/A
—
A}‘”NORDUGRH)

NORDUGRID-TECH-14
2/5/2017

ARC COMPUTATIONAL JOB MANAGEMENT COMPONENT — A-REX

Description and Administrator’s Manual

A. Konstantinov*

This document is obsoleted by the ARC Computing Element System Administrator Guide (NORDUGRID-
MANUAL-20). Please refer to that document for more up-to-date information.

*aleks@fys.uio.no

Contents

1 Introduction

2 Main concepts

3 Input/output data
4 Job flow

5 URLs

6 Internals

6.1 Internal Files of the A-REX e
6.2 Web Service Interface L L
6.2.1 Basic Execution Service Interfaceo oo oo
6.2.2 Extensions to OGSA BES interface o oL,
6.2.3 Delegation Interface L L
6.2.4 Local Information Description Interface
6.2.5 Supported JSDL elements
6.2.6 ARC-specific JSDL Extensions o
7 Cache
7.1 Structure e e e
7.2 How it works L
7.3 Remote Caches e
7.4 Cache Administration e e

8 Files and directories
8.1 Modules
8.2 DIrectories e

9 Configuration
9.1 Configuration of the A-REX
9.2 Transfer shares L e
9.3 Authorization
9.4 LRMS support e e e e e e
9.5 Runtime environment oL Lo e

10 Job environment

11 Installation
11.1 Requirements L o e e e e e
11.2 Setup of the A-REX with WS Interface
11.3 Setup of the A-REX with GridFTP Interface

11.4 Running as non-root oL e e e e e e e

© © © o O

12
12
13
13

14
14
15
15
16

16
16
17

18
18
24
25
25
25

26

Session directory access through HTTP(S) interface
Configuration schema of A-REX

A-REX WSDL

Delegation WSDL

ARC extensions for JSDL schema

Example of authorization policy for A-REX

Error messages of A-REX (outdated)

30

30

31

36

38

41

42

1 Introduction

The A-REX is an ARC middleware component that implements functions of the so-called Computing Fl-
ement (CE). Here Computing Element is a service accepting requests containing a description of generic
computational jobs and executing it in the underlying local batch system.

It takes care of job pre- and post-processing, i.e. stage-in of files containing input data or program modules
from a wide range of sources and transfer or storing of output results.

In previous versions of ARC, computational tasks (jobs) were submitted to a resource through a GridFTP
service running on the CE, and processed by a Grid Manager (GM). The A-REX replaces both these
components, by implementing a Web Service (WS) interface which provides a way to submit jobs, and a
revised version of the GM to cache staged data, process jobs and interact with the underlying Local Resource
Management System. Currently A-REX implements two types of WS interfaces - extended Basic Execution
Service (OGSA BES) [7] and developed by European Middleware Initiative Execution Service (EMI ES) [1].
The A-REX can also be set up to process jobs submitted through the traditional ARC GridFTP service, as
well as or instead of those using the WS interface. Unless stated otherwise, the remainder of this document
assumes the WS interface.

You should use this document for advanced configuration purposes and understanding of the internals
of the aforementioned tools. For general installation and configuration of the whole system please
refer to other documents available at http://www.nordugrid.org/papers.html and specifically http:
//www.nordugrid.org/documents/arc-ce-sysadm-guide.pdf.

2 Main concepts

On the computing element a job is described as a set of input files (which may include executables), a main
executable, additional executables, pre-installed software (Runtime Environment) and a set of output files.
The process of gathering input files, executing a job, and transferring/storing output files is called a session.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in the SD or
in cache location. The job may also produce new data files in the SD. The A-REX does not guarantee the
availability of any other places accessible by the job other than SD (unless such a place is part of a requested
Runtime Environment). The SD is also the only place which is controlled by the A-REX. It is accessible by
the user from outside through the HTTP(S) and/or GridFTP protocols. Any file created outside the SD
is not controlled by the A-REX. Any exchange of data between client and A-REX (including also program
modules) is performed via HTTP(S) and/or GridFTP. A URL for accessing input/output files is obtained
through the WS Local Information Description Interface (LIDI) of A-REX.

Each job gets an identifier (jobid). This is a handle which identifies the job in the A-REX and in the Infor-
mation Interface. Depending on used interface it is either GUID-like opaque string or WS-Addressing [13]
XML document.

Jobs are initiated and controlled through the WS and GridFTP interfaces. Complete job descriptions (JD)
are passed to the A-REX through WS in JSDL [4] (for OGSA BES), ADL (for EMI ES) or extended RSL
(for GridFTP) coded description. Input data files and job executables are transferred separately through
the same interface, as described in Section 3.

3 Input/output data

One of the most important tasks of the A-REX is to take care of processing of the input and output data
(files) of the job. Input files are gathered in the SD or in the associated cache area. There are two ways to
put a file into the SD:

e Download is initiated by the A-REX — This is the case for files defined in the JD (with name and
source). The A-REX alone is responsible to ensure that all required files will be available in the SD.
The supported protocols for sources at the moment are (in case of full installation): GridFTP, FTP,

http://www.nordugrid.org/papers.html
http://www.nordugrid.org/documents/arc-ce-sysadm-guide.pdf
http://www.nordugrid.org/documents/arc-ce-sysadm-guide.pdf

HTTP, HTTPS (HTTP over SSLv3), SRM. Some less standard sources and Indezing Services are also
supported, these are described in Section 5. In the case where a file in an indexing service resolves to
multiple physical replicas, some selection of the “best” replica may be performed based on any available
information on the access latency of those replicas. The A-REX fully relies on the HED framework [5]
for data transferring capabilities and so the actual set of supported protocols depends on the installed
Data Management Components of the HED.

e Upload is initiated by the user directly or through the User Interface (UI). Because the SD becomes
available immediately at the time of submission of the JD, the UI can (and should) use that to upload
data files which are not otherwise accessible by the A-REX. Examples of such files are the main
executable of the job, the job’s input files, etc. These files can (and should) also be specified in the
JD. If EMI ES interface is used it is possible to upload files not defined in the JD if request for free
input data is present in the JD.

There is no other reliable way for a job to obtain input data on the CE based on the A-REX. Access to
AFS, NFS, FTP, HTTP and any other remote data transport during execution of a job is not guaranteed
(at least not by A-REX).

At the start of a download initiated by the A-REX, a dummy file with the same name and size as the source
file is created in the SD to check that enough space is available. As the transfer proceeds this dummy file is
over-written with the real data. If the file is to be cached (see Section 7) then the pre-allocation of space is
not done, as cache space is managed by the A-REX. In the case of caching two extra validation checks are
also performed: firstly, if the source is an Indexing Service then metadata (file size, checksum) reported by
the Indexing Service and the service hosting the physical replica are compared, if available. If they differ
then that replica is not downloaded. Secondly, on completion of the download the file size is compared to
that reported by the source - if they differ then the download is failed.

Jobs should store output files in their SD. Like input files, output files belong into two groups:

e Files which are supposed to be moved to a Storage Element (SE) and optionally registered in some
Indexing Service like the Globus Replica Location Service (RLS) — The A-REX takes care of these
files. They have to be specified in the JD. Normally if the job fails during any stage of processing,
no attempt is made to transfer those files to their final destination, unless the option preserve=yes is
specified in their URLs. The job described in EMI ES ADL allows for more fine grained control over
output files under different job completion scenario. For more information please see description of the
EMI ES.

e Files which are supposed to be fetched by the user — The user has to use a tool like the Ul to obtain
these files. They must also be specified in the JD.

All files not specified in the JD are deleted after job execution finished. If job execution fails for any reason (if
exit code of main executable is not 0) all files from first group are transferred to second one unless specified
otherwise in the JD.

4 Job flow

From the point of view of the A-REX a job passes through various states. Figure 1 presents a diagram of
the possible states of a job.

A user can examine the state of a job by querying the dedicated Local Information Description Interface of
A-REX using the UI or any other suitable tool or through query methods of any of WS interfaces. Different
interfaces provide different names for job states. Those are listed in the table 1.

Configuration can put limits on the amount of simultaneous jobs in some states. If such a limit is reached,
a job ready to enter into the state in question will stay in it’s current state waiting for a free slot. This
situation is presented by additional state mark PENDING to the current state name in the job’s status
description.

Below is the description of all actions taken by the A-REX at every state:

Fai l ure or cancel request

ACCEPTED
T‘ PENDI NG

PREPARI NG Fai lure or cancel reques,
N PENDI NG

SUBM TTI NG Failure or cancel reques

l

INLRMS ~ —> CANCELI NG [—*

——
=— PENDI NG

v
FINISH NG [«

l

—1 FI NI SHED

l

DELETED

Fai | ure processing

Rerun request

Figure 1: Job states

e Accepted — In this state the job has been submitted to a CE but is not processed yet. The A-REX
will analyze the JD and move to the next stage. If the JD can not be processed the job will be canceled
and moved to the state Finishing.

e Preparing — The input data is being gathered in the SD and the cache (stage-in). The A-REX is
downloading the files specified in the JD and is waiting for files which are supposed to be uploaded
by the UL If all files are successfully gathered the job moves to the next state. If any file can’t be
downloaded or it takes the Ul too long to upload a file, the job moves to Finishing state. It is possible
to put a limit on the number of simultaneous Preparing jobs. If this limit is exceeded, jobs ready to
enter the Preparing state will stay in the Accepted state, but prefixed with the PENDING: mark.
Exceptions are jobs which have no files to be downloaded. These are processed out of limits. If the
A-REX fails to download a file due to a temporary error with a remote service, the job will be moved
back to the Accepted state, but prefixed with the PENDING: mark, and will wait in that state for
some time before being retried. The waiting time increases exponentially with each attempt.

e Submitting — The job is being passed for execution to the Local Resource Management System
(LRMS). The corresponding backends for many LRMSs are provided with the default installation.
If the local job submission is successful the job moves to the Executing state. Otherwise it moves to
Finishing. It is possible to limit the aggregate number of jobs in Submitting and Executing states.

e Executing (InLRMS) — The job is queued or being executed in the LRMS. The A-REX takes no
actions except waiting until the job finishes.

e Killing (Canceling) — Necessary action to cancel the job in the LRMS is being taken.

e Finishing — The output data is being processed (stage-out). Specified data files are moved to the
specified SEs and are optionally registered at an Indexing Service. The user can download data files
from the SD by using the Ul or other adequate tool. All the files not specified as output files are
removed from the SD at very beginning of this state. It is possible to limit the number of simultaneous
jobs in this state. If the A-REX fails to upload a file due to a temporary error with a remote service,
the job will be moved back to the Executing state, but prefixed with the PENDING: mark, and will
wait in that state for some time before being retried. The waiting time increases exponentially with
each attempt.

e Finished — No more processing is performed by the A-REX. The user can continue to download data
files from the SD. The SD is kept available for some time (default is 1 week). After that the job is
moved to the state Deleted. The ’deletion’ time can be obtained by querying the Information Interface
of the A-REX. If a job was moved to Finished because of failure, it may be restarted on request of

a client. When restarted, a job is moved to the state previous to the one in which it failed and is
assigned mark PENDING. This is needed in order to not break the configuration limits. Exception is
a job failed in Executing state and lacking input files specified in JD. Such a job is treated like failed
in Preparing state.

e Deleted — The job is moved to this state if the user have not requested job to be cleaned before
the SD’s lifetime expires. Only minimal subset of information about such job is kept. The SD is not
available anymore.

In case of failure, special processing is applied to output files. By default all specified output files are treated
as downloadable by the user. No files will be moved to their destination SE.

5 URLs

In a full installation, the A-REX and its components support the following data transfer protocols and
corresponding URLs: ftp, gsiftp, hitp, https, Ilfc, rls and srm. For more information please see “The Hosting
Environment of the Advanced Resource Connector middleware” document [5].

6 Internals

6.1 Internal Files of the A-REX

For each local UNIX user listed in the A-REX configuration — including a generic one which covers all
local user identities — a control directory exists. In this directory the A-REX stores information about
jobs belonging to that user. Multiple users can share the same control directory. In the most common
configuration case, the A-REX serves all users defined by the Operating System and stores their control files
in the same directory. To make it easier to recover in case of failure, the A-REX stores most information in
files rather than in memory. All files belonging to the same job have names starting with job.ID., where
ID is the job identifier.

The files and sub-direcrories in the control directory and their formats are described below:

e job.ID.status — current state of the job. This is a plain text file containing a single word representing
the internal name of current state of the job. Possible v////alues and corresponding external job states
are:

ACCEPTED
PREPARING
SUBMIT

— INLRMS

— FINISHING
— FINISHED
CANCELING
DELETED

See Section 4 for a description of the various states. Additionally each value can be prepended the prefix
“PENDING:” (like PENDING:ACCEPTED, see Section 4). This is used to show that a job is ready to be
moved to the next state but it has to stay in it’s current state only because otherwise some limits set in the
configuration would be exceeded.

This file is not stored directly in the control directory but in the following sub-directories:

e accepting - for jobs in ACCEPTED state
e finished - for jobs in FINISHED and DELETED states

processing - for other states

restarting - temporary location for jobs being restarted on user request or after restart of A-REX

job.ID.description — contains the description of the job (JD).

job.ID.local — information about the job used by the A-REX. It consists of lines of format “name =
value”. Not all of them are always available. The following names are defined:

— globalid — job identifier as seen by user tools. Depending on used interface it is either BES
Activityldentifier XML tree, GUID of EMI ES or GridFTP URL.

— headnode — URL of service interface used to submit this job.

— interface — name of interface used for jobs submission - org.nordugrid.zbes, org.ogf.glue.emies. activitycreation
or org.nordugrid. gridftpjob.

— Irms — name of the LRMS backend to be used for local submission

— queue — name of the queue to run the job at

— localid — job id in LRMS (appears only after the job reached state InNLRMS)
— args — main executable name followed by a list of command-line arguments

— argscode — code which main executable returns in case of success

— pre — executable name followed by a list of command-line arguments for executable to run before
main executable. There maybe few of them

— precode — code which pre-executable returns in case of success

— post — executable name followed by a list of command-line arguments for executable to run after
main executable. There maybe few of them

— postcode — code which post-executable returns in case of success
— subject — user certificate’s subject, also known as the distinguished name (DN)

— starttime — GMT time when the job was accepted represented in the Generalized Time format of
LDAP

— lifetime — time period to preserve the SD after the job has finished in seconds

— notify — email addresses and flags to send mail to about the job specified status changes
— processtime — GMT time when to start processing the job in Generalized Time format
— ezectime — GMT time when to start job execution in Generalized Time format

— clientname — name (as provided by the user interface) and IP address:port of the submitting client
machine

— clientsoftware — version of software used to submit the job

— rerun — number of retries left to rerun the job

— priority —

— downloads — number of files to download into the SD before execution

— wuploads — number of files to upload from the SD after execution

— rtes —

— jobname — name of the job as supplied by the user

— projectname — name of the project as supplied by the user. There may be few of them

— jobreport — URL of a user requested accounting service. The A-REX will also send job records to
this service in addition to the default accounting service configured in the configuration. There
may be few of them

— cleanuptime — GMT time when the job should be removed from the cluster and it’s SD deleted
in Generalized Time format

— expiretime — GMT time when the credentials delegated to the job expire in Generalized Time
format

— gmlog — directory name which holds files containing information about the job when accessed
through GridFTP interface

— sessiondir — the job’s SD
— failedstate — state in which job failed (available only if it is possible to restart the job)

— failedcause — contains internal for jobs failed because of processing error and client if client
requested job cancelation.

— credentialserver — URL of MyProxy server to use for renewing credentials.
— freestagein — yes if client is allowed to stage-in any file

— activityid — Job-id of previous job in case the job has been resubmitted or migrated. This value
can appear multiple times if a job has been resubmitted or migrate more than once.

— migrateactivityid —

— forcemigration — This boolean is only used for migration of jobs. It determines whether the job
should persist if the termination of the previous job fails.

— transfershare — name of share used in Preparing and Finishing states.

This file is filled partially during job submission and fully when the job moves from the Accepted to the
Preparing state.

e job.ID.input — list of input files. Each line contains 3 values separated by a space. First value contains
name of the file relative to the SD. Second value is a URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input_12378.dat

A URL represents a location from which a file can be downloaded. Each URL can contain additional
options.

A file description refers to a file uploaded from the UT and consists of [size][.checksum] where
size - size of the file in bytes.
checksum - checksum of the file identical to the one produced by cksum (1).

These values are used to verify the transfer of the uploaded file. Both size and checksum can be left
out. A special kind of file description *.* is used to specify files which are not required to exist.

third optional value is path to delegated credentials to be used for communication with remote server.

This file is used by the data staging subsystem of the A-REX. Files with URL will be downloaded to
the SD or cache and files with ’file description’ will simply be checked to exist. Each time a new valid
file appears in the SD it is removed from the list and job.ID.input is updated.

e job.ID.input_status — contains list of files uploaded by client to the SD.

e job.ID.output — list of output files. Each line contains 1, 2 or 3 values separated by a space. First value
is the name of the file relative to the SD. The second value, if present, is a URL. Supported URLs are
the same as those supported by job.ID.input. Optional 3rd value is path to delegated credentials to
be used while accessing remote server.

This file is used by the data staging subsystem of the A-REX. Files with URL will be uploaded to
SE and remaining files will be left in the SD. Each time a file is uploaded it is removed from the list
and job.ID.output is updated. Files not mentioned as output files are removed from the SD at the the
beginning of the Finishing state.

e job.ID.output_status — list of output files successfully pushed to remote locations.

e job.ID.failed — the existence of this file marks the failure of the job. It can also contain one or more
lines of text describing the reason of failure. Failure includes the return code different from zero of the
job itself.

e job.ID.errors — this file contains the output produced by external utilities like downloader, uploader,
script for job submission to LRMS; etc on their stderr handle. Those are not necessarily errors, but can
be just useful information about actions taken during the job processing. In case of problem include
content of that file while asking for help.

e job.ID.diag — information about resources used during execution of job and other information suitable
for diagnostics and statistics. It’s format is similar to that of job.ID.local. The following names are at
least defined:

nodename — name of computing node which was used to execute job,

— runtimeenvironments — used runtime environments separated by ’;’,

ezritcode — numerical exit code of job,

— frontend_distribution — name and version of operating system distribution on frontend computer,
— frontend_system — name of operating on frontend computer,

— frontend_subject — subject (DN) of certificate representing frontend computer,

— frontend_ca — subject (DN) of issuer of certificate representing frontend computer,

and other information provided by GNU time utility. Note that some implementations of time insert
unrequested information in their output. Hence some lines can have broken format.

e job.ID.prozy — delegated X509 credentials or only chain of public certificates.

e job.ID.prozy.tmp — temporary X509 credentials with different UNIX ownership used by processes run
with effective user id different from job owner’s id.

e delegations — sub-directory containing collection of delegated credentials.

e [ogs — sub-directory with information prepared for reporting plugins.

There are other files with names like job.ID.* which are created and used by different parts of the A-REX.
Their presence in the control directory can not be guaranteed and can change depending on changes in the
A-REX code.

6.2 Web Service Interface

A-REX Web Service Interface provides means to submit a description of a computational job to a computing
resource, to stage-in additional data, to monitor and control processing of jobs, and obtain data produced
during the execution of a job. The WS Interface is built and deployed inside the Hosting Environment
Daemon (HED) infrastructure [5].

6.2.1 Basic Execution Service Interface

The job submission and control interface is based on a document produced by the OGF OGSA Basic
Execution Services (BES) Working Group [7].

The exchange of SOAP messages is performed via HTTP(S). The BES interface is represented by two port-
types — BES-Management and BES-Factory. The former is made to control the A-REX service itself and thus
defines operations to start and stop the functionality of the BES service. The A-REX does not implement
remote control of service functionality. Hence the BES-Management port-type is not functional. The BES-
Factory port-type provides operations to submit new jobs (to create an activity in terms of BES) and to
monitor its state. It also has an ability to provide information about the service. A-REX fully implements
the functionality of this port-type.

For job descriptions A-REX accepts the Job Submission Description Language (JSDL) [4] documents as de-
fined by the OGF Job Submission Description Language Working Group. Supported elements and extensions
are described below.

6.2.2 Extensions to OGSA BES interface

A-REX introduces two new operations in addition to those provided by BES. It does that by defining its
own port-type with new operations ChangeActivityStatus and Migrate Activity(see Appendix C).

The ChangeActivityStatus operation provides a way to request simple transfers between states of jobs and
corresponding actions.

e ChangeActivityStatus

— Input

x ActivityStatus Type OldStatus: Description of the state the job is supposed to be in during
execution of this request. If the current state of the job is different from the one having been
given, the operation is aborted and a fault is returned. This parameter is optional.

* ActivityStatus Type NewStatus: Description of the state the job is to be put into.
— Output

x ActivityStatus Type NewStatus: Description of the current state of the job.
— Fault(s)

x NotAuthorizedFault: Indicates that the client is not allowed to do this operation.

* InvalidActivityldentifierFault: There is no such job/activity.
x CantApplyOperationToCurrentStateFault: The requested transition is not possible.

On result of this command, the job should be put into the requested state. If such a procedure cannot
be performed immediately then the corresponding sequence is initiated and fault OperationWillBeAp-
pliedEventuallyFault will be returned.

Since BES allows implementations to extend their initial activity states with additional sub-states,
A-REX defines a set of sub-states of activity processing in addition to those defined by the BES, as
listed in Table 1. Their meaning is described in Section 4.

The MigrateActivity operation generates a request to migrate a grid job from another A-REX, i.e. the
operation will get input files and possibly job description from the cluster currently holding the job
and create the job as a new activity at the present cluster. Currently only migration of queuing jobs
is supported.

o MigrateActivity

— Input
x wsa:EndpointReference Type Activityldentifier: This element should contain the wsa:EndpointReference
of the job to be migrated.
x ActivityDocument: JSDL document of the job to be migrated. This element is optional.
* Boolean ForceMigration: Boolean that determines whether the job will persist on the new
cluster if the termination of the previous job fails.
— Output
* wsa:EndpointReference Type Activityldentifier: This element should contain the wsa:EndpointReference
of the new activity.
x ActivityDocument: Contains the JSDL document of the new activity.

— Fault(s)

* NotAuthorizedFault: Indicates that the client is not allowed to do this operation.

*x NotAcceptingNewActivitiesFault: A fault that indicates that A-REX currently is not accepting
new activities.

* UnsupportedFeatureFault: This fault indicates that an sub-element in the JDSL document is
not supported or the ActivityDocument has not been recognised as JSDL.

* InvalidRequestMessageFault: This fault indicates that an element in the request is either
missing or has an invalid format. Typically this would mean that the job-id cannot be
located in the Activityldentifier of the old job.

The Activiterldentifier specifies the URL of the job which will be migrated. In case the ActivityDocument
is filled this document will be used to create a new activity otherwise an attempt will be made to retrieve
the job description through the BES operation GetActivityDocument.

Once the input files have been downloaded from the other cluster, a request will be send to terminate the old
job. If this request fails the new activity at the present cluster will be terminate unless the ForceMigration
is true. This is to prevent the job from being executed at two different places at the same time.

10

Table 1: Job states definitions and mappings

Applicable ARC BES . o
BES state sub-state EMI ES state LIDI state A-REX internal state | Description
Job is in the process
. . submitted. This stat
Pending Accepting ACCEPTED ACCEPTED recognised by the A-I
Accepted is first reports
Accepted ACCEPTED ACCEPTED Job was submitted
Preparing Z%Eg&% PREPARING Stage-in process is goin
Prepared PREPRO- PREPARING -+ Stage-in process has fi
P CESSING PENDING s b !
e PROCESSING- Communication with lo
Submitting ACCEPTING SUBMIT system is in process
Job entered local batc
but is not runnning ne
Running Queued PPI;%CN]?\ISISNIgG_ INLRMS state is not recognised |
REX yet. Ezxecuting is
instead
. PROCESSING- Job is being executed
Executing RUNNING INLRMS batch system
Job execution in local &
tem has finished. The
Executed PROCESSING- INLRMS, INLRMS | dos not detect job staf
RUNNING + PENDING local batch system yet
sult this state is report
job is Pending.
Communication with lo
Killing PROCESSING CANCELING system to terminate ex
in process
Finishing PCOE?STgI)IET{g_ FINISHING Stage-out process is go
Job was stopped by exj
Cancelled Killed TERMINAL FINISHED request. The A-REX
does not remember thi
Failed is reported inste
. . There was a failure du
Failed Failed TERMINAL FINISHED cution
Finished Finished TERMINAL FINISHED Job finished successfull
Finished Deleted TERMINAL DELETED JRCEDXﬁ?;ZhEi;nd was |
Job is prevented from
. the next state due to so
All Pending PENDING nal limits; this sub-stat
in parallel with other s
Job processing is susp
client request; this sub-
pears in parallel with o
All Held states. This state is res
future and is not imp
yet.

11

6.2.3 Delegation Interface

The A-REX also supports the Delegation Interface (see Appendix D). This is a common purpose interface to
be used by ARC services which accepts delegated credentials from clients. The Delegation Interface imple-
ments two operations: initialization of credentials delegation (DelegateCredentialsInit) and update/renewal
of credentials (UpdateCredentials).

e DelegateCredentialsInit operation — this operation performs the first half of the credentials delegation
sequence.

— Input
+* None. On this request the service generates a pair of public and private keys. The public key
is then sent to the client in response.
— Output(s)

x TokenRequest Type TokenRequest: Contains the public key generated by the service as a Value
element. It also provides an identifier in the Id element which should be used to refer to the
corresponding private key.

— Fault(s)
* UnsupportedFault: Indicates that the service does not support this operation despite sup-
porting the port-type.
* ProcessingFault: Internal problems during generation of the token.

e UpdateCredentials operation — this operation makes it possible to update the content of delegated
credentials (like in the case of credentials being renewed) unrelated to other operations of the service.

— Input
x DelegatedToken Type Delegated Token: Contains an X509 proxy certificate based on the public
key from the DelegateCredentialsInit signed by the user’s proxy certificate. Also includes the
Id element which identifies the private key stored at the service side associated with these
credentials. The reference element refers to the object to which these credentials should be
applied in a way specific to the service. The same element must also be used for delegating
credentials as part of other operations on service.

— Output(s)
* None.
— Fault(s)
* UnsupportedFault: Indicates that service does not support this operation despite supporting
the port-type.
* ProcessingFault: Internal problems during generation of the token.

Additionally, A-REX Web Service Interface allows delegation to be performed as part of the CreateActivity
operation of the BES-Factory port-type. For this it accepts the element DelegatedCredentials inside the
CreateActivity element. The Id element of DelegatedCredentials must contain an identifier obtained in
response to the previous DelegateCredentialsInit operation. For more information about delegations and
delegation interface refer to [10].

6.2.4 Local Information Description Interface

The A-REX implements the Local Information Description Interface (LIDI) interface common for all ARC
services. This interface is based on OASIS Web Services Resource Properties specification [I0]. Information
about resources and maintained activities/jobs are represented in a WS-Resource Properties informational
XML document. The document type is defined in the A-REX WSDL as a ResourcelnformationDocument-
Type. It contains the following elements/resources:

nordugrid — description of computing resource that uses NorudGrid LDAP schema [9] converted to
XML document.

12

Domains — description of a computation resource that uses Glue2 schema.

All information can be accessed either through requests on particular resources or through XPath queries
using WS-Resource Properties operations.

6.2.5 Supported JSDL elements

A-REX supports the following elements from the JSDL version 1.0 specification [4] including POSIX Appli-
cations extension and JSDL HPC Profile Application Extension [§]:

JobName — name of the job as assigned by the user.

Ezecutable (POSIX,HPC) — name of the executable file.

Argument (POSIX,HPC) — arguments the executable will be launched with.
DataStaging

Filename — name of the data file on the executing node.
Source — source where the file will be taken from before execution.

Target — destination the file will be delivered to after execution.
Input (POSIX,HPC) - file to be used as standard input for the executable.
Output (POSIX,HPC) - file to be used as standard output for the executable.
Error (POSIX,HPC) — file to be used as standard error for the executable.
MemoryLimit (POSIX) — amount of physical memory needed for execution.
TotalPhysicalMemory — same as MemoryLimit.
Individual PhysicalMemory — same as MemoryLimit.
CPUTimeLimit (POSIX) — maximal amount of CPU time needed for execution.
TotalCPUTime — same as CPUTimeLimit.
Individual CPUTime — same as CPUTimeLimit.
WallTimeLimit (POSIX) — amount of clock time needed for execution.
Total CPUCount — number of CPUs needed for execution.

Individual CPUCount — same as Total CPUCount.

6.2.6 ARC-specific JSDL Extensions

A-REX accepts JSDL documents having the following additional elements (see Appendix E):

IsFExecutable — marks file to become executable after being delivered to the computing resource.
RunTimeEnvironment — specifies the name of the Runtime Environment needed for job execution.
Middleware — request for specific middleware on the computing resource frontend.

RemoteLogging — destination for the usage record report of the executed job.

LocalLogging — name for the virtual directory available through job interface and containing various
debug information about job execution.

AccessControl — ACL expression which describes the identities of those clients who are allowed to
perform operations on this job.

13

Notify — Email destination for notification of job state changes.

SessionLifeTime — duration for the directory containing job-related files to exist after the job finished
executing.

JoinOutputs — specifies if standard output and standard error channels must be merged.
Reruns — defines how many times a job is allowed to rerun in case of failure.

CredentialServer — URL of MyProxy service which may be used for renewing the expired delegated
job credentials.

CandidateTarget — specifies host name and queue of a computing resource.

OldJobID — specifies the previous job-ids in case the job has been resubmitted or migrated.

7 Cache

The A-REX can cache input files, so that subsequent jobs requiring the same files do not have to download
them again. Caching is enabled if one or more cache directories are specified in the configuration file. All
input files except files uploaded by the user during job submission are cached by default. This includes
executable files downloaded by the A-REX. Caching can be explicitly turned off by the user in the job
description (see [12]). The disk space occupied by the cache is controlled by removing files in the order of
least recent access. For more information on configuration see Section 9.1.

7.1 Structure

Cached files are stored in sub-directories under the data directory in each main cache directory. Filenames
are constructed from an SHA-1 hash of the URL of the file and split into subdirectories based on the two
initial characters of the hash. In the extremely unlikely event of a collision between two URLs having the
same SHA-1 hash, caching will not be used for the second file.

When multiple caches are used, a new cache file goes to a randomly selected cache, where each cache is
weighted according to the size of the file system on which it is located. For example: if there are two caches
of 1TB and 9TB then on average 10% of input files will go to the first cache and 90% will go to the second
cache.

Some associated metadata including the corresponding URL and an expiry time, if available, are stored in
a file with the same name as the cache file, with a .meta suffix.

For example, with a cache directory /cache, the file

Ifc://atlaslfc.nordugrid.org//grid/atlas/file1

is mapped to
/cache/data/18/f607405ab1df6b64 TfacT7aa97dfb6089c19fb3

and the file /cache/data/78/f607405ab1df6b64 7fac7aa97dfb6089c19fb3.meta contains the original URL and
an expiry time if one is available.

At the start of a file download, the cache file is locked, so that it cannot be deleted and so that another
download process cannot write the same file simultaneously. This is done by creating a file with the same
name as the cache filename but with a .lock suffix. This file contains the process ID of the process and the
hostname of the host holding the lock. If this file is present, another process cannot do anything with the
cache file and must wait until the cache file is unlocked (i.e. the .lock file no longer exists). The lock has a
timeout of one day, so that stale locks left behind by a download process exiting abnormally will eventually
be cleaned up. Also, if the process corresponding to the process ID stored inside the lock is no longer running
on the host specified in the lock, it is safe to assume that the lock file can be deleted.

14

7.2 How it works

If a job requests an input file which can be cached or is allowed to be cached, it is stored in the selected cache
directory, and depending on the configuration, either the file is copied to the SD or a hard link is created in
a per-job directory and a soft link is created in the SD to there. The per-job directories are in the joblinks
subdirectory of the main cache directory. The former option is advised if the cache is on a file system which
will suffer poor performance from a large number of jobs reading files on it, or the file system containing
the cache is not accessible from worker nodes. The latter option is the default option. Files marked as
executable in the job will be stored in the cache without executable permissions, but they will be copied to
the SD and the appropriate permissions applied to the copy.

The per-job directory is only readable by the local user running the job, and the cache directory is readable
only by the A-REX user. This means that the local user cannot access any other users’ cache files. It also
means that cache files can be removed without needing to know whether they are in use by a currently
running job. However, as deleting a file which has hard links does not free space on the disk, cache files
are not deleted until all per-job hard links are deleted. IMPORTANT: If a cache is mounted from an
NFS server and the A-REX is run by the root user, the server must have the mo_root_squash option set
for the A-REX host in the /etc/exports file, otherwise the A-REX will not be able to create the required
directories. Note that when running A-REX under a non-privileged user account, all cache files will be owned
and accessible by the same user, and therefore modifyable by running jobs. This is potentially dangerous
and so cacheing should be used with caution in this case.

If the file system containing the cache is full and it is impossible to free any space, the download fails and
is retried without using cacheing.

Before giving access to a file already in the cache, the A-REX contacts the initial file source to check if the
user has read permission on the file. In order to prevent repeated checks on source files, this authentication
information is cached for a limited time. On passing the check for a cached file, the user’s DN is stored in
the .meta file, with an expiry time equivalent to the lifetime remaining for the user’s proxy certificate. This
means that the permission check is not performed for this user for this file until this time is up (usually
several hours). File creation and validity times from the original source are also checked to make sure the
cached file is fresh enough. If the modification time of the source is later than that of the cached file, the
file will be downloaded again. The file will also be downloaded again if the modification date of the source
is not available, as it is assumed the cache file is out of date. These checks are not performed if the DN is
cached and is still valid.

The A-REX checks the cache periodically if it is configured to do automatic cleaning. If the used space on
the file system containing the cache exceeds the high water-mark given in the configuration file it tries to
remove the least-recently accessed files to reduce size to the low water-mark.

7.3 Remote Caches

If a site has multiple A-REXs running’, an A-REX can be configured to have its own caches and have
read-only access to caches under the control of other A-REXs (remote caches). An efficient way to reduce
network traffic within a site is to configure A-REXs to be under control of caches on their local disks and
have caches on other hosts as remote caches. If an A-REX wishes to cache a file and it is not available on
the local cache, it searches for the file in remote caches. If the file is found in a remote cache, the actions
the A-REX takes depends on the policy for the remote cache. The file may be replicated to the local cache
to decrease the load on the remote file system caused by many jobs accessing the file. However, this will
decrease the total number of cache files that can be stored. The other policy is to use the file in the remote
cache, creating a per-job directory for the hard link in the remote cache. Then the link is created from the
session dir to that directory, bypassing the local cache completely. The usual permission and validity checks
are performed for the remote file. Note that no creation or deletion of remote cache data is done - cache
cleaning is only performed on local caches.

THow to set up multiple A-REXs under one ARC GridFTP service is explained in 2]

15

7.4 Cache Administration

The cache is cleaned automatically periodically (every 5 minutes) by the A-REX to keep the size of each
cache within the configured limits. Files are removed from the cache if the total size of the cache is greater
than the configured limit. Files which are not locked are removed in order of access time, starting with the
earliest, until the size is lower than the configured lower limit. If the lower limit cannot be reached (because
too many files are locked, or other files outside the cache are taking up space on the file system), the cleaning
will stop before the lower limit is reached.

Since the limits on cache size are given as a percentage of space used on the filesystem on which the cache is
located, it is recommended that each cache has its own dedicated file system. If the cache shares space with
other data on a file system, changes in the amount of non-cache data will result in changes in the available
cache space.

With large caches mounted over NFS and an A-REX heavily loaded with data transfer processes, cache
cleaning can become slow, leading to caches filling up beyond their configured limits. For performance
reasons it may be advantageous to disable cache cleaning by the A-REX, and run the cache-clean tool
independently on the machine hosting the file system.

Caches can be added to and removed from the configuration as required without affecting any cached data,
but after changing the configuration file, the A-REX should be restarted. If a cache is to be removed and
all data erased, it is recommended that the cache be put in a draining state until all currently running jobs
possibly accessing files in this cache have finished. In this state the cache will not be used by any new jobs,
but the hard links in the joblinks directory will be cleaned up as each job finishes. Once this directory is
empty it is safe to delete the entire cache. See the cachedir option in Section 9.1 for how to set a cache to a
draining state.

The following tools (installed in $ARC_-LOCATION /libexzec/arc) exist to help with administration of the
cache:

e cache-clean - This tool is used periodically by the A-REX to keep the size of each cache within the
configured limits.
cache-clean -h gives a list of options. The most useful option for administrators is -s, which does not
delete anything, but gives summary information on the files in the cache, including information on the
ages of the files in the cache.
It is not recommended to run cache-clean manually to clean up the cache, unless it is desired to
temporarily clean up the cache with different size limits to those specified in the configuration, or to
improve performance by running it on the file system’s local node as mentioned above.

e cache-list - This tool is used to list all files present in each cache or, given a list of URLs as arguments,
shows the location of each URL in the cache if present. In the first case it simply reads through all the
.meta files and prints to stdout a list of all URLSs stored in each cache and their corresponding cache
filename, one per line. In the second case the cache filename of each URL is calculated and then each
cache is checked for the existence of the file.

8 Files and directories

8.1 Modules

The A-REX consists of several separate modules. These are:

e [ibarex.so — The main module providing main functionality and web interface. It is implemented as
HTTP and SOAP service inside HED. It is responsible for processing jobs, moving them through states
and running other modules.

e downloader — This is a module responsible for gathering input files in the SD. It processes the
job.ID.input file and updates it.

e uploader — This module is responsible for delivering output files to the specified SEs and registration
at an Indexing Service (like RLS) as needed. It processes and updates the job.ID.output file.

16

e gm-kick — Sends a signal to the A-REX though a FIFO file to wake it up. It’s used to increase
responsiveness of A-REX.

e CFinfo.pl — Collects and generates information about computing resource as XML document in Nordu-
Grid and Glue 2 format.

The following modules are always run under the Unix account to which a Grid user is mapped.

o smitp-send.sh and smip-send — These are the modules responsible for sending e-mail notifications to
the user. The format of the mail messages can be easily changed by editing the simple shell script
smitp-send.sh.

o submit-*-job — Here * stands for the name of the LRMS. Currently supported LRMS are PBS/Torque,
Condor, LoadLeveler, LSF, SLURM, and SGE. Also fork pseudo-LRMS is supported for testing pur-
poses. This module is responsible for job submission to the LRMS.

e cancel-*-job — This script is for canceling jobs which have been already submitted to the LRMS.

e scan-*-job -This shell script is responsible for notifying the A-REX about completion of jobs. It’s
implementation for PBS uses server logs to extract information about jobs. If logs are not available it
uses the less reliable gstat command for that. Other backends use different techniques.

In addition, there is also an administration utility:

e gm-jobs — prints a list of jobs available on the cluster and the number of jobs in each state.
gm-jobs [-h] [-s] [-]] [-u uid] [-U name] [-c conf file] [-d control_dir]
-h — print short help,
-s — print summary of jobs in each transfer share,
-1 — print more information about each job,
-u — pretend utility is run by user with id wuid,
-U — pretend utility is run by user with name name,
-¢ — use specified configuration file,
-d — read information from specified control dir.

8.2 Directories

The A-REX is installed into a single installation point referred as $ARC_LOCATION and the following
sub-directories are used:

$ARC_LOCATION/bin — tools
$ARC_LOCATION/libexec — program modules used by A-REX
/etc — central configuration file — location used by default

$ARC_LOCATION/lib/arc — service module
The A-REX also uses following directories:

e session root directory — This is the directory in which a user’s SDs are created. It’s location is config-
urable per UNIX user. Several (or even all) users may share the same session root directory.
The A-REX needs to have permission to create new files and directories in the session root directory.
If A-REX is run under a dedicated user account, that account needs full permissions in the session
root directory.
If A-REX is run under the root account, make sure session root directory resides on a file system which
does not limit the capabilities of the root user (as does for example NFS with root_squash option).
If there is a need to run A-REX under the root account (to be able to run jobs in LRMS under different
users’ accounts, for example) but there is no way to provide a suitable session root directory, use the
norootpower command in configuration file. In that case A-REX will use the identity of the local user

17

to which a Grid identity is mapped to access the session root directory. Hence those users will need
full access there.

The A-REX creates SDs with proper ownership and permissions for the local identity used to run a
job. Some file systems require users to have ezecute permission on the session root directory in order
to access any file or subdirectory there.

In order for jobs to access their input files, session root directories should be shared across cluster
nodes. Otherwise, LRMS-specific methods must be used to transfer files to execution nodes.

e control directory — In this directory A-REX stores information about accepted jobs. Status information
of jobs is stored in subdirectories corresponding to the status. A-REX must have full permissions on
the control directory.

A subdirectory called logs is used to accumulate information about started and finished jobs. This
information is periodically sent to the desired accounting service(s). For each job start and stop event,
and for each accounting service where that event must be sent, a separate file is written. Once an
event is sent, the corresponding file is deleted.

Some utility files, which contain for example cached information on remote services, may also be found
in the control directory. These files have a .conf suffix.

Other entries in the control directory include a heartbeat file (gm-heartbeat) and a pipe per user for
communication with A-REX (gm.username.fifo).

9 Configuration

9.1 Configuration of the A-REX

Due to historical reasons, configuration of the A-REX is split into 2 parts: HED configuration for the
WS interface and a legacy configuration file for the rest. For more information on the HED configuration
see instructions in Section 11.2; and Appendix B for a full schema and description of supported elements.
The HED configuration refers to the legacy file, which is identical to the configuration file used for the
GridFTP/Grid Manager services in previous versions of ARC. The default location of this legacy file is
Jetc/arc.conf. If the A-REX is run without the WS interface, then only the legacy file is needed (to configure
the GridFTP interface see [2]). This section describes the content of the legacy file relating to running the
A-REX.

The configuration file can contain empty lines and comments in lines starting with #. It is separated into
sections. Each section starts with a string containing

[section name/subsection name/subsubsection name]

Each section continues until the next section or until the end of the file. The configuration file can have
commands for multiple services/modules/programs. Each service has its own section named after it. The
A-REX uses the [grid-manager] section. Some services can make use of multiple subsections to reflect their
internal modular structure. Commands in section [common/ apply to all services. Command lines have the
format

name=‘ ‘arguments string’’

The following commands are defined:

Commands affecting the A-REX process and logging;:

o pidfile =path — specifies file where process id of A-REX process will be stored. Defaults to /var/run/arched-

arex.pid if running as root and $HOME/arched.pid otherwise.

e logfile =path — specifies name of file for logging debug/informational output. Defaults to /var/log/arc/grid-

manager.log. Note: if installed from binary packages, ARC comes with configuration for logrotate log
management utility and A-REX log is managed by logrotate by default.

18

e logsize =size number — restricts log file size to size and keeps number archived log files. This command
enables log rotation by ARC and should only be used if logrotate or other external log rotation utility is
not used. Using ARC log rotation and external log management simultaneously may result in strange
behaviour.

e logreopen =yes—no — specifies if log file must be opened before writing each record and closed after
that. By default log file is kept open all the time (default is no).

o debug=number — specifies level of debug information. More information is printed for higher levels.
Currently the highest effective number is 5 (DEBUG) and lowest 0 (FATAL). Defaults to 2 (WARN-
ING).

e user=username — specifies username to which the A-REX must switch after reading configuration.
Defaults to not switch.

Commands affecting the A-REX Web Service communication interface:

e voms_processing =relaxed—standard—strict—noerrors — specifies how to behave if failure happens
during VOMS processing.

— relaxed — use everything that passed validation.

standard — same as relaxed but fail if parsing errors took place and VOMS extension is marked
as critical. This is a default.

strict — fail if any parsing error was discovered.

— noerrors — fail if any parsing or validation error happened.
Default is standard. This option is effective only if A-REX is started using startup script.

e arex_mount_point=URL — specifies URL for accessing A-REX through WS interface. This option is
effective only if A-REX is started using startup script.

o max_job_control_requests =number — specifies maximal number of simultaneously processed job con-
trol requests. Requests above that threshold are put on hold. Default value is 100. Setting value to -1
turns this limit off. This option is effective only if A-REX is started using startup script.

o max_infosys_requests =number — specifies maximal number of simultaneously processed job control
requests. Requests above that threshold are put on hold. Default value is 1. Setting value to -1 turns
this limit off. This option is effective only if A-REX is started using startup script.

e max_data_transfer_requests =number — specifies maximal number of simultaneously processed job
control requests. Requests above that threshold are put on hold. Default value is 100. Setting value
to -1 turns this limit off. This option is effective only if A-REX is started using startup script.

Commands setting limits and options for how the A-REX handles jobs and files:

e joblog=path — specifies where to store log file containing information about started and finished jobs.

e jobreport=URL ... number — specifies that A-REX has to report information about jobs being
processed (started, finished) to a centralized service running at the given URL. Multiple entries and
multiple URLs are allowed. number specifies how long (in days) old records have to be kept if failed
to be reported. The last specified value becomes effective.

e jobreport_credentials =key_file [cert_file [ca_dir]] — specifies the credentials for accessing the account-
ing service.

e jobreport_options=options — specifies additional options for Usage Reporter and/or accounting ser-
vice. The options string is interpreted by Usage Reporter, its format is described in the corresponding
technical document.

e securetransfer =yes—no — specifies whether to use encryption while transferring data. Currently
works for GridFTP only. Default is no. It is overridden by values specified in URL options.

19

e passivetransfer =yes—no — specifies whether GridF'TP transfers are passive. Setting this option to
yes can solve transfer problems caused by firewalls. Default is no.

e localtransfer =yes—no — specifies whether to pass file downloading/uploading task to computing
node. If set to yes the A-REX will not download/upload files but compose script submitted to the
LRMS in order that the LRMS can execute file tranfer. This requires installation of A-REX and all
related software to be accessible from computing nodes and environment variable ARC_LOCATION
to be set accordingly. Default is no.

e maxjobs=[maz_processed_jobs [max_running_jobs [mazx_jobs_per_dn [maz_jobs_total/]]] — specifies max-
imum number of jobs being processed by the A-REX at different stages:
max_processed_jobs — maximum number of concurrent jobs processed by A-REX. This does not limit
the amount of jobs which can be submitted to the cluster.
maz_running_jobs — maximum number of jobs passed to Local Resource Management System
maz_jobs_per_dn — maximum number of concurrent jobs processed by A-REX per user DN. If this
option is used the total maximum number of jobs processed is still maz_processed_jobs.
maz_jobs_total — total maximum number of jobs associated with service. It is advised to use this limit
only inexceptional case because it also accounts for finished jobs.

Missing value or -1 means no limit.

e maxload =[maz_frontend_jobs [emergency_frontend_jobs [maz_transferred_files]]] — specifies maximum
load caused by jobs being processed on frontend:
maz_frontend_jobs — maximum number of jobs in PREPARING and FINISHING states (downloading
and uploading files). Jobs in these states can cause a heavy load on the A-REX host. This limit is
applied before moving jobs to PREPARING and FINISHING states.
emergency_frontend_jobs — if limit of maz_frontend_jobs is used only by PREPARING or by FINISHING
jobs, aforementioned number of jobs can be moved to another state. This is used to avoid the case
where jobs cannot finish due to a large number of recently submitted jobs.
maz_transferred_files — maximum number of files being transferred in parallel by every job. Used to
decrease load on not so powerful frontends.
Missing value or -1 means no limit.

e maxloadshare =maz_share share_type — specifies a sharing mechanism for data transfer. maz_share is
the maximum number of processes that can run per transfer share and share_type is the scheme used
to assign jobs to transfer shares. See Section 9.2 for possible values and more details.

e share_limit =name limit — specifies a transfer share that has a number of processes different from the
default value in maxloadshare. name is the name of the share and limit is the number of processes for
this share. In the configuration should appear after maxloadshare. Can be repeated several times for
different shares. See Section 9.2 for how to compose shares’ names and more details.

o wakeupperiod =time — specifies how often the A-REX checks for job state changes (like new arrived
job, job finished in LRMS, etc.). time is a minimal time period specified in seconds. Default is 3
minutes. The A-REX may also be woken up by external processes such as LRMS scripts before this
time period expires.

e authplugin=state options plugin — specifies plugin (external executable) to be run every time job is
about to switch to state. The following states are allowed: ACCEPTED, PREPARING, SUBMIT,
FINISHING, FINISHED and DELETED. If exit code is not 0 job is canceled by default. Options
consists of name=value pairs separated by commas. The following names are supported:
timeout — specifies how long in seconds execution of the plugin allowed to last (mandatory, “timeout=*
can be skipped for backward compatibility).
onsuccess, onfailure and ontimeout — defines action taken in each case (onsuccess happens if exit code
is 0). Possible actions are:
pass — continue execution,
log — write information about result into log file and continue execution,
fail — write information about result into log file and cancel job.

e localcred =timeout plugin — specifies plugin (external executable or function in shared library) to be run
every time job has to do something on behalf of local user. Execution of plugin may not last longer than

20

timeout seconds. If plugin looks like function@path then function int function(char* char* char*,...)
from shared library path is called (timeout is not functional in that case). If exit code is not 0 current
operation will fail.

e norootpower =yes/no — if set to yes all processes involved in job management will use local identity
of a user to which Grid identity is mapped in order to access file system at path specified in session
command (see below). Sometimes this may involve running temporary external process.

e speedcontrol =min_speed min_time min_average_speed maz_inactivity — specifies how long/slow data
transfer is allowed to take place. Transfer is canceled if transfer rate (bytes per second) is lower than
min_speed for at least min_time seconds, or if average rate is lower than min_average_speed, or no data
is received for longer than maz_inactivity seconds. To allow statistics to build up, no transfers will be
stopped within the first 3 minutes.

e preferredpattern=pattern - specifies how to order multiple replicas of an input file according to
preference. It consists of one or more patterns (strings) separated by a pipe character (|) listed in
order of preference. Input file replicas will be matched against each pattern and then ordered by the
earliest match. If the dollar character ($) is used at the end of a pattern, the pattern will be matched
to the end of the hostname of the replica.

e newdatastaging=yes/no - turns on or off the new data staging framework*, which replaces the
downloader and uploader utilities. Default is no.

e delivery_service=URL - specifies a remote delivery service to be used by the new data staging
framework.

e local_delivery=yes/no - in case remote delivery services are configured using the previous option, this
option specifices whether or not delivery should also be done locally on the A-REX host. Default is
no.

e copyurl=template replacement — specifies that URLs starting from template should be accessed at
replacement instead. The template part of the URL will be replaced with replacement. This option is
useful when for example a grid storage system is accessible as a local file system on the A-REX host.
replacement can be either a URL or a local path starting from ’/’. Tt is advisable to end template with

7/7.

o linkurl=template replacement [node_path] — mostly identical to copyurl but file will not be copied.
Instead a soft-link will be created. replacement specifies the way to access the file from the frontend,
and is used to check permissions. The node_path specifies how the file can be accessed from computing

nodes, and will be used for soft-link creation. If node_path is missing, local_path will be used instead.
Neither node_path nor replacement should be URLs.

NOTE: URLs which fit into copyurl or linkurl are treated as more easily accessible than other
URLs. That means if A-REX has to choose between several URLs from which should it download
input file, these will be tried first.

Per UNIX user commands

o mail=e-mail_address — specifies an email address from which notification mails are sent.

o defaultttl=ttl [ttr] — specifies the time in seconds for the SD to be available after job finishes (#tl).
Second number (#tr) defines time since removal of the SD till all information about job is discarded.
Time is specified in seconds. Defaults are 7 days for ¢t/ and 30 days for ttr. The minumum value for
both parameters is 2 hours.

o Irms=default_lrms_name default_queue_name — specifies names for the LRMS and queue. Queue name
can also be specified in the JD (currently it is not allowed to override LRMS by using the JD).

fsee http://wiki.nordugrid.org/index.php/Data_Staging

21

e sesstondir=path [drain] - specifies the path to the directory in which the SD is created. Multiple
session directories may be specified by specifying multiple sessiondir commands. In this case jobs are
spread evenly over the session directories. If the path is * the default sessiondir is used - $HOME/.jobs.
When adding a new session directory, ensure to restart the A-REX so that jobs assigned there are
processed. A session directory can be drained prior to removal by adding the “drain” option (no
restart is required in this case). No new jobs will be assigned to this session directory but running
jobs will still be accessible. When all jobs are processed and the session directory is empty, it can be
removed and the A-REX should be restarted.

e cachedir=path [link_path] — specifies a directory to store cached data (see section 7). Multiple cache
directories may be specified by specifying multiple cachedir commands. Cached data will be distributed
over multiple caches according to free space in each. Specifying no cachedir command or commands
with an empty path disables caching. The optional link_path specifies the path at which path is
accessible on computing nodes, if it is different from the path on the A-REX host. If link_path is set to
" files are not soft-linked, nor are per-job links created, but files are copied to the session directory.
If a cache directory needs to be drained, then cachedir should specify “drain” as the link_path.

e remotecachedir=path [link_path] - specifies caches which are under the control of other A-REXs, but
which this A-REX can have read-only access to (see Section 7.3). Multiple remote cache directories
may be specified by specifying multiple remotecachedir commands. If a file is not available in paths
specified by cachedir, the A-REX looks in remote caches. link_path has the same meaning as in cachedir,
but the special path “replicate” means files will be replicated from remote caches to local caches when
they are requested.

e cachesize =high_-mark [low_mark] — specifies high and low watermarks for space used on the file system
on which the cache directory is located, as a percentage of total file system capacity. When the max
is exceeded, files will be deleted to bring the used space down to the min level. It is a good idea
to have each cache on its own separate file system. If no cachesize is specified, or it is specified
without parameters, no cleaning is done. These cache settings apply to all caches specified by cachedir
commands.

e cachelifetime=lifetime - if cache cleaning is enabled, files accessed less recently than the lifetime time
period will be deleted. Example values of this option are 1800, 90s, 24h, 30d. When no suffix is given
the unit is seconds.

e cachelogfile =path — specifies the filename where output of the cache-clean tool should be logged.
Defaults to /var/log/arc/cache-clean.log.

e cacheloglevel =number — specifies the level of logging by the cache-clean tool, between 0 (FATAL)
and 5 (DEBUG). Defaults to 3 (INFO).

e cachecleantimeout =timeout — the timeout in seconds for running the cache-clean tool. If using a
large cache or slow file system this value can be increased to allow the cleaning to complete. Defaults
to 3600 (1 hour).

e maxrerun =number — specifies maximal number of times job will be allowed to rerun after it failed at
any stage. Default value is 5. This only specifies a upper limit. The actual number is provided in job
description and defaults to 0.

o maxtransfertries =number — specifies the maximum number of times download and upload will be
attempted per job (retries are only performed if an error is judged to be temporary, for example a
communication error with a remote service). This number must be greater than 0 and defaults to 10.

All per-user commands should be put before the control command which initiates serviced user.

o control=path username [username [...[]] — This option initiates UNIX user as being serviced by the
A-REX. The path refers to the control directory (see Section 6 for the description of control directory).
If the path is * the default one is used — $HOME/ . jobstatus. The username stands for UNIX name of
the local user. Multiple names can be specified. If the name starts from @ rest is treated as path to file
containing list serviced users. Usernames are specified one per line and may be optionally prepended
with Grid identity of user - last one is ignored. That is done for compatibility with so-called grid-
mapfile (for more information please see the description of Globus project [6]). Also the special name

22

’.’(dot) can be used. Corresponding control directory will be used for any user. This option should be
the last one in the configuration file. There is also command controldir=path. It presumes special

k)

username ’.” and is always executed last independent of its placement in file.
e helper=username command [argument [argument [...]]] — associates an external program with the

local UNIX user. This program will be kept running under account of the user specified by username.

Special names can be used: "*’ — all names from /etc/grid-security/grid-mapfile, ’.” - root user. The user

should be already configured with control option (except root, who is always configured). command is
an executable and arguments are passed as arguments to it.

The following are global commands specific to communication with the underlying LRMS.

e gnu_time=path — path to time utility.
e tmpdir =path — path to directory for temporary files.
e runtimedir =path — path to directory which contains runtimenvironment scripts.

e shared_filesystem =yes—no — if computing nodes have an access to session directory through a shared
file system like NF'S.

e nodename=command — command to obtain hostname of computing node.
e scratchdir =path — path on computing node where to move session directory before execution.

e shared_scratch =path — path on frontend where scratchdir can be found.
In the command arguments (paths, executables, ...) following substitutions can be used:

%R — session root — see command sessiondir
%C — control dir — see command control

bl

%U — username (as specified in configuration, hence empty for ’.” control directories)
%u — userid — numerical
%g — groupid — numerical
%H — home dir — home of username as specified in /etc/passwd
%Q — default queue — see command Irms
%L — default Irms — see command Irms
%W - installation path — ${ARC_LOCATION}
%F — path to configuration file of this instance
%I — job ID (for plugins only, substituted in runtime)
%S — job state (for authplugin plugins only, substituted in runtime)
%0 — reason (for localcred plugins only, substituted in runtime). Possible reasons are:

new — new job, new credentials

renew — old job, new credentials

write — write/delete file, create/delete directory
read — read file, directory, etc.

extern — call external program

23

9.2 Transfer shares

For many jobs, large amounts of input and output data can mean significant time is spent in the PREPARING
and FINISHING states gathering input data and writing output data. With FIFO processing, this can lead
to one user or group of users blocking the queue for others. The A-REX implements a sharing system to
avoid this problem, by assigning each user or group of users to a “transfer share” and specifying a limit on
the number of data transfer processes per share. If one user’s jobs’ transfer share is using the maximum
number of processes and another user submits jobs which are assigned to a different share, the second user’s
jobs can immediately go to PREPARING, up to the same maximum limit of processes. This means that
no matter how many jobs the first user submits, the second user’s jobs are not blocked. Assuming the
bandwidth from the sources of input data for both users’ jobs is similar, the available throughput will then
be split evenly between the two users’ jobs.

If a limit on the total number of data transfer processes is set in the mazload option, the maximum number
of processes per transfer share is set by splitting the total maximum evenly among all the shares with jobs
in data transfer states, up to the maximum allowed per share.

The scheme used to assign jobs to transfer shares can be set in the mazloadshare option. Possible values are:

e dn - each job is assigned to a share based on the DN of the user sumbitting the job.

e voms:vo - if the user’s proxy is a VOMS [3] proxy the job is assigned to a share based on the VO
specified in the proxy. If the proxy is not a VOMS proxy a default share is used.

e voms:role - if the user’s proxy is a VOMS proxy the job is assigned to a share based on the role specified
in the first attribute found in the proxy. If the proxy is not a VOMS proxy a default share is used.

e voms:group - if the user’s proxy is a VOMS proxy the job is assigned to a share based on the group
specified in the first attribute found in the proxy. If the proxy is not a VOMS proxy a default share is
used.

It’s possible to distinguish some transfer shares and assign them a limit different from what’s specified
in mazxloadshare. It’s done by share_limit option. share_limit can only be used if mazxloadshare has been
already set before. Depending on the sharing mechanism used by mazloadshare, the proper name for the
share should be specified, as illustrated by the following examples (note, that in dn case spaces are allowed,
the configuration parser will take care of them):

e dn: /O=Grid/O=NorduGrid/OU=domainname.com/CN=Jane Doe
® YOMS:VO: voname
e voms:role: voname:rolename

e voms:group: /voname/groupname

The specific shares, specified in share_limit, are processed differently from the other shares. A-REX reserves
an indicated number of processes for each specific share. The number of unreserved processes is then split
evenly between the ordinary shares, as determined by mazloadshare. So the specific shares have a strict,
non-decreaseable limit, unlike all the ordinary shares, whose limit can be decreased while A-REX tries to
split the load evenly. However, A-REX reserves processes only for active specific shares, i.e. shares to which
at least one active job on the resource belongs to. If the share is not active, its slots are used in overall
splitting between ordinary transfer shares.

A particular case is when A-REX reserves more processes than specified in mazjobs. A-REX will process jobs
from specific share at FIFO-basis and stop at reaching mazjobs number of processes, even if some specific
shares haven’t reached their limits. Also in this situation each ordinary share is allowed to launch only one
upload and download process.

If VOMS is not supported, the dn scheme is the only option that should be used, as using a VOMS-based
scheme will lead to all jobs being assigned to the default share. The current number of jobs processing and
pending processing for each share can be seen with the command gm-jobs -s.

24

Important: If a sharing mechanism based on VOMS is used, server certificates for each supported VO must
be installed. It is possible to either download the public key of each VOMS server, or create a special file
for each VO containing the server’s DN and its CA DN. Instructions are given on NorduGrid’s web site at
http://www.nordugrid.org/documents/voms—-notes.html|

When XML file only is used to configure the A-REX, the transfer shares can be implemented by defining
mazLoadShare (the limit itself) and loadShareType (the scheme used) elements inside loadLimits block.
For defining the specific shares, shareLimit sub-blocks with name and limit elements can be used after
mazLoadShare.

9.3 Authorization

Authorization is performed by generic means provided by HED framework. Currently A-REX does not
implement any internal authorization techniques except those imposed by Access Policy assigned to jobs
through AccessControl element of assigned JSDL.

9.4 LRMS support

For information about supported LRMSes and their specific features and configuration options please read
dedicated documentation [I1].

9.5 Runtime environment

The A-REX can run specially prepared BASH scripts prior to creation of the job’s script, before and after
executing job’s main executable. Those scripts are requested by the user through the runtimeenvironment
attribute in JSDL and are run with the only argument set either equal to ’0’, '1’ or ’2’ during creation of the
job’s script, before execution of the main executable and after main the executable is finished, respectively.
They all are run through BASH’s ’source’ command, and hence can manipulate shell variables. With
argument ’0’ scripts are run by the A-REX on the frontend. Some environment variables are defined in that
case and can be changed to influence job’s execution later:

e joboption_directory — session directory.

e joboption_arg # — command with arguments to be executed as specified in the JD (not bash array).

e joboption_env_# — array of 'NAME=VALUE’ environment variables (not bash array).

e joboption_runtime_# — array of requested runtimeenvironment names (not bash array).

e joboption_num — runtimeenvironment currently beeing processed (number starting from 0).

e joboption_stdin — name of file to be attached to stdin handle.

e joboption_stdout — same for stdout.

e joboption_stderr — same for stderr.

e joboption_cputime — amount of CPU time requested (minutes).

e joboption_memory — amount of memory requested (megabytes).

e joboption_count — number of processors requested.

e joboption_lrms — LRMS to be used to run job.

e joboption_queue — name of a queue of LRMS to put job into.

e joboption_nodeproperty_# — array of properties of computing nodes (LRMS specific, not bash array).

e joboption_jobname — name of the job as given by user.

25

http://www.nordugrid.org/documents/voms-notes.html

For example joboption_arg-# could be changed to wrap the main executable. Or joboption_runtime could
be expanded if current one depends on others.

With argument ’1’ scripts are run just before the main executable is run. They are executed on the computing
node. Such a script can prepare environment for some third-party software package. A current directory
in that case is the one which would be used for execution of the job. Variable $HOME also points to that
directory.

With argument ’2’ scripts are executed after main executable finished. Main purpose is to clean possible
changes done by scripts run with ’1’ (like removing temporary files). Execution of scripts at that stage also
happens on computing node and is not reliable. If the job is killed by LRMS they most probably won’t be
executed.

For publicly available runtime environments please see the RTE repository at http://gridrer.csc.fi/l

10 Job environment

Because setup of resources represented by A-REX may vary a lot it is important to understand which features
of execution environment to expect. A-REX ensures following;:

— Specified executable is started with current directory set to session directory.

— Executable is started under account which owns session directory.

— Due to caching input files are not always writable by job’s local account unless readonly=no URL
option is specified for those files.

— Environment variable GRID_GLOBAL_JOBID contains job’s identifier usable for accessing job
from outside through A-REX. Currently that is either XML of Activity Identifier ot GridF' TP
URL depending on used interface.

— Subject to requested Runtime Environments corresponding environment variables are set and
executable and data packages are made available.

11 Installation

The A-REX is installed as a component of the ARC middleware and packages for various distributions are
available from NorduGrid repositories, or directly from the download area of the NorduGrid website. Source
code ready for compilation is available too.

11.1 Requirements

When installed from binary packages, all the dependencies are handled automatically. For compilation from
source code please read included README files.

11.2 Setup of the A-REX with WS Interface

The A-REX service is a pluggable module of the HED, so it is first required to set up HED configuration,
and add the A-REX elements. HED configuration is in an XML format, however a special comand a-rex
has been written which automatically creates a HED configuration for running the A-REX from an existing
arc.conf file used by the Grid Manager, and so no manual XML configuration editing needs to be done. To
enable the WS interface the following line must be added to the arc.conf configuration file:

e arex_mount_point =path

where path is the A-REX service endpoint, for example https://your.host:60000/arex. Then the A-REX
can be started

26

http://gridrer.csc.fi/

$ARC_LOCATION/etc/init.d/a-rex start

It is also possible to write configuration directly in XML. To add A-REX to an existing HED configuration,
add a new <Name> element inside <Plugins> containing the string arezx. This will make HED load the libarex
plugin library.

Then add a new <Service> element with attribute name="a-rex". That will instantiate the A-REX service.
Now to make service accessible extend the <Plexer> element with new <next> referring to an id of the
service. Take care to write the <Service> element carefully.

Here is an example of the full HED configuration file including the A-REX service definition:

<?xml version="1.0"7>

<ArcConfig
xmlns="http://www.nordugrid.org/schemas/arcconfig/2009/08"
xmlns:loader="http://www.nordugrid.org/schemas/loader/2009/08"
xmlns:arex="http://www.nordugrid.org/schemas/a-rex/2009/08"
xmlns:tcp="http://www.nordugrid.org/schemas/tcp/2009/08"
xmlns:tls="http://www.nordugrid.org/schemas/tls/2009/08"
xmlns:authz="http://www.nordugrid.org/schemas/arcauthz/2009/08"
xmlns:idmap="http://www.nordugrid.org/schemas/identitymap/2009/10"
xmlns:pdp="http://www.nordugrid.org/schemas/arcpdp/2009/08"

<!-- Common configuration of the daemon -->
<Server>
<PidFile>/var/run/arched.pid</PidFile>
<Logger>
<Level>VERBOSE</Level>
<File>/var/log/arc/arched.log</File>
<MaxSize>100000000</MaxSize>
<Backups>10</Backups>
</Logger>
</Server>
<!-- Where to find plugins -—>
<loader:ModuleManager>
<loader:Path>/usr/local/lib/arc/</loader:Path>
</loader:ModuleManager>
<!-- Simply load all needed plugins -->
<loader:Plugins>
<loader:Name>mcctcp</loader :Name>
<loader:Name>mcctls</loader:Name>
<loader:Name>mcchttp</loader:Name>
<loader:Name>mccsoap</loader:Name>
<loader:Name>arcpdc</loader:Name>
<loader:Name>identitymap</loader:Name>
<loader:Name>arex</loader:Name>
</loader:Plugins>

<!-- Create a chain -->
<loader:Chain>
<!-- TCP listening socket -—>

<loader:Component name="tcp.service" id="tcp">
<loader:next id="tls"/>
<tcp:Listen><tcp:Port>60000</tcp:Port></tcp:Listen>
</loader:Component>

27

<!-- Transport-level security -—>

<loader:Component name="tls.service" id="tls">
<loader:next id="http"/>
<!-- Location of server’s security keys -->
<tls:KeyPath>/etc/grid-security/hostkey.pem</tls:KeyPath>
<tls:CertificatePath>/etc/grid-security/hostcert.pem</tls:CertificatePath>

<tls:CACertificatesDir>/etc/grid-security/certificates</tls:CACertificatesDir>

<!-- DNs of acceptable VOMS ACs -—>
<tls:VOMSCertTrustDNChain>
<!-- Accept VOMS attributes from all sources -->
<tls:VOMSCertTrustRegex>~.*$</tls:VOMSCertTrustRegex>
</t1ls:VOMSCertTrustDNChain>
</loader:Component>
<!-— HTTP processing is done here -->
<loader:Component name="http.service" id="http">
<loader:next id="soap">POST</loader:next>
<loader:next id="plexer">GET</loader:next>
<loader:next id="plexer">PUT</loader:next>
</loader:Component>
<!-- This one parses content into XML tree -—>
<loader:Component name="soap.service" id="soap">
<loader:next id="plexer"/>
</loader:Component>
<!-- Directing messages to proper service -—>
<loader:Plexer name="plexer.service" id="plexer">
<!-- RegExp pattern is matched to path part of endpoint.
Unmatched part of path is propagated to service in
PLEXER:EXTENSION attribute. -->
<loader:next id="a-rex">"/arex</loader:next>
</loader:Plexer>

<l-- A-Rex service —-—>
<loader:Service name="a-rex" id="a-rex">
<!-- Performing authorization. Also see security documentation. -->

<loader:SecHandler name="arc.authz" event="incoming">
<authz:PDP name="arc.pdp">

<pdp:Filter>

<!-- Using only attributes comming from TLS (VOMS) and
AREX (requested operations) -->

<pdp:Select>TLS</pdp:Select>
<pdp:Select>AREX</pdp:Select>

</pdp:Filter>

<pdp:PolicyStore>

<!-- Type is currently not used. Only file is supported -->
<pdp:Type>file</pdp:Type>
<!-- Read and process policy from file. See policy

example in appendix. -—>

<pdp:Location>/opt/arc/etc/arex_policy.xml</pdp:Location>
</pdp:PolicyStore>
</authz:PDP>
</loader:SecHandler>
<!-- Evaluate requestor’s Grid identity into local identity. -—>
<loader:SecHandler name="identity.map" id="map" event="incoming">
<!-- 0l1ld bad mapfile -->
<idmap:PDP name="allow.pdp">
<idmap:LocalList>/etc/grid-security/grid-mapfile</idmap:LocalList>
</idmap:PDP>
<!-- Safe choice if all other rules failed -—>

28

<idmap:PDP name="allow.pdp">
<idmap:LocalName>nobody</idmap:LocalName>

</idmap:PDP>
</loader:SecHandler>
<!-- Optional endpoint element is advised in case of multiple IP adresses -->
<arex:endpoint>https://localhost:60000/arex</arex:endpoint>
<!-- Use information generated by identity.map plugin or default provided below -->
<arex:usermap><arex:defaultLocalName>nobody</arex:defaultLocalName></arex:usermap>
<!-- grid-manager part of a-rex requires legacy configuration file.
Use arc.conf example or write own. ——>
<arex:gmconfig>/etc/arc.conf</arex:gmconfig>
<!-- This optional parameter can be used to enable publishing of additional
information to ISIS. The default is not to publish ("no"). The information,
which is considered in some degree to be static, includes HealthState,
OSFamily, Platform, PhysicalCPUs, CPUMultiplicity, CPUModel and
ApplicationEnvironment.-->
<arex:publishStaticInfo>yes<arex:publishStaticInfo>

</loader:Service>
</loader:Chain>
</ArcConfig>

For in-depth information about available elements see Appendix B.

For A-REX configuration, either use a template arc.conf or write a new A-REX configuration file. For
information about format and available configuration commands see Section 9.1. It is also possible to
specify the A-REX configuration in XML format in the HED configuration file, instead of a separate file.
For more information on this see the examples included in the documentation bundled with the release.

For a quick start, simply run

$ARC_LOCATION/sbin/arched -c <HED configuration file>

For more information please read the User Guide [12].

11.3 Setup of the A-REX with GridFTP Interface

The A-REX can process jobs submitted through a traditional GridF'TP interface instead of, or as well as,
the WS interface. The A-REX version of the ARC GridFTP server must be used instead of the version
which works with the Grid Manager. However, the GridF' TP /Grid Manager server packages can be installed
alongside A-REX packages, so it is easy to switch between the two. The configuration of the GridFTP server
is in the same legacy arc.conf configuration file as is used by the A-REX, and configuration instructions are
given in [2]. In general no configuration changes are necessary to use a Grid Manager-configured GridFTP
server with the A-REX.

If it is desired to run both WS and GridFTP interfaces at the same time, simply setup and start the A-REX
as described in the previous section, then start the GridFTP server.

IMPORTANT: Do not run the A-REX and Grid Manager services at the same time, as they will interfere
with each other with unpredictable results.

29

11.4 Running as non-root

The A-REX is primarily designed to be run by the root UNIX account and serve multiple global Grid
identities mapped to several UNIX accounts. Nevertheless it is possible to use non-root accounts to run that
service at the cost of some functionality loss as described below.

There are no drawbacks of running A-REX under a mon-root account as long as the only UNIX identity
used is that of the user who runs the services and all served files and directories are owned by the server’s
account. Because A-REX has to impersonate a user’s local account while communicating with the LRMS,
it can serve only the account it is run under (unless it is run under the root account, of course).

A Session directory access through HTTP(S) interface

In addition to the BES interface A-REX provides access to the SD through pure HTTP(S) interface. This
functionality is used for uploading user-stageable files during job submission and for staging out result files
produced by job. It can also be used to monitor job execution by checking content of application dependent
files in SD.

The BES defines job identifier as WS Addressing [I3] Endpoint Reference (EPR) — XML document. The
EPR is extendable and the A-REX adds it own element JobSessionDir belonging to the namespace
http://www.nordugrid.org/schemas/a-rex as a direct child of ReferenceParameters element. This new
element contains the URL of SD.

Obtained URL should be extended with file names relative to SD and HTTP methods PUT and GET may
be used to upload/download content of those files. For directories — including SD itself — GET method is
supported which returns HTML encoded non-recursive list of files and directories. The files and subdirectories
have their URLs inside HTML element <A>.

B Configuration schema of A-REX

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.nordugrid.org/schemas/ArcConfig/2007/arex"
xmlns:arc="http://www.nordugrid.org/schemas/ArcConfig/2007/arex"
targetNamespace="http://wuw.nordugrid.org/schemas/ArcConfig/2007/arex"
elementFormDefault="qualified">
<xsd:complexType name="endpoint_Type">
<l--
This element defines URL of A-REX service as seen from outside.
-—>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<xsd:element name="endpoint" type="endpoint_Type"/>
<xsd:complexType name="gmconfig_Type">
<!--
This element defines path to arcO Grid Manager configuartion file.
By default it is /etc/arc.conf.
-=>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
<xsd:element name="gmconfig" type="gmconfig_Type"/>
<xsd:simpleType name="gmrun_Type">
<l--
This element defines how grid-manager part of A-Rex is run.
{*} internal - as a thread inside service container.
{*} none - no grid-manager is run.
{*} external - as a separate executable (not supported anymore).
Default is ’intermal’.

30

-=>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="internal"/>
<xsd:enumeration value="external"/>
<xsd:enumeration value="none"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name="gmrun" type="gmrun_Type"/>
<xsd:complexType name="usermap_Type">
<xsd:sequence>
<xsd:element name="defaultLocalName" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="usermap" type="usermap_Type"/>

<!-- CommonName attribute of bes-factory. -->
<xsd:element name="commonName" type="xsd:string"/>

<!-- LongDescription attribute of bes-factory. -->
<xsd:element name="longDescription" type="xsd:string"/>
<!-- Name of Local Resource Management System. -->
<xsd:element name="LRMSName" type="xsd:string"/>

<!--

Name of Operating System.
The values are based on the 0SType field of the CIM_OperatingSystem model:
http://www.dmtf.org/standards/cim/cim_schema_v29
-=>
<xsd:element name="OperatingSystem" type="xsd:string"/>
<t--
Optional parameter which is enable to publish additional
information to ISIS.
{*} yes - Allow publishing additional information.
{*} no - Disallow additional information to publish.
Registered with Only contact information.
-—>
<xsd:element name="publishStaticInfo" default="no">
<xsd:simpleType>
<xsd:annotation>
<xsd:documentation xml:lang="en">
This optional parameter can be used to enable publishing
of additional information to ISIS. The default is not to
publish ("no"). The information, which is considered in
some degree to be static, includes HealthState, OSFamily,
Platform, PhysicalCPUs, CPUMultiplicity, CPUModel and
ApplicationEnvironment.
</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string">
<xsd:enumeration value="no">
<xsd:enumeration value="yes">
</xsd:restriction>
</xsd:simpleType>
</xsd:element>

</xsd:schema>

C A-REX WSDL

<?xml version="1.0" encoding="UTF-8"7>

<wsdl:definitions targetNamespace="http://www.nordugrid.org/schemas/a-rex"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://wuw.w3.0org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:bes-factory="http://schemas.ggf.org/bes/2006/08/bes-factory"
xmlns:bes-mgmt="http://schemas.ggf.org/bes/2006/08/bes-management"
xmlns:deleg="http://www.nordugrid.org/schemas/delegation"
xmlns:wsrf-rpw="http://docs.oasis-open.org/wsrf/rpw-2"
xmlns:a-rex="http://www.nordugrid.org/schemas/a-rex">

31

<wsdl:import namespase="http://schemas.ggf.org/bes/2006/08/bes-factory"
location="./bes-factory.wsdl"/>
<wsdl:import namespase="http://schemas.ggf.org/bes/2006/08/bes-management"
location="./bes-management.wsdl"/>
<wsdl:import namespase="http://www.nordugrid.org/schemas/delegation"
location="../schemas/delegation.wsdl"/>
<wsdl:import namespase="http://docs.oasis-open.org/wsrf/rpw-2"
location="http://docs.oasis-open.org/wsrf/rpw-2.wsdl"/>
<wsdl:types>
<xsd:schema targetNamespace="http://www.nordugrid.org/schemas/a-rex">
<xsd:import namespace="http://www.w3.org/2005/08/addressing"
schemalLocation="./ws-addr.xsd"/>
<xsd:simpleType name="ActivitySubStateType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Accepting"/>
<xsd:enumeration value="Accepted"/>
<xsd:enumeration value="Preparing"/>
<xsd:enumeration value="Prepared"/>
<xsd:enumeration value="Submitting"/>
<xsd:enumeration value="Executing"/>
<xsd:enumeration value="Killing"/>
<xsd:enumeration value="Executed"/>
<xsd:enumeration value="Finishing"/>
<xsd:enumeration value="Finished"/>
<xsd:enumeration value="Failed"/>
<xsd:enumeration value="Deleted"/>
<xsd:enumeration value="Pending"/>
<xsd:enumeration value="Held"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name="State" type="a-rex:ActivitySubStateType"/>
<xsd:complexType name="ResourcelInformationDocumentType">
<xsd:sequence>
<xsd:element name="BESFactory"
type="bes-factory:FactoryResourceAttributesDocumentType"/>
<xsd:complexType name="Glue2Resource" minOccurs=’0’>
<xsd:sequence>
<xsd:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Activities" minOccurs=’0’>
<xsd:sequence>
<xsd:complexType name="Activity" minOccurs=’0’ maxOccurs=’unbounded’>
<xsd:sequence>
<xsd:element name="ActivityIdentifier"
type="wsa:EndpointReferenceType" />
<xsd:element ref="bes-factory:ActivityDocument" minOccurs=’0’/>
<xsd:complexType name="Glue2Job" minOccurs=’0’>
<xsd:sequence>
<xsd:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="ChangeActivityStatusRequestType">
<xsd:sequence>
<xsd:element name="ActivityIdentifier" type="wsa:EndpointReferenceType"/>
<xsd:element name="0ldStatus" type="bes-factory:ActivityStatusType"
minOccurs="0"/>
<xsd:element name="NewStatus" type="bes-factory:ActivityStatusType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="ChangeActivityStatus"
type="a-rex:ChangeActivityStatusRequestType"/>
<xsd:complexType name="ChangeActivityStatusResponseType">
<xsd:sequence>
<xsd:element name="NewStatus" type="bes-factory:ActivityStatusType"/>

32

</xsd:sequence>
</xsd:complexType>
<xsd:element name="ChangeActivityStatusResponse"
type="a-rex:ChangeActivityStatusResponseType"/>
<xsd:complexType name="MigrateActivityType">
<xsd:sequence>
<xsd:element name="ActivityIdentifier"
type="wsa:EndpointReferenceType"
minOccurs="1" maxOccurs="1"/>
<xsd:element ref="bes-factory:ActivityDocument" minOccurs="0"/>
<xsd:element name="ForceMigration" type="xsd:boolean" minOccurs="0" maxOccurs="1"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:complexType name="MigrateActivityResponseType">
<xsd:sequence>
<xsd:element name="ActivityIdentifier" type="wsa:EndpointReferenceType"/>
<xsd:element ref="bes-factory:ActivityDocument" minOccurs="0"/>
<xsd:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:anyAttribute namespace="##other" processContents="lax"/>
</xsd:complexType>

<xsd:element name="MigrateActivity"
type="a-rex:MigrateActivityType"/>

<xsd:element name="MigrateActivityResponse"
type="a-rex:MigrateActivityResponseType"/>

</xsd:schema>
</wsdl:types>
<wsdl:message name="ChangeActivityStatusRequest">
<wsdl:part name="ChangeActivityStatusRequest"
element="a-rex:ChangeActivityStatus"/>
</wsdl:message>
<wsdl:message name="ChangeActivityStatusResponse">
<wsdl:part name="ChangeActivityStatusResponse"
element="a-rex:ChangeActivityStatusResponse"/>
</wsdl:message>

<wsdl:message name="MigrateActivityRequest">
<wsdl:part name="MigrateActivityRequest"
element="a-rex:MigrateActivity"/>
</wsdl:message>

<wsdl:message name="MigrateActivityResponse">
<wsdl:part name="MigrateActivityResponse"
element="a-rex:MigrateActivityResponse"/>
</wsdl:message>

<wsdl:portType name="a-rex">
<wsdl:operation name="ChangeActivityStatus">
<wsdl:documentation>
This operation allows any simple status change request
which involves no additional parameters. It should be
used to modify job/activity execution flow:
- To put job on hold
- To rerun job in case of failure
- To cancel job (same as TerminateActivity of BESFActory)
- To remove/release job - as long as non-existence is a state
- Any other status change no supported by BES
</wsdl:documentation>
<wsdl:input name="ChangeActivityStatusRequest"
message="a-rex:ChangeActivityStatusRequest"/>
<wsdl:output name="ChangeActivityStatusResponse"
message="a-rex:ChangeActivityStatusResponse"/>
<wsdl:fault name="NotAuthorizedFault"
message="bes-factory:NotAuthorizedFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
<wsdl:fault name="InvalidActivityIdentifierFault"
message="bes-factory:InvalidActivityIdentifierFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>

33

<wsdl:fault name="CantApplyOperationToCurrentStateFault"
message="bes-factory:CantApplyOperationToCurrentStateFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
<wsdl:fault name="OperationWillBeAppliedEventuallyFault"
message="bes-factory:0OperationWillBeAppliedEventuallyFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
</wsdl:operation>
<wsdl:operation name="MigrateActivity">
<wsdl:input
name="MigrateActivity"
message="a-rex:MigrateActivityRequest"
<wsdl:output
name="MigrateActivityResponse"
message="a-rex:MigrateActivityResponse"
<wsdl:fault name="NotAuthorizedFault"
message="bes-factory:NotAuthorizedFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
<wsdl:fault name="NotAcceptingNewActivitiesFault"
message="bes-factory:NotAcceptingNewActivitiesFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
<wsdl:fault name="UnsupportedFeatureFault"
message="bes-factory:UnsupportedFeatureFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
<wsdl:fault name="InvalidRequestMessageFault"
message="bes-factory:InvalidRequestMessageFault"
wsa:Action="http://schemas.ggf.org/bes/2006/08/bes-factory/BESFactoryPortType/Fault"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="a-rex" type="a-rex:a-rex">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="ChangeActivityStatus">
<soap:operation soapAction="ChangeActivityStatus"/>
<wsdl:input name="ChangeActivityStatusRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="ChangeActivityStatusResponse">
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="NotAuthorizedFault">
<soap:fault name="NotAuthorizedFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="InvalidActivityIdentifierFault">
<soap:fault name="InvalidActivityIdentifierFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="CantApplyOperationToCurrentStateFault">
<soap:fault name="CantApplyOperationToCurrentStateFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="OperationWillBeAppliedEventuallyFault">
<soap:fault name="OperationWillBeAppliedEventuallyFault" use="literal" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="MigrateActivity">
<soap:operation soapAction="MigrateActivity" />
<wsdl:input name="MigrateActivity">
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="MigrateActivityResponse">
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="NotAuthorizedFault">
<soap:fault name="NotAuthorizedFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="NotAcceptingNewActivitiesFault">
<soap:fault name="NotAcceptingNewActivitiesFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="UnsupportedFeatureFault">
<soap:fault name="UnsupportedFeatureFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="InvalidRequestMessageFault">
<soap:fault name="InvalidRequestMessageFault" use="literal" />
</wsdl:fault>
</wsdl:operation>

34

</wsdl:binding>
<wsdl:binding name="GetResourcePropertyDocument"
type="wsrf-rpw:GetResourcePropertyDocument">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetResourcePropertyDocument">
<soap:operation soapAction="GetResourcePropertyDocument"/>
<wsdl:input name="wsrf-rpw:GetResourcePropertyDocumentRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="wsrf-rpw:GetResourcePropertyDocumentResponse">
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="ResourceUnknownFault">
<soap:fault name="ResourceUnknownFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="ResourceUnavailableFault">
<soap:fault name="ResourceUnavailabbleFault" use="literal" />
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="GetResourceProperty" type="wsrf-rpw:GetResourceProperty">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="GetResourceProperty">
<soap:operation soapAction="GetResourceProperty"/>
<wsdl:input name="wsrf-rpw:GetResourcePropertyRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="wsrf-rpw:GetResourcePropertyResponse">
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="ResourceUnknownFault">
<soap:fault name="ResourceUnknownFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="ResourceUnavailableFault">
<soap:fault name="ResourceUnavailabbleFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="InvalidResourcePropertyQNameFault">
<soap:fault name="InvalidResourcePropertyQNameFault" use="literal" />
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:binding name="QueryResourceProperties" type="wsrf:QueryResourceProperties">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="QueryResourceProperties">
<soap:operation soapAction="QueryResourceProperties"/>
<wsdl:input name="wsrf-rpw:QueryResourcePropertiesRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="wsrf-rpw:QueryResourcePropertiesResponse">
<soap:body use="literal"/>
</wsdl:output>
<wsdl:fault name="ResourceUnknownFault">
<soap:fault name="ResourceUnknownFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="ResourceUnavailableFault">
<soap:fault name="ResourceUnavailabbleFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="InvalidResourcePropertyQNameFault">
<soap:fault name="InvalidResourceProperty(NameFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="UnknownQueryExpressionDialectFault">
<soap:fault name="UnknownQueryExpressionDialectFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="InvalidQueryExpressionFault">
<soap:fault name="InvalidQueryExpressionFault" use="literal" />
</wsdl:fault>
<wsdl:fault name="QueryEvaluationErrorFault">
<soap:fault name="QueryEvaluationErrorFault" use="literal" />
</wsdl:fault>
</wsdl:operation>

35

</ws

d1:binding>

<wsdl:service name="a-rex">
<wsdl:port name="delegation" binding="deleg:DelegationBinding">

</wsdl:port>

<wsdl:port name="bes-factory" binding="bes-factory:BESFactoryBinding">

</wsdl:port>

<wsdl:port name="bes-mgmt" binding="bes-mgmt:BESManagementBinding">

</wsdl:port>

<wsdl:port name="GetResourcePropertyDocument"
binding="a-rex:GetResourcePropertyDocument">

</wsdl:port>

<wsdl:port name="GetResourceProperty" binding="a-rex:GetResourceProperty">

</wsdl:port>

<wsdl:port name="QueryResourceProperties"
binding="a-rex:QueryResourceProperties">

</wsdl:port>

<wsdl:port name="a-rex" binding="a-rex:a-rex">

</wsdl:port>

</wsdl:service>
</wsdl:definitions>

D

<?xml
<wsdl:

xmlns:

xmlns
xmlns

xmlns:
xmlns:

xmlns
xmlns

xmlns:

Delegation WSDL

version="1.0" encoding="UTF-8"7>

definitions targetNamespace="http://www.nordugrid.org/schemas/delegation"
SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsd="http://www.w3.0rg/2001/XMLSchema"
soap="http://schemas.xmlsoap.org/wsdl/soap/"
:wsdl="http://schemas.xmlsoap.org/wsdl/"
:wsa="http://www.w3.0rg/2005/08/addressing"
deleg="http://www.nordugrid.org/schemas/delegation">

<wsdl:types>

<x

sd:schema targetNamespace="http://www.nordugrid.org/schemas/delegation">
<!-- Common types -->
<xsd:simpleType name="TokenFormatType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="x509"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="ReferenceType">
<xsd:sequence>
<xsd:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="DelegatedTokenType">
<xsd:sequence>
<xsd:element name="Id" type="xsd:string"/>
<xsd:element name="Value" type="xsd:string"/>
<xsd:element name="Reference" type="deleg:ReferenceType"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="Format" type="deleg:TokenFormatType"
use="required"/>
</xsd:complexType>
<xsd:element name="DelegatedToken" type="deleg:DelegatedTokenType"/>
<xsd:complexType name="TokenRequestType">
<xsd:sequence>
<xsd:element name="Id" type="xsd:string"/>
<xsd:element name="Value" type="xsd:string"/>
</xsd:sequence>
<xsd:attribute name="Format" type="deleg:TokenFormatType"
use="required"/>
</xsd:complexType>
<xsd:element name="TokenRequest" type='"deleg:TokenRequestType"/>
<!-- Types for messages -->
<xsd:complexType name="DelegateCredentialsInitRequestType">
<xsd:sequence>
</xsd:sequence>

36

</xsd:complexType>
<xsd:element name="DelegateCredentialsInit"
type="deleg:DelegateCredentialsInitRequestType"/>
<xsd:complexType name="DelegateCredentialsInitResponseType">
<xsd:sequence>
<xsd:element name="TokenRequest" type="deleg:TokenRequestType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="DelegateCredentialsInitResponse"
type="deleg:DelegateCredentialsInitResponseType"/>
<xsd:complexType name="UpdateCredentialsRequestType">
<xsd:sequence>
<xsd:element name="DelegatedToken" type="deleg:DelegatedTokenType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="UpdateCredentials"
type="deleg:UpdateCredentialsRequestType"/>
<xsd:complexType name="UpdateCredentialsResponseType">
<xsd:sequence>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="UpdateCredentialsResponse"
type="deleg:UpdateCredentialsResponseType"/>
<!-- Faults -->
<xsd:complexType name="UnsupportedFaultType">
<xsd:sequence>
<xsd:element name="Description" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="UnsupportedFault" type="deleg:UnsupportedFaultType"/>
<xsd:complexType name="ProcessingFaultType">
<xsd:sequence>
<xsd:element name="Description" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="ProcessingFault" type="deleg:ProcessingFaultType"/>
<xsd:complexType name="WrongReferenceFaultType">
<xsd:sequence>
<xsd:element name="Description" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="WrongReferenceFault" type="deleg:WrongReferenceFaultType"/>
</xsd:schema>
</wsdl:types>
<wsdl:message name="DelegateCredentialsInitRequest">
<wsdl:part name="DelegateCredentialsInitRequest"
element="deleg:DelegateCredentialsInit"/>
</wsdl:message>
<wsdl:message name="DelegateCredentialsInitResponse">
<wsdl:part name="DelegateCredentialsInitResponse"
element="deleg:DelegateCredentialsInitResponse" />
</wsdl:message>
<wsdl:message name="UpdateCredentialsRequest">
<wsdl:part name="UpdateCredentialsRequest" element="deleg:UpdateCredentials"/>
</wsdl:message>
<wsdl:message name="UpdateCredentialsResponse">
<wsdl:part name="UpdateCredentialsResponse"
element="deleg:UpdateCredentialsResponse"/>
</wsdl:message>
<wsdl:message name="UnsupportedFault">
<wsdl:part name="Detail" element="deleg:UnsupportedFault"/>
</wsdl:message>
<wsdl:message name="ProcessingFault">
<wsdl:part name="Detail" element="deleg:ProcessingFault"/>
</wsdl:message>
<wsdl:message name="WrongReferenceFault">
<wsdl:part name="Detail" element="deleg:WrongReferenceFault"/>
</wsdl:message>
<wsdl:portType name="DelegationPortType">
<wsdl:operation name="DelegateCredentialsInit">

37

<wsdl:documentation>
</wsdl:documentation>
<wsdl:input name="DelegateCredentialsInitRequest"
message="deleg:DelegateCredentialsInitRequest"/>
<wsdl:output name="DelegateCredentialsInitResponse"
message="deleg:DelegateCredentialsInitResponse" />
<wsdl:fault name="UnsupportedFault"
message="deleg:UnsupportedFault"/>
<wsdl:fault name="ProcessingFault"
message="deleg:ProcessingFault"/>
</wsdl:operation>
<wsdl:operation name="UpdateCredentials">
<wsdl:documentation>
</wsdl:documentation>
<wsdl:input name="UpdateCredentialsRequest"
message="deleg:UpdateCredentialsRequest"/>
<wsdl:output name="UpdateCredentialsResponse"
message="deleg:UpdateCredentialsResponse"/>
<wsdl:fault name="UnsupportedFault"
message="deleg:UnsupportedFault"/>
<wsdl:fault name="ProcessingFault"
message="deleg:ProcessingFault"/>
<wsdl:fault name="WrongReferenceFault"
message="deleg:WrongReferenceFault"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="DelegationBinding" type="deleg:DelegationPortType">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="DelegateCredentialsInit">
<soap:operation soapAction="DelegateCredentialsInit"/>
<wsdl:input name="DelegateCredentialsInitRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="DelegateCredentialsInitResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="UpdateCredentials">
<soap:operation soapAction="UpdateCredentials"/>
<wsdl:input name="UpdateCredentialsRequest">
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output name="UpdateCredentialsResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
</wsdl:definitions>

E ARC extensions for JSDL schema

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.nordugrid.org/ws/schemas/jsdl-arc"
xmlns:jsdl-arc="http://www.nordugrid.org/ws/schemas/jsdl-arc"
targetNamespace="http://www.nordugrid.org/ws/schemas/jsdl-arc">
<xsd:simpleType name="GMState_Type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="ACCEPTED"/>
<xsd:enumeration value="PREPARING"/>
<xsd:enumeration value="SUBMIT"/>
<xsd:enumeration value="INLRMS"/>
<xsd:enumeration value="FINISHING"/>
<xsd:enumeration value="FINISHED"/>
<xsd:enumeration value="DELETED"/>
<xsd:enumeration value="CANCELING"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Version_Type">
<xsd:sequence>

38

<xsd:element name="UpperExclusive" type="xsd:string"
minOccurs="0"/>
<xsd:element name="LowerExclusive" type="xsd:string"
minOccurs="0"/>
<xsd:element name="Exact" type="xsd:string" minOccurs="0"
max0Occurs="unbounded" />
<xsd:element name="Exclusive" type="xsd:boolean"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="SessionType_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="SessionType" minOccurs="0"/ -->
<xsd:restriction base="xsd:string">
<xsd:enumeration value="INTERNAL"/>
<xsd:enumeration value="LIMITED"/>
<xsd:enumeration value="READONLY"/>
<xsd:enumeration value="FULL"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="IsExecutable_Type">
<xsd:documentation> For jsdl:DataStaging Type (default: false) </xsd:documentation>
<!-- xsd:element ref="IsExecutable" minOccurs="0"/ -->
<xsd:restriction base="xsd:boolean"/>
</xsd:simpleType>
<xsd:simpleType name="FileParameters_Type">
<xsd:documentation> For jsdl:DataStaging_Type </xsd:documentation>
<!-- xsd:element ref="IsExecutable" minOccurs="0"/ -->
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:simpleType name="JoinOutputs_Type">
<xsd:documentation> For jsdl:JobDescription_Type (default: false) </xsd:documentation>
<!-- xsd:element ref="JoinOutputs" minOccurs="0"/ -->
<xsd:restriction base="xsd:boolean"/>
</xsd:simpleType>
<xsd:simpleType name="Reruns_Type">
<xsd:documentation> For jsdl:JobDescription_Type (default: false) </xsd:documentation>
<!-- xsd:element ref="Reruns" minOccurs="0"// -->
<xsd:restriction base="xsd:integer"/>
</xsd:simpleType>
<xsd:complexType name="RunTimeEnvironment_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="RunTimeEnvironment" minOccurs="0"
maxOccurs="unbounded"/ -->
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Version" type="Version_Type"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Middleware_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="Middleware" minOccurs="0"
maxOccurs="unbounded"/ -->
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Version" type="Version_Type"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="RemoteLogging_ Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="RemoteLogging" minOccurs="0"
maxOccurs="3"/ -->
<xsd:sequence>
<xsd:element name="URL" minOccurs="1" maxOccurs="1"
type="xsd:anyURI"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="CredentialServer_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="CredentialServer" minOccurs="0"/ -->
<xsd:sequence>

39

<xsd:element name="URL" minOccurs="1" maxOccurs="1"
type="xsd:anyURI"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="LocalLogging_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="LocalLogging" minOccurs="0"
maxOccurs="1"/ -->
<xsd:sequence>
<xsd:element name="Directory" minOccurs="1" maxOccurs="1"
type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="AccessControlType_Type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="GACL"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="AccessControl_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="AccessControl" minOccurs="0"/ -->
<xsd:sequence>
<xsd:element name="OwnerAlwaysAllowed" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="Type" type="AccessControlType_Type"
minOccurs="0"/>
<xsd:element name="Content" minOccurs="0" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="NotificationType_Type">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Email"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Notify_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="Notify" minOccurs="0" maxOccurs="3"/
-=>
<xsd:sequence>
<xsd:element name="Type" type="NotificationType_Type"
minOccurs="0"/>
<xsd:element name="Endpoint" minOccurs="0" type="xsd:string"/>
<xsd:element name="State" minOccurs="1" maxOccurs="unbounded"
type="GMState_Type"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="SessionLifeTime_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="SessionLifeTime" minOccurs="0"
maxOccurs="1"/ -->
<xsd:restriction base="xsd:long"/>
</xsd:simpleType>
<xsd:simpleType name="GridTimeLimit_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="GridTimeLimit" minOccurs="0"
maxOccurs="1"/ -->
<xsd:restriction base="xsd:positiveInteger"/>
</xsd:simpleType>
<xsd:complexType name="CandidateTarget_Type">
<xsd:documentation> For jsdl:Resources_Type </xsd:documentation>
<!-- xsd:element ref="jsdl-arc:CandidateTarget" minOccurs="0"
maxOccurs="1"/ -->
<xsd:sequence>
<xsd:element name="HostName" minOccurs="0" type="xsd:string"/>
<xsd:element name="QueueName" minOccurs="0" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="Time_Type">
<xsd:documentation> For jsdl:JobDescription_Type </xsd:documentation>
<!-- xsd:element ref="ProcessingStartTime" minOccurs="0"
maxOccurs="1"/ -->
<xsd:restriction base="xsd:dateTime"/>
</xsd:simpleType>

40

<! >
<xsd:element name="IsExecutable" type="IsExecutable_Type"/>
<xsd:element name="FileParameters" type="FileParameters_Type"/>
<xsd:element name="RunTimeEnvironment" type="RunTimeEnvironment_Type"/>
<xsd:element name="Middleware" type="Middleware_Type"/>
<xsd:element name="RemoteLogging" type="RemoteLogging_Type"/>
<xsd:element name="LocalLogging" type="LocallLogging_ Type"/>
<xsd:element name="AccessControl" type="AccessControl_Type"/>
<xsd:element name="Notify" type="Notify_Type"/>

<xsd:element name="SessionLifeTime" type="SessionLifeTime_Type"/>
<xsd:element name="SessionType" type="SessionType_Type"/>
<xsd:element name="JoinOutputs" type="JoinOutputs_Type"/>
<xsd:element name="Reruns" type="Reruns_Type"/>

<xsd:element name="CredentialServer" type="CredentialServer_Type"/>
<xsd:element name="GridTimeLimit" type="GridTimeLimit_Type"/>
<xsd:element name="CandidateTarget" type="CandidateTarget_Type"/>
<xsd:element name="ProcessingStartTime" type="Time_Type"/>
</xsd:schema>

F Example of authorization policy for A-REX

<?xml version="1.0" encoding="UTF-8"7>
<Policy xmlns="http://www.nordugrid.org/schemas/policy-arc"
PolicyId="policy:arex:example"
CombiningAlg="Deny-0Overrides">
<Rule Ruleld="knowarc.eu:serviceinfo" Effect="Permit">
<Description>
A1l who belongs to knowarc.eu VO can query information about service.
</Description>
<Subjects>

<Subject Attributeld="http://www.nordugrid.org/schemas/policy-arc/types/tls/vomsattribute">/V0=knowarc.eu</Subject>

</Subjects>
<Actions>
<Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/a-rex/operation">Info</Action>
</Actions>
</Rule>
<Rule RuleId="knowarc.eu:admin" Effect="Permit">
<Description>
All developers belonging to knowarc.eu VO can manage service.
This is useless rule because A-REX does not suport remote management.
</Description>
<Subjects>

<Subject AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/tls/vomsattribute">/V0=knowarc.eu/Group=cor

</Subjects>
<Actions>
<Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/a-rex/operation">Admin</Action>
</Actions>
</Rule>
<Rule Ruleld="knowarc.eu:job" Effect="Permit">
<Description>
All testers of knowarc.eu VO can run jobs.
</Description>
<Subjects>

<Subject Attributeld="http://www.nordugrid.org/schemas/policy-arc/types/tls/vomsattribute">/V0=knowarc.eu/Group=tes

</Subjects>
<Actions>
<Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/a-rex/joboperation">Create</Action>
<Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/a-rex/joboperation">Modify</Action>
<Action AttributeId="http://www.nordugrid.org/schemas/policy-arc/types/a-rex/joboperation">Read</Action>
</Actions>
</Rule>
<Rule Ruleld="knowarc.eu:all" Effect="Permit">
<Description>
A1l superusers of knowarc.eu VO can do anything.
</Description>
<Subjects>

<Subject Attributeld="http://www.nordugrid.org/schemas/policy-arc/types/tls/vomsattribute">/V0=knowarc.eu/Group=sup

</Subjects>
</Rule>
</Policy>

41

G Error messages of A-REX (outdated)

If job has not finished successfully the A-REX puts one or more lines into job.ID.failed. Possible values
include those generated by the A-REX itself:

Error string

Reason/description

Internal error

Error in internal algorithm

Internal error: can’t read local

file

Error manipulating files in the control directory

Failed reading local job informa-
tion

Failed reading status of the job

Failed writing job status

Failed during processing failure

Serious troubles (problems dur-
ing processing problems)

Failed initiating job submission
to LRMS

Could not run backend executable to pass job to LRMS

Job submission to LRMS failed

Backend executable supposed to pass job to LRMS returned non-
zero exit code

Failed extracting LRMS ID due
to some internal error

Output of Backend executable supposed to contain local ID of
passed job could not be parsed

Failed in files upload (post-
processing)

Failed to upload some or all output files

Failed in files upload due to ex-
pired credentials — try to renew

Failed to upload some or all output files most probably due to
expired credentials (proxy certificate)

Failed to run uploader (post-
processing)

Could not run uploader executable

uploader failed (postprocessing)

Generic error related to uploader component

Failed in files download (pre-
processing)

Failed to upload some or all input files

Failed in files download due to
expired credentials — try to renew

Failed to download some or all input files most probably due to
expired credentials (proxy certificate)

Failed to run downloader (pre-
processing)

Could not run downloader executable

downloader failed (preprocess-
ing)

Generic error related to downloader component

User requested to cancel the job

A-REX detected external request to cancel this job, most probably
issued by user

Could not process RSL

Job description could not be processed due to syntax errors or
missing elements

Us.er requested - dryrun. Job Job description contains request not to process this job

skiped.

LRMS error: (CODE) DE- | LRMS returned error. CODE is replaced with numeric code of
SCRIPTION LRMS, and DESCRIPTION with textual description

Plugin at state STATE failed:
OUTPUT

External plugin specified in A-REX configuration returned non-
zero exit code. STATE is replcaced by name of state to which job
was going to be passed, OUTPUT by textual output generated
by plugin.

42

Failed running plugin at state
STATE

External plugin specified in A-REX configuration could not be
executed.

Provided by downloader component

(URL is replcaced by source of input file, FILE by name of file):

Error string

Reason/description

Internal error in downloader

Generic error

Input file: URL — unknown error

Generic error

Input file: URL — unexpected er-
ror

Generic error

Input file: URL — bad source

URL

Source URL is either malformed or not supported

Input file: URL — bad destina-
tion URL

Shouldn’t happen

Input file: URL — failed to re-
solve source locations

File either not registred or other problems related to Data Index-
ing service.

Input file: URL - failed to re-
solve destination locations

Shouldn’t happen

Input file: URL — failed to regis-
ter new destination file

Shouldn’t happen

Input file: URL — can’t start
reading from source

Problems related to accessing instance of file at Data Storing ser-
vice.

Input file: URL — can’t read from
source

//

Input file: URL — can’t start
writing to destination

Access problems in a session directory

Input file: URL — can’t write to
destination

//

Input file: URL — data transfer
was too slow

Timeouted while trying to download file

Input file: URL — failed while

closing connection to source

Shouldn’t happen

Input file: URL — failed while
closing connection to destination

Shouldn’t happen

Input file: URL - failed to regis-
ter new location

Shouldn’t happen

Input file: URL — can’t use local
cache

Problems with A-REX cache

Input file: URL — system error

Operating System returned error code where unexpected

Input file: URL — delegated cre-
dentials expired

Access to source requires credententials and they are either out-
dated or missing (not delegated).

User file: FILENAME — Bad in-
formation about file: checksum
can’t be parsed.

In job description there is a checksum provided for file uploadable
by user interface and this record can’t be interpreted.

User file: FILENAME — Bad in-
formation about file: size can’t
be parsed.

In job description there is a size provided for file uploadable by
user interface and this record can’t be interpreted.

43

User file: FILENAME - Ex- | Instead of file uploadable by user interface A-REX found directory
pected file. Directory found. with same name in a session directory.

User file: FILENAME - Ex-
pected ordinary file. Special ob-
ject found.

Instead of file uploadable by user interface A-REX found special
object with same name in a session directory.

User file: FILENAME - Deliv-

ered file is bigger than specified. The size of file uploadable by user interface is bigger

User file: FILENAME — Deliv- | A-REX can’t check user uploadable file due to some internal error.
ered file is unreadable. Most probably due to improperly configured local permissions.

User file: FILENAME — Could
not read file to compute check-
sum.

A-REX can’t read user uploadable file due to some internal error.
Most probably due to improperly configured local permissions.

User file: FILENAME - Time-

. A-REX waited for user uploadable file too long.
out waiting

Provided by uploader component (URL is replaced by destination of output file) :

Error string Reason/description
Internal error in uploader Generic error
Output file: URL — unknown er- .

Generic error
ror
Output file: URL — unexpected .

Generic error
error

User requested to store output

locally URL Destination is URL of type file.

Output file: URL — bad source

URL Shouldn’t happen

Output file: URL — bad destina-

tion URL Destination URL is either malformed or not supported

Output file: URL — failed to re-

. houldn’t h
solve source locations Shouldn’t happen

Output file: URL — failed to re-

.. . Problems related to Data Indexing service.
solve destination locations

Output file: URL — failed to reg-
ister new destination file

//

Output file: URL — can’t start | User request to store output file, but there is no such file or there
reading from source are problems accessing session directory

Output file: URL — can’t start

L . Probl ith D i i
writing to destination roblems wit ata Storing services

Output file: URL — can’t read

Problems accessing session directory
from source

Output file: URL — can’t write

to destination Problems with Data Storing services

Output file: URL — data transfer

Timeout during transfer
was too slow

Output file: URL - failed while

: . Shouldn’t h
closing connection to source owidnt happen

Output file: URL — failed while

closing connection to destination Shouldn’t happen

44

Output file: URL — failed to reg-

. . Problems related to Data Indexing service.
ister new location

Output file: URL — can’t use lo-

cal cache Shouldn’t happen

Output file: URL — system error | Operating System returned error code where unexpected

Output file: URL — delegated | Access to destination requires credententials and they are either
credentials expired outdated or missing (not delegated).

References

1]

2]

European Middleware Initiative (EMI) Execution Service (ES). Web site, 2011. URL https://twiki.
cern.ch/twiki/bin/view/EMI/EmiExecutionService.

D. Cameron A. Konstantinov. The NorduGrid GridFTP Server: Description And Administrator’s
Manual. The NorduGrid Collaboration. URL http://www.nordugrid.org/documents/gridftpd. pdf.
NORDUGRID-TECH-26.

R. Alfieri et al. From gridmap-file to VOMS: managing authorization in a Grid environment. Future
Gener. Comput. Syst., 21(4):549-558, 2005. ISSN 0167-739X.

A. Anjomshoaa et al. Job Submission Description Language (JSDL) Specification, Version 1.0 (first
errata update). GFD-R.136, July 2008. URL http://www.gridforum.org/documents/GFD. 136.pdf.

D. Cameron et al. The Hosting Environment of the Advanced Resource Connector middleware. URL
http://www.nordugrid.org/documents/ARCHED _article.pdf. NORDUGRID-TECH-19.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International Journal
of Supercomputer Applications, 11(2):115-128, 1997. Available at: http://www.globus.org.

I. Foster et al. OGSA™ Basic Execution Service Version 1.0. GFD-R-P.108, August 2007. URL
http://www.ogf.org/documents/GFD.108.pdf.

M. Humphrey et al. JSDL HPC Profile Application Extension, Version 1.0. GFD-R.111, August 2007.
URL http://www.gridforum.org/documents/GFD.111.pdf.

B. Kénya. The NorduGrid/ARC Information System. The NorduGrid Collaboration. URL http:
//www.nordugrid.org/documents/arc_infosys.pdf. NORDUGRID-TECH-4.

OASIS. OASIS Web Services ResourceProperties specification. April 2006. URL http://docs.
oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf.

A. Taga and Th. Fragat. ARC batch system back-end interface guide with support for GLUFE2.
The NorduGrid Collaboration. URL http://www.nordugrid.org/documents/Backends-arcl.pdf.
NORDUGRID-TECH-18.

ARC User Guide - not released yet. The NorduGrid Collaboration. NORDUGRID-MANUAL-??

W3C. Web Services Addressing 1.0 - SOAP Binding. May 2006. URL http://wuw.w3.org/TR/2006/
REC-ws-addr-soap-20060509/.

45

https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService
https://twiki.cern.ch/twiki/bin/view/EMI/EmiExecutionService
http://www.nordugrid.org/documents/gridftpd.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.nordugrid.org/documents/ARCHED_article.pdf
http://www.ogf.org/documents/GFD.108.pdf
http://www.gridforum.org/documents/GFD.111.pdf
http://www.nordugrid.org/documents/arc_infosys.pdf
http://www.nordugrid.org/documents/arc_infosys.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://www.nordugrid.org/documents/Backends-arc1.pdf
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

	Introduction
	Main concepts
	Input/output data
	Job flow
	URLs
	Internals
	Internal Files of the A-REX
	Web Service Interface
	Basic Execution Service Interface
	Extensions to OGSA BES interface
	Delegation Interface
	Local Information Description Interface
	Supported JSDL elements
	ARC-specific JSDL Extensions

	Cache
	Structure
	How it works
	Remote Caches
	Cache Administration

	Files and directories
	Modules
	Directories

	Configuration
	Configuration of the A-REX
	Transfer shares
	Authorization
	LRMS support
	Runtime environment

	Job environment
	Installation
	Requirements
	Setup of the A-REX with WS Interface
	Setup of the A-REX with GridFTP Interface
	Running as non-root

	Session directory access through HTTP(S) interface
	Configuration schema of A-REX
	A-REX WSDL
	Delegation WSDL
	ARC extensions for JSDL schema
	Example of authorization policy for A-REX
	Error messages of A-REX (outdated)

