Generation
Computer Systems, 23(2):219–240, 2007.



5. K. Keahey, K. Doering, and I. Foster. From Sandbox to Playground: Dynamic
Virtual Environments in the Grid. In 5th International Workshop on Grid Com-
puting (Grid 2004), Pittsburgh, PA, November 2004, pages 34–42, 2004.

6. K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual Workspaces: Achiev-
ing Quality of Service and Quality of Life in the Grid. Scientific Programming,
13(4):265–275, 2005.

7. A. Konstantinov. The NorduGrid Grid Manager and GiridFTP Server: Descrip-
tion and Administrator’s Manual, 2007. [NORDUGRID-TECH-2].

8. B. Kónya. The NorduGrid/ARC Information System: Technical Description and
Reference Manual (v0.9), 2007. [NORDUGRID-TECH-4].

9. I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo. Vm-
plants: Providing and managing virtual machine execution environments for grid
computing. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on Super-
computing, page 7, Washington, DC, USA, 2004. IEEE Computer Society.

10. T. Lange. Fully automatic installation. http://www.informatik.uni-
koeln.de/fai/.

11. J. Lento and O. Tourunen. Runtime environment registry.
http://www.csc.fi/grid/rer/concept.phtml.

12. E. Merelli, G. Armano, N. Cannata, F. Corradini, M. d’Inverno, A. Domse,
P. Lord, A. Martin, L. Milanesi, S. Möller, M. Schroeder, and M. Luck. Agents in
bioinformatics, computational and systems biology. Briefings in Bioinformatics,
8(1):45–59, 2007.

13. S. Möller, D. Bayer, D. Vernazobres, A. Gebhardt, and D. Eddelbuettel. Scientific
Grid Computing via Community-Controlled Autobuilding of Software Packages
Across Architectures. In NETTAB, Pisa, Italy, 2007.

14. R. Murray. buildd: Debian package auto-builder. http://buildd.debian.org/.
15. Simes. How to break out of a chroot() jail, 2002.

http://www.bpfh.net/simes/computing/chroot-break.html.
16. R. D. Stevens, H. J. Tipney, C. J. Wroe, T. M. Oinn, M. Senger, P. W. Lord,

C. A. Goble, A. Brass, and M. Tassabehji. Exploring Williams-Beuren Syndrome
Using myGrid. Bioinformatics, 20:i303–i310, 2004.

17. W3 Consortium. Resource Description Framework, 2004.
http://www.w3.org/RDF/.

18. I. H. Witten and E. Frank. Data Mining. Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2005.


