
NORDUGRID

NORDUGRID-MANUAL-20

1/2/2019

ARC Computing Element

System Administrator Guide

F. Paganelli, Zs. Nagy, O. Smirnova,
and various contributions from all ARC developers

Contents

1 Overview 9

1.1 The grid . 9

1.2 The ARC services . 9

1.3 The functionality of the ARC Computing Element . 10

1.4 The A-REX, the execution service . 11

1.4.1 The pre-web service interfaces . 11

1.4.2 The web service interfaces . 12

1.5 Security on the Grid . 12

1.6 Handling jobs . 13

1.6.1 A sample job processing flow . 13

1.7 Application software in ARC: The RunTime Environments 15

1.8 The local information . 17

1.8.1 Overview of ARC LDAP Infosys schemas . 17

1.9 LRMS, Queues and execution targets . 18

2 Requirements 19

2.1 Software Requirements . 19

2.2 Hardware Requirements . 19

2.3 Certificates . 20

3 Installation 21

3.1 Installation for commom GNU/Linux Distributions . 21

3.1.1 Setting up the repositories . 21

3.1.2 Performing the installation . 21

3.2 Installation for other systems and distributions . 23

3.3 Installation of certificates . 23

3.3.1 Installing host certificates . 23

3.3.2 Installing custom CA certificates . 24

3.3.3 Authentication Policy . 24

3.3.4 Revocation lists . 24

3.3.5 Authorization policy . 24

3

4 CONTENTS

4 Configuration 25

4.1 Preparing the system . 25

4.1.1 Users and groups . 25

4.1.2 Disk, partitioning, directories . 25

4.1.3 Permissions . 27

4.1.4 Networking . 27

4.1.5 Security considerations . 28

4.2 Configuration file formats . 29

4.2.1 Structure of the arc.conf configuration file . 29

4.2.2 Description of configuration items . 30

4.3 Setting up a basic CE . 31

4.3.1 Creating the arc.conf file . 31

4.3.2 The [common] section . 32

4.3.3 The [grid-manager] section: setting up the A-REX and the arched 33

4.3.4 The [gridftpd] section: the job submission interface . 33

4.3.5 The [infosys] section: the local information system . 34

4.3.5.1 The [cluster] section: information about the host machine 34

4.3.5.2 The [queue/fork] section: configuring the fork queue 35

4.3.6 A basic CE is configured. What’s next? . 35

4.4 Production CE setup . 36

4.4.1 Access control: users, groups, VOs . 36

4.4.1.1 [vo] configuration commands . 37

4.4.1.2 Automatic update of the mappings . 37

4.4.1.3 [group] configuration commands . 38

4.4.2 Connecting to the LRMS . 38

4.4.2.1 PBS . 39

4.4.2.2 Condor . 40

4.4.2.3 LoadLeveler . 41

4.4.2.4 Fork . 41

4.4.2.5 LSF . 42

4.4.2.6 SGE . 42

4.4.2.7 SLURM . 43

4.4.2.8 BOINC . 44

4.4.3 Enabling the cache . 44

4.4.3.1 The Cache Service . 45

4.4.3.2 Exposing the Cache . 46

4.4.3.3 The ARC Cache Index (ACIX) . 46

4.4.4 Configuring Data Staging . 47

4.4.5 Registering to an ARC EGIIS . 48

4.4.6 ARC CE to gLite Site and Top BDII integration . 50

4.4.7 Accounting with JURA . 50

CONTENTS 5

4.4.8 Monitoring the ARC CE: Nagios probes . 52

4.5 Enhancing CE capabilities . 53

4.5.1 Enabling or disabling LDAP schemas . 53

4.5.1.1 Applying changes . 54

4.5.2 Runtime Environments . 54

4.5.3 Enabling the Web Services interface . 55

4.5.4 Virtual Organization Membership Service (VOMS) . 55

4.5.4.1 Configuring trusted VOMS AC issuers . 57

4.5.4.2 Configuring VOMS AC signing servers to contact 58

4.5.4.3 Configuring ARC to use VOMS extensions 58

4.5.5 Dynamic vs static mapping . 59

4.5.5.1 Static mapping . 59

4.5.5.2 Dynamic mapping . 59

4.5.6 Using Argus authorization service . 60

4.5.7 Using LCAS/LCMAPS . 61

4.5.7.1 Enabling LCAS/LCMAPS . 61

4.5.7.2 LCAS/LCMAPS policy configuration . 62

4.5.7.3 Example LCAS configuration . 65

4.5.7.4 Example LCMAPS configuration . 65

4.5.8 Enabling the Arex ganglia implementation . 66

5 Operations 69

5.1 Starting and stopping CE services . 69

5.1.1 Overview . 69

5.1.2 Validating CE setup . 69

5.1.3 Starting the CE . 70

5.1.4 Stopping the CE . 70

5.1.5 Verifying the status of a service . 71

5.2 Testing a configuration . 72

5.2.1 Testing the information system . 72

5.2.1.1 Check NorduGrid Schema publishing . 72

5.2.1.2 Check Glue 1.x Schema publishing . 72

5.2.1.3 Check LDAP GLUE2 Schema publishing . 75

5.2.1.4 Check WS/XML GLUE2 Schema publishing 75

5.2.1.5 Further testing hints . 75

5.2.2 Testing whether the certificates are valid . 75

5.2.3 Testing the job submission interface . 78

5.2.4 Testing the LRMS . 78

5.3 Administration tools . 79

5.4 Log files . 80

5.4.1 The format of the log files . 80

5.4.2 Log files rotation . 80

6 CONTENTS

5.5 Modules of the A-REX . 80

5.6 Migration of an A-REX service to another host . 81

5.6.1 Planned Service Migration . 82

5.7 Common tasks . 83

5.7.1 How to ban a single user based on his/her subject name 83

5.7.2 How to configure SELinux to use a port other than 2135 for the LDAP information
system . 84

5.7.3 How to debug the ldap subsystem . 84

5.7.4 Missing information in LDAP or WSRF . 85

5.7.5 How to publish VO information . 85

6 Technical Reference 89

6.1 Reference of the arc.conf configuration commands . 89

6.1.1 Generic commands in the [common] section . 89

6.1.2 Commands in the [vo] section . 89

6.1.3 Commands in the [group] section . 90

6.1.4 Commands in the [gridftpd] section . 92

6.1.4.1 General commands . 92

6.1.4.2 Commands for fine-grained authorisation . 93

6.1.4.3 Commands to configure the jobplugin . 94

6.1.5 Commands in the [infosys] section . 95

6.1.6 Commands in the [infosys/admindomain] section . 97

6.1.7 Commands in the [infosys/glue12] section . 97

6.1.8 Commands in the [infosys/site/sitename] section . 97

6.1.9 Commands in the [cluster] section . 98

6.1.10 Commands in the [queue] subsections . 100

6.1.11 Commands in the [infosys/cluster/registration/registrationname] subsections 101

6.1.12 Commands in the [grid-manager] section . 101

6.1.12.1 Commands affecting the A-REX process and logging 101

6.1.12.2 Commands affecting the A-REX Web Service communication interface . . . 102

6.1.12.3 Commands setting control and session directories 103

6.1.12.4 Commands to configure the cache . 104

6.1.12.5 Commands setting limits . 105

6.1.12.6 Commands related to file staging . 105

6.1.12.7 Commands related to usage reporting . 106

6.1.12.8 Other general commands in the [grid-manager] section 106

6.1.12.9 Global commands specific to communication with the underlying LRMS . . . 107

6.1.12.10 Substitutions in the command arguments . 107

6.1.13 Commands in the [data-staging] section . 108

6.1.14 Commands in the [acix/cacheserver] section . 109

6.1.15 Commands in the [acix/cacheindex] section . 109

6.1.16 PBS specific commands . 109

CONTENTS 7

6.1.17 Condor specific commands . 110

6.1.18 LoadLeveler specific commands . 111

6.1.19 Fork specific commands . 111

6.1.20 LSF specific commands . 111

6.1.21 SGE specific commands . 111

6.1.22 SLURM specific commands . 112

6.1.23 BOINC specific commands . 112

6.2 Handling of the input and output files . 112

6.3 Job states . 113

6.4 Cache . 114

6.4.1 Structure of the cache directory . 114

6.4.2 How the cache works . 115

6.4.3 Remote caches . 115

6.4.4 Cache cleaning . 115

6.4.5 Exposing the Cache and the ARC Cache Index . 116

6.5 Batch system back-ends implementation details . 116

6.5.1 Submit-LRMS-job . 116

6.5.2 Cancel-LRMS-job . 117

6.5.3 Scan-LRMS-job . 117

6.5.4 PBS . 117

6.5.5 Condor . 118

6.5.6 LoadLeveler . 118

6.5.7 Fork . 118

6.5.8 LSF . 118

6.5.9 SGE . 118

6.5.10 BOINC . 119

6.6 JURA: The Job Usage Reporter for ARC . 121

6.6.1 Overview . 121

6.6.2 Job log files . 121

6.6.3 Archiving . 122

6.6.4 Reporting to LUTS . 122

6.6.5 Reporting to APEL . 122

6.6.6 Re-reporting records . 123

6.6.7 Security . 123

6.6.8 Mapping of job log entries to usage record properties 123

6.7 The XML and the INI configuration formats . 123

6.8 The internals of the service container of ARC (the HED) . 124

6.8.1 The MCCs . 124

6.8.2 The SecHandlers . 125

6.8.3 The PDPs . 126

6.9 How the a-rex init script configures the HED . 127

8 CONTENTS

6.10 Structure of the grid-mapfile . 130

6.11 Internal files of the A-REX . 130

6.12 Environment variables set for the job submission scripts . 133

6.13 Using a scratch area . 134

6.14 Web Service Interface . 134

6.14.1 Basic Execution Service Interface . 134

6.14.2 Extensions to OGSA BES interface . 137

6.14.3 Delegation Interface . 138

6.14.4 Local Information Description Interface . 140

6.14.5 Supported JSDL elements . 140

6.14.6 ARC-specific JSDL Extensions . 141

6.14.7 Supported ADL elements . 141

6.14.8 ARC-specific ADL Extensions . 142

6.15 GridFTP Interface (jobplugin) . 142

6.15.1 Virtual tree . 142

6.15.2 Submission . 143

6.15.3 Actions . 143

6.15.3.1 Cancel . 143

6.15.3.2 Clean . 143

6.15.3.3 Renew . 144

6.15.4 Configuration Examples . 144

6.15.4.1 Simple Example . 144

6.15.4.2 Detailed Example . 144

6.16 REST Interface . 149

6.16.1 Access Endpoints . 149

6.16.2 Error Reporting . 149

6.16.3 Retrieving Service Information . 149

6.16.4 Job Submission . 151

6.16.5 Accessing Job Session Directory . 151

6.16.6 Accessing Information About Job . 151

6.16.7 Controlling Execution Of Job . 152

6.16.8 Delegation Interface . 153

Chapter 1

Overview

The ARC middleware [30] by NorduGrid [6] is a software solution that uses grid technologies to enable
sharing and federation of computing and storage resources distributed across different administrative and
application domains. ARC is used to create grid infrastructures of various scope and complexity, from
campus to national grids.

This document gives a detailed overview of the ARC Computing Element (CE), along with step-by-step
installation and configuration instructions and a full reference of the configuration commands.

1.1 The grid

An ARC-based grid aggregates computing and storage resources, making them accessible through standard
interfaces, and using a common information system to optimize access.

Client tools can query this information system to see what kind of resources are available, match user’s
tasks to best available resources, submit computing jobs, which are smaller or bigger tasks (scripts and/or
binaries, often processing defined input data) to run on computing nodes in the grid, they can access files
on and upload results to storage resources.

For users, all this complexity is hidden: they simply formulate their tasks in a special language and send
them to the grid, not even knowing which computing or storage resources are out there. ARC takes care of
the rest.

While submitting jobs, users must specify requirements for each job, namely, what software should it execute,
what data to process, what kind of software environment it needs on the computing node, how much memory,
how strong CPU, etc. — these are specified in the formal job description. They can use various client tools,
like the native command-line interface supplied along with the ARC middleware [29], GUI tools, web portals
or specialized clients as part of a bigger software tool. All users must be authenticated by grid services using
X.509 certificates signed by trusted Certificate Authorities. ARC also uses short-lived proxy certificates to
delegate users’ rights to various activities performed by Grid services on their behalf, such as job execution
or data transfer. Authentication alone is not sufficient: users must also be authorized to perform such
activities. Typically, users form groups (called Virtual Organizations, VOs) to ease to process of getting
authorized on the several computing resources.

In order to handle all the computing resources in a uniform way, there is a need for a layer (“middleware”)
between the client tools and the resources: the Computing Element (CE). This document describes how to
use the CE functionality of the ARC middleware to make a computing resource accessible for grid users.

1.2 The ARC services

Grid computing has three big areas: computation, storage and information. The server side of the ARC
middleware provides services for all three main areas:

9

10 CHAPTER 1. OVERVIEW

computing
element

jobs
job submission interfaceclient

tools
info

file access interface

fi les

info query interface

input/output file staging

information provider

local batch system interface

execution service

Figure 1.1: The interfaces and internal components of a generic grid computing element

• The Computing Element (CE). By installing the ARC Computing Element (CE), a computing re-
source (usually, computing clusters managed by a batch system—LRMS—or a standalone workstation)
will gain standard grid interfaces, through which users (authenticated using their X.509 certificates)
can get information about the resource, submit, query and manage computing jobs with the help of
client tools. The computing resource will also gain a capability to register itself to several different
grid information system such that client tools would discover it.

• The Storage Element (SE). The ARC GridFTP Server [22] besides being an important part of the
ARC Computing Element, can also be installed as a standalone storage solution.

• The Indexing Service (EGIIS). The ARC Enhanced Grid Information Indexing Service (EGIIS)
is capable of collecting registrations from computing elements and storage elements equipped with
the ARC Resource Information Service (ARIS) and providing these resource pointers to the client
tools. There are several EGIIS instances deployed all around the world. New resources usually register
themselves to one or more of the existing indexes.

These three functionalities are implemented by one or more ARC services, which can be installed separately
in a standalone manner, or all of them can reside on the same machine. This document only describes the
ARC Computing Element (CE). For the description of the standalone GridFTP Storage Element, please
refer to the The NorduGrid GridFTP Server document [22].

There is a very important fourth area: the client side. The ARC command line clients [42] are able to
fully interact with the A-REX or other computing elements, they support several data transfer protocols to
be able to upload and download files from all kinds of storage resources. They are querying the available
computing resources from the information system, doing brokering based on the requirements specified in
the job description (languages supported: XRSL [40], JSDL [26] and JDL [38]), they are able to query the
status of jobs and manage their lifecycle, and to handle all aspects of the secure communication including
delegation of the user’s credentials.

1.3 The functionality of the ARC Computing Element

Figure 1.1 shows the interfaces and the internal components of a generic grid computing element. An ARC
Computing Element (CE) has these interfaces and components, and with them it is capable of the
following:

• to advertise (register) itself in an information system to make the clients tools know about its location
and capabilities

• to accept job execution requests coming through the job submission interface and to process the jobs
(written in standard job description languages) handled by the execution service

1.4. THE A-REX, THE EXECUTION SERVICE 11

ARC CE

jobsclient
tools

info

fi les
downloader uploader

infoprovider scripts

LRMS job mgmt scripts

A-REX

GFS job interface
OGSA-BES

LDAP
OASIS-WSRF

GridFTP
HTTPS

pre-WS
WS

pre-WS
WS

pre-WS
WS

Figure 1.2: The interfaces and components of the ARC Computing Element

• to accept the files requested by the jobs from the user through the file access interface or to download
them from remote storages (input file staging) and to avoid downloading the same files over and over
again by caching them

• to forward the jobs to the local resource management system (LRMS) (such as Condor [35], Torque [12],
OpenPBS [8], Sun Grid Engine [11], etc.), which will schedule and execute them on the computing
nodes in the local cluster

• to monitor the status of the jobs by running the information provider scripts and make this information
available through the information query interface.

• to make the results (output files) of the jobs accessible through the file access interface or upload them
to a remote storage output file staging

1.4 The A-REX, the execution service

The most important component of the ARC Computing Element is the A-REX (ARC Resource-coupled
EXecution service). The A-REX accepts requests containing a description of generic computational jobs and
executing it in the underlying local batch system. It takes care of the pre- and post-processing of the jobs:
staging in (downloading) files containing input data or program modules from a wide range of sources and
storing or staging out (uploading) the output results.

The ARC Computing Element with the help of A-REX and some other services provides two distinct set
of interfaces: the pre-web service interfaces, which are based on LDAP and GridFTP, and are currently
widely deployed and in production; and the web service interfaces, which are based on grid standards, are
also well-tested and production-quality but not yet widely used. Figure 1.2 shows the interfaces and also
the other components.

1.4.1 The pre-web service interfaces

The pre-web service job submission interface uses the GridFTP protocol in a special way. It is provided by
a separate component, the ARC GridFTP Server (GFS) has a job plugin which accepts job descriptions in
the XRSL job description language. The A-REX works together with the GridFTP Server to get notified
about new jobs.

The pre-web service information query interface of the ARC CE is an LDAP/BDII based interface, which
is provided by a separate component, called the ARIS (the ARC Resource Information System).

The pre-web service file access interface uses the GridFTP protocol, and is served by the same ARC GridFTP
Server (GFS) which provides the job submission interface too.

12 CHAPTER 1. OVERVIEW

ARC pre-WS CE

HED

GridFTP Server
(GFS)

GFS job
interface

A-REX
downloader
uploader

LRMS job
management
scripts

infoprovider
scriptsARIS (LDAP + BDII)

GridFTP

jobs

inf
o

fi les

client
tools

proxy

Figure 1.3: The services and components of the pre-web service ARC CE

The A-REX service itself has no direct interface to the clients in the pre-web service case, it communicates
through the GridFTP Server (GFS). Figure 1.3 shows the services and the components of the pre-web service
ARC CE.

1.4.2 The web service interfaces

The web service job submission interface of the ARC CE is provided by the A-REX itself, and it is a
standard-based interface: an enhancement of the OGSA Basic Execution Service recommendation [31].

The web service information query interface of the ARC CE is also provided by the A-REX itself, and
it is also a standard-based interface, called LIDI (Local Information Description Interface), which is an
implementation of the OASIS Web Services Resource Properties specification [37].

The file access interface is technically not a web service, but it is the well-known HTTPS interface provided
by the A-REX itself.

In the web service case, all the interfaces are provided by the A-REX itself, there is no need of separate
services. Figure 1.4 shows the components of the web service ARC CE.

The web service and the pre-web service interfaces are capable to work together: an ARC CE can provide
both interfaces at the same time.

1.5 Security on the Grid

Security on the grid is achieved using X.509 certificates. Any grid service needs to have a certificate issued
by a trusted Certificate Authority (CA). A single machine, like a front-end running a CE, is identified by a
host certificate. A single user accessing the grid is identified by a user certificate also issued by a trusted
CA.

Grid CAs are often established in each country, though there are also CAs issuing certificates for specific
organizations (like CERN), or for several countries (like TERENA). Each CA has its own certification policies
and procedures: to access/setup a grid service, one has to contact the relevant Certificate Authority in order
to obtain the needed certificates.

When a user wants to access the grid, the client tools generate a short-lived proxy certificate to delegate
user’s rights to jobs or other activities performed by grid services on the user’s behalf.

1.6. HANDLING JOBS 13

ARC WS CE

HED

A-REX

downloader
uploader

OASIS-WSRF

HTTPS

OGSA-BES

jobs

info

fi les

client
tools

proxy
LRMS job
management
scripts

infoprovider
scripts

Figure 1.4: The components of the web service ARC CE

In order for the server to authenticate the client, the certificate of the CA issuing the user’s certificate has
to be installed on the server machine. In the same manner in order for the client to authenticate the server,
the certificate of the CA issuing the host’s certificate should be installed on the client machine.

On the server side it is the responsibility of the system administrator to decide which authorities to trust, by
installing each authority’s certificate. On the client side, the user decides which CA certificates she installs.
The user cannot access a grid resource, if the issuer CA certificate of the host is not installed.

Figure 1.5 shows an overview of the required keys and certificates, and also the process of creating a client
proxy certificate using the user’s credentials, and optionally collecting more information about the Virtual
Organization (VO) the user belongs by connecting to a Virtual Organization Membership Service (VOMS).

1.6 Handling jobs

A job is described as a set of input files (which may include executables), a main executable and a set of
output files. The job’s life cycle (its session) starts with the arrival of the job description to the Computing
Element (CE), next comes the gathering of the input files, then follows the execution of the job, then the
handling of the output files and finally job ends with the removal of the session contents by either the user
or after a specified amount of days by the CE.

Each job gets a directory on the CE called the session directory (SD). Input files are gathered in the SD. The
job may also produce new data files in the SD. The A-REX does not guarantee the availability of any other
places accessible by the job other than SD (unless such a place is part of a requested Runtime Environment,
see section 1.7, Application software in ARC: The RunTime Environments).

Each job gets a globally unique identifier (jobid). This jobid is effectively a URL, and can be used to access
the session directory (to list, download and even upload files into the SD) from outside, either through the
HTTP(S) interface or through the GridFTP Server.

1.6.1 A sample job processing flow

The jobs in the ARC Computing Element usually go through these steps:

1. The client (such as the ARC command line tools [29]) connects to the job submission interface (either
to the web service interface of A-REX or to the GridFTP Server).

14 CHAPTER 1. OVERVIEW

client
trusted CAs

CA cert

CA cert

CA cert

CA cert

VOMS
server

server
trusted CAs

CA cert

CA cert

CA cert

CA cert

host cert

host key
client
proxy

user cert

user key client
tools

A-REX

secure
connection

Figure 1.5: Certificates on the client side and on the server side. The client tools create a proxy certificate using the
user’s credentials, and optionally collect more information about the Virtual Organization (VO) the user belongs by
connecting to a Virtual Organization Membership Service (VOMS).

2. Using the well-established processes of the X.509 Public-Key Infrastructure [14], the client and the
server both authenticate each other, based on the trusted CA credentials which were previously installed
on both ends.

3. The A-REX authorizes the user based on configurable rules, and maps the grid identity to a local
username which should be available also on all the worker nodes.

4. The client tool delegates user’s credentials to the A-REX to enable it to act on behalf of the user when
transferring files. (See Figure 1.6.)

5. A job description written in one of the supported languages (XRSL [40] or JSDL [26]) is sent from the
client to the server. (The client itself understands the JDL [38] language also, and it translates it to
either XRSL or JSDL for the A-REX to understand.)

6. The job is accepted and a directory (the session directory, SD) is created which will be the home of
the session. Metadata about the job is written into the control directory of the A-REX.

7. The client tool receives the location of the session directory (SD), and if there are local input files, those
will be uploaded into the SD through the file access interface (either through the HTTP(S) interface
of the A-REX, or through the GridFTP Server).

8. If the job description specifies input files on remote locations, the A-REX fetches the needed files
and puts them into the SD. If the caching is enabled, the A-REX checks first if the file was already
downloaded recently, and uses the cached version if possible.

9. When all the files prescribed in the job description are present (either uploaded by the client tool or
downloaded by the A-REX), a suitable job script is created for and submitted to the configured batch
system (LRMS).

10. During this time, the SD of the job is continuously accessible by the client tool, thus any intermediate
result can be checked.

11. The information provider scripts periodically monitor the job status, updating the information in the
control directory.

12. When the job in the LRMS is finished, the A-REX uploads, keeps or removes the resulted output files
according to the job description.

1.7. APPLICATION SOFTWARE IN ARC: THE RUNTIME ENVIRONMENTS 15

client server

user cert host cert

host keyuser key

client
proxy

CA certCA cert CA certCA cert CA certCA cert

client verifies
host certificate

client
delegates

proxy

CA CA
CA signs
certifi cate

CA certCA cert CA certCA cert CA certCA cert

server verifies
client proxy

client
tools

A-REX

CA signs
certifi cate

client
proxy

Figure 1.6: The client delegates the client proxy to the Computing Element, while both parties verifies that the
credentials are signed by a trusted Certificate Authority (CA)

13. The client tool may also download the output files through the file access interface, and remove the
job from the Computing Element (CE).

During the whole lifetime of the job, its status can be queried through the information query interface (either
through the LDAP interface or through the LIDI web service interface).

Figure 1.7 and Figure 1.8 shows the staging process.

1.7 Application software in ARC: The RunTime Environments

Code development in science but also in specific knowledge areas always demands specific software, libraries
and tools to be used. A common task when offering computational power is to recreate such environments
for each specific knowledge domain.

To provide such software environments and tools in the grid world, ARC enforces the concept of the RunTime
Environment (RTE).

ARC RunTime Environments (RTEs) provide user interfaces to application software and other resources in
a way that is independent of the details of the local installation of the application and computing platform
(OS, hardware, etc.).

It addresses setups typically required by large research groups or user bases, dealing with a common set of
software.

The actual implementation of particular RTE may differ from site to site as necessary. However, it should be
designed so that resource providers with different accounting, licence or other site-specific implementation
details can advertise the same application interface (RE) for all users. It is always up to the local system
administrators to take a decision whether to install and enable a particular runtime environment or not.

A RTE, as conceptualized in http://pulse.fgi.csc.fi/gridrer/htdocs/intro.phtml, is defined
by two items:

1. RTE Homepage

• describes the users’ application interface

• provides application installation instructions for the site administrators

http://pulse.fgi.csc.fi/gridrer/htdocs/intro.phtml

16 CHAPTER 1. OVERVIEW

ARC CE

external
storage

external
storage

metadata
A-REX

downloader

control
directory

session
directoryclient

tools

file
s

collects fi les
local
cache

Figure 1.7: The process of staging in the input files of a job

• links to the application support information

2. RTE itself

• is a shell environment initialization script

• is installed on computing resources

• initializes variables that point to the application software

Let’s have an example from the user perspective:

A user has a script written in python 2.6 that she wishes to execute in some remote computing node in
Grid. She requests PYTHON-2.6 Runtime Environment in the job-description file and passes that file to the
command arcsub.

Upon submission, arcsub parses the job description, notices the RTE request and submits the job only
to sites advertising that RTE. After job submission A-REX on the chosen site initializes the environment
in the computing node before local execution of the job. It initializes the environment so that python
interpreter and standard libraries are in the PATH and executable/readable by the user as described in the
RTE Homepage.

What does this give to the users:

• easier access to a large software resource base

• identical interface to applications independent of the computing platform

What does this do for resource providers and application developers:

• opens the application to a large user base

• reduces overlapping work with application support

More information on how to setup RTEs can be found in Section 4.5.2, Runtime Environments.

1.8. THE LOCAL INFORMATION 17

ARC CE

external
storage

external
storage

local
cache

fi le
s

control
directory

session
directory

A-REX

client
tools

uploader

uploads results

metadata

Figure 1.8: The process of staging out the output files of a job

1.8 The local information

In order to create a Grid infrastructure using ARC-enabled computing resources, information description and
aggregation services need to be deployed. ARIS is coupled to a computing resource and collects information
about it. EGIIS keeps a list of ARIS instances, and eventually, of other EGIIS instances lower down in
hierarchy. Top-level EGIIS instances thus serve as an entry point to the Grid, allowing to discover all the
resources.

While ARIS is coupled to a resource, EGIIS is an independent service. A typical Grid resource owner
always has to deploy ARIS∗. EGIIS servers, on the other hand, are normally deployed by the overall Grid
infrastructure operators.

A system effectively created by ARIS and EGIIS services is called the ARC Information System. Being
based on OpenLDAP [41], it can be accessed in a standard manner by a variety of LDAP clients, giving a
full overview of the infrastructure resources.

ARIS instances are responsible for resource (e.g. computing or storage) description and characterization.
The local information is generated on the resource, and it can be cached. Upon client requests it is presented
via LDAP interface.

1.8.1 Overview of ARC LDAP Infosys schemas

ARC information system currently can present information in three different formats, or schemas. These
can be enabled simultaneously. The schemas are:

1. NorduGrid-ARC schema – this is the NorduGrid default schema, described in detail in this document.
It was inspired by Globus MDS, but has been improved a lot over the years and due to incompatible
changes was moved into the NorduGrid LDAP namespace. In order for standard NorduGrid clients to
submit jobs to a resource, this schema must be published.

2. Glue 1.2 – This is the schema that is used by gLite [4]. Currently, gLite supports Glue 1.3 schema,
but Glue 1.2 is sufficient to be compatible. If ARC is configured to publish information in the Glue 1.2

∗Without ARIS, a resource is still functional, but is not a Grid resource

18 CHAPTER 1. OVERVIEW

format, it will first produce data in the NorduGrid-ARC schema which will then be translated to Glue
1.2. To allow gLite clients to submit to a resource, this schema must be published. Please note, that
the gLite information system must also be hooked into the resource in order for this interoperability
to work.

3. Glue 2.0 – This is the common schema for the EMI [17]. This schema can be published both through
LDAP and XML interfaces of the ARC Compute Element.

ARIS is the information service that is installed on the ARC Compute Element. It publishes via LDAP
interface information about the local computing cluster, like: operating system, amount of main memory,
computer architecture, information about running and finished jobs, users allowed to run and trusted cer-
tificate authorities. The information can be published in either NorduGrid-ARC schema, Glue 1.2 schema
or Glue 2.0 schema.

The dynamic resource state information is generated on the resource. Small and efficient programs, called
information providers, are used to collect local state information from the batch system, from the local Grid
layer (e.g. A-REX or GridFTP server) or from the local operating system (e.g. information available in
the /proc area). Currently, ARC is capable interfacing to the following batch systems (or local resource
management system LRMS in the ARC terminology): UNIX fork, the PBS-family (OpenPBS, PBS-Pro,
Torque), Condor, Sun Grid Engine, IBM LoadLeveler and SLURM.

The output of the information providers (generated in LDIF format) is used to populate the local LDAP
tree. This OpenLDAP back-end implements two things: it is capable caching the providers output and upon
client query request it triggers the information providers unless the data is already available in its cache.
The caching feature of the OpenLDAP back-end provides protection against overloading the local resource
by continuously triggering the information providers.

1.9 LRMS, Queues and execution targets

Usually the A-REX is installed on top of an existing local resource management system (LRMS). The A-REX
has to interfaced to the LRMS in order to be able to submit jobs and query their information.

The A-REX assumes that the LRMS has one or more queues, which is a couple of (usually homogeneous)
worker nodes grouped together. These queues should not overlap. The different LRMSes have different
concepts of queues (or have no queues at all). Nevertheless, in the A-REX configuration, the machines of
the LRMS should be mapped to A-REX queues. The details can be found in Section 4.4.2, Connecting to
the LRMS.

The client side job submission tools query the information system for possible places to submit the jobs,
where each queue on a CE is represented as an execution target, and treated separately.

Chapter 2

Requirements

To properly configure an ARC CE the following prerequisites are needed:

• Administrators installing ARC CE must have access to network firewall configuration:
Several ports will need to be open for the ARC services to work (see 4, Configuration and 4.1.4,
Firewalls

• Time Synchronization of the system that will run an ARC CE must be setup, by using the NTP
protocol [7] or similar. The grid relies on syncronization for the jobs to be correctly submitted and for
the security infrastructure to work properly.

The following is optional but suggested to be on the machines running an ARC CE:

• A networked filesystem such as NFS or similar, to connect storage and share job data between the
ARC middleware and the LRMS system behind it.

2.1 Software Requirements

ARC services can be built mainly for GNU/Linux and Unix systems.

Table 2.1 shows the current officially supported ones.

Operating System Version/Distribution Supported Architectures

Scientific Linux 5.5+ i386, x86 64

GNU/Linux RedHat 5+ i386, x86 64

Debian 6+ i386, x86 64

Ubuntu 10.04+ i386, x86 64

Table 2.1: Supported operating systems

For a detailed list of the software libraries needed to compile and install ARC services, please refer to the
README included in the source tarball. See Chapter 3, Installation for details.

2.2 Hardware Requirements

The NorduGrid middleware does not impose heavy requirements on hardware. The choice is only bound to
the computational needs of your organization.

Table 2.2 shows the minumum requirements.

19

20 CHAPTER 2. REQUIREMENTS

Architecture 32 or 64 bits

CPU families ≥ i386 , PowerPC

CPU Speed ≥ 300 MHz

Memory Size ≥ 128MB

Disk space for binaries ≤ 30MB

Disk space including development files 160MB

Disk space including external software (such as Globus Toolkit 5) +10MB

Network connectivity

a public IP on the front-end
cluster is strongly encouraged.
Worker nodes can be on a private
or local network.

Table 2.2: Hardware Requirements

2.3 Certificates

To run an ARC CE and have it servicing the grid, a host certificate provided by a Certificate Authority
(CA) is needed.

A request for such a certificate must be sent to the National Grid Infrastructure organization or to any local
organization entitled to provide grid services.

The CA certificate is needed as well, this is public and can be usually obtained from either the CA itself, of
fetched from the EMI repository, IGTF repository, NorduGrid yum/apt repositories, or from the NorduGrid
Downloads area. These are needed to verify that the service and the users connecting to it have valid
credentials, to perform mutual authentication.

If this is the first time the reader sets up an ARC CE, we suggest to obtain temporary test
certificates for hosts, users and a temporary CA using the following certificate generator:

http://svn.nordugrid.org/trac/nordugrid/browser/contrib/certificate_
generator

Such certificates cannot be used in production environments and can only be used for testing
purposes.
Once the system administrator feels comfortable with an ARC CE setup, InstantCA certificates
can be substituted with actual ones from trusted production CAs.

Installation of certificates is discussed in Section 3.3, Installation of certificates.

http://svn.nordugrid.org/trac/nordugrid/browser/contrib/certificate_generator
http://svn.nordugrid.org/trac/nordugrid/browser/contrib/certificate_generator

Chapter 3

Installation

3.1 Installation for commom GNU/Linux Distributions

The preferred installation method for ARC middleware is by installing packages from repositories. The
currently supported distributions are those based on YUM-RPM (Red Hat, CentOS, Fedora, Scientific
Linux) and those based on APT (Debian, Ubuntu).

The packaging systems will automatically download additional libraries and dependencies for all the ARC
middleware components to work properly. You can choose to install single packages one by one and add
functionalities in a step-by-step fashion. Please refer to table 3.1 if you plan to do so.

ARC provides also meta-packages that are shortcuts to install a group of packages that provide a single
functionality. It is strongly recommended to use this functionality for a quick start.

3.1.1 Setting up the repositories

The current repository is the official NorduGrid one. To configure NorduGrid repositories please follow the
up-to-date instructions at:

http://download.nordugrid.org/repos.html

If ARC CE is to be used together with other European grid products, for example to join European scientific
experiments such as ATLAS or ALICE, then the suggested repository is the EMI repository.

The EMI consortia provides also official production level customer support for distributions such as Scientific
Linux 5.5 and Debian 6 and above, so it is strongly recommended to install from EMI if you are planning
to use an ARC CE on these systems.

To install such repositories, please follow the instructions at EMI official website at this link:

http://emisoft.web.cern.ch/emisoft/index.html

3.1.2 Performing the installation

To perform the installation, follow these steps:

1. Configure a repository (see above for details)

2. Install the ARC CE using meta-packages: issue the following command as root:
For RPM-Based distros:

yum install nordugrid-arc-compute-element

21

http://download.nordugrid.org/repos.html
http://emisoft.web.cern.ch/emisoft/index.html

22 CHAPTER 3. INSTALLATION

For APT-Based distros:

apt-get install nordugrid-arc-compute-element

This will install the packages marked with * in table 3.1.

3. (optional) if you want to customize your setup with individual packages, issue:
For RPM-Based distros:

yum install <packagename>

For APT-Based distros:

apt-get install <packagename>

Package Content

All

nordugrid-arc*! All components

ARC CE

nordugrid-arc-arex*! ARC Remote EXecution service

nordugrid-arc-hed*! ARC Hosting Environment Daemon

nordugrid-arc-plugins-needed*! ARC base plugins

nordugrid-arc-gridftpd*! ARC GridFTP server

nordugrid-arc-plugins-globus* ARC Globus plugins

nordugrid-arc-cache-service ARC cache service

nordugrid-arc-datadelivery-service ARC data delivery service

nordugrid-arc-ldap-infosys*+ LDAP components of ARC information system

nordugrid-arc-aris* ARC local information system

ARC SE

nordugrid-arc-gridftpd ARC GridFTP server

ARC IS

nordugrid-arc-egiis+! ARC EGIIS service

Security

nordugrid-arc-gridmap-utils*! NorduGrid authorization tools

nordugrid-arc-ca-utils*! NorduGrid authentication tools

Monitoring

nordugrid-arc-ldap-monitor ARC LDAP monitor service

nordugrid-arc-ws-monitor ARC WS monitor service

Documentation

nordugrid-arc-doc ARC documentation

Figure 3.1: ARC packages: the table shows a brief description of each package and the components they
belong to. Packages marked with “!” are mandatory to have a working functionality. Packages marked with
“*” are automatically installed by ARC-CE nordugrid-arc-compute-element metapackage, packages marked
with “+” are automatically installed by ARC Infosys nordugrid-arc-information-index metapackage

3.2. INSTALLATION FOR OTHER SYSTEMS AND DISTRIBUTIONS 23

3.2 Installation for other systems and distributions

Packages are not provided for platforms other than GNU/Linux, so for the moment being the only way of
installing ARC services is by compiling from source. Please refer to the README file∗ in the source code
repository for more details.

3.3 Installation of certificates

A description of what certificates are and why they are needed can be found in Section 1.5, Security on the
Grid.

Information about reading the contents of the certificates, changing their formats and more can be found in
the ARC certificate mini how-to document†.

In case ARC was installed using meta-packages (see Chapter 3, Installation) all the required CAs are already
installed and a script will automatically update them together with system updates.

If you want to install or remove specific CAs, NorduGrid repositories contain packaged CAs for ease of
installation. By installing these packages, all the CA credentials will get updated by system updates. These
packages are named in this format:

ca_<CA name>

Example:

ca_nordugrid

You can install them as you would install any package by APT or YUM.

In case your resource is in a Nordic country (Denmark, Finland, Norway, Iceland or Sweden), install the
certrequest-config package from the NorduGrid Downloads area. It is also in the NorduGrid repos-
itories with name ca-nordugrid-certrequest-config. This contains the default configuration for
generating certificate requests for Nordic-based services and users. If you are located elsewhere, contact
your local CA for details.

For example, in Nordic countries, generate a host certificate request with

grid-cert-request -host <my.host.fqdn>

and a LDAP certificate request with

grid-cert-request -service ldap -host <my.host.fqdn>

and send the request(s) to the NorduGrid CA for signing.

3.3.1 Installing host certificates

Once an host certificate is obtained from a CA, it has to be installed for the CE to use it.

When generating a certificate, two files will be created: a certificate file (public), typically hostcert.pem;
and a key file (private), typically hostkey.pem.

Installation is as follows:

1. Copy the two files hostcert.pem and hostkey.pem into the standard ARC location:
/etc/grid-security.

2. Both files must be owned by root.

∗http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/README
†http://www.nordugrid.org/documents/certificate_howto.html

http://svn.nordugrid.org/trac/nordugrid/browser/arc1/trunk/README
http://www.nordugrid.org/documents/certificate_howto.html

24 CHAPTER 3. INSTALLATION

3. The private key (hostkey.pem) must be readable only by root.

4. The two files MUST NOT have executable permissions.

5. The key file MUST NOT be password protected. This is especially important if a tool other than
grid-cert-request was used.

If the ARC services will be run as a different user than root, then these files should be owned and accessible
by this other user.

3.3.2 Installing custom CA certificates

If you’re planning to install custom certificates such as the one provided by InstantCA (See 2.3, Certificates)
then the files must usually be copied into the /etc/grid-security/certificates/ directory.

3.3.3 Authentication Policy

The credential-level authentication policy is just a decision on which certificates the CE will accept. Only
those users whose CAs are installed will be able to connect to the CE. (This does not mean they will be
authorized to submit jobs, but at least they can establish the connection.) It is strongly advised to obtain
a certificate from each CA by contacting it. To simplify this task, the NorduGrid Downloads area has a
non-authoritative collection of CA credentials approved by EUGridPMA. As soon as you decide on the list
of trusted certificate authorities, you simply download and install the packages containing their public keys
and certificates. Before installing any CA package, you are advised to check the credibility of the CA and
verify its policy!

Example If your host certificate is issued by the NorduGrid CA, and your user has a
certificate issued by the Estonian CA, and she is going to transfer files between your site
and Slovakia, you need the NorduGrid, Estonian and Slovak CA credentials.

3.3.4 Revocation lists

The Certificate Authorities are responsible for maintaining lists of revoked personal and service certificates,
known as CRLs (Certificate Revocation Lists). It is the CE administrator responsibility to check the CRLs
regularly and deny access to Grid users presenting a revoked certificate. Outdated CRLs will render your
site unusable. A tool called fetch-crl exists to get the latest CRLs, which can be installed from the
fetch-crl package which is included with the nordugrid-arc-compute-element meta-package and
also available from major repositories (this package is not provided by NorduGrid). The tool is intended to
run as a cron job. There are 2 init scripts available:

/etc/init.d/fetch-crl-boot
/etc/init.d/fetch-crl-cron

The fetch-crl-boot script enables CRL downloads during boot while fetch-crl-cron enables sched-
uled download of CRLs. Detailed configuration can be tuned via /etc/fetch-crl.conf.
More information can be found here: http://vdt.cs.wisc.edu/components/fetch-crl.html.
Automatic startup of these services are distribution dependent and the administrator should take care of
running these scripts by the means offered by their OS distribution.

3.3.5 Authorization policy

The authorization policy is a decision on which grid users or groups of grid users (Virtual Organizations) are
allowed to use a resource. Configuration of this will be discussed in the following sections: Section 4.4.1,
Access control: users, groups, VOs and Section 6.10, Structure of the grid-mapfile.

http://vdt.cs.wisc.edu/components/fetch-crl.html

Chapter 4

Configuration

This section leads through the following steps:

1. Prepare the system to run ARC services (Section 4.1, Preparing the system)

2. Configure a basic CE (Section 4.2, Configuration file formats and Section 4.3, Setting up a basic CE)

3. Make it production-ready (Section 4.4, Production CE setup)

4. Add optional features (Section 4.5, Enhancing CE capabilities)

4.1 Preparing the system

4.1.1 Users and groups

ARC services are run by the root user by default, and this is the most convenient way for normal operation.
But it is also possible to run them as a non-privileged user (see Section 4.1.3, Permissions).

Users accessing the grid have a grid identity (see Section 1.5, Security on the Grid) and will submit and
run jobs on different physical machines. In ARC, each grid identity is mapped to a local UNIX user on the
front-end machine (the one that runs A-REX) and eventually on the machine actually performing the job
(worker nodes, managed by the LRMS). Hence, one or more local UNIX users need to be created in the
system, to run the jobs submitted by grid clients.

It is possible to map all grid users to the same local user. For a basic CE setup, this will be sufficient. Later
however for security reasons it is better to have a pool of local users to choose from, or the have actual local
users for each grid user. To anticipate more users in the future, it is a good practice to create a dedicated
local group for these mapped users, so that is possible to use local UNIX authorization methods to restrict
the grid accounts.

For the basic CE setup, let’s create a new group called grid and new user called griduser1 that belongs to
this group. Later more users can be created.

More advanced user configuration setups are discussed in Section 4.4.1, Access control: users, groups, VOs.

4.1.2 Disk, partitioning, directories

The ARC CE uses separate directories to store the data files of the jobs, the metadata about the jobs, and
the cached input files. It also requires a directory with the installed CA certificates and optionally can use
a directory of runtime environments.

Figure 4.1 shows these directories, Table 4.1 summarizes how these directories should be configured.

Some of these directories are suggested to be local to the front-end, other can be on shared or networked
filesystems on external storage. The following is a description of the important directories for ARC CE.
Note: some of them are Required for the ARC CE to work.

25

26 CHAPTER 4. CONFIGURATION

ARC CE

A-REX

local
cache

control
directory

session
directory

cert
directory

RTE
directory

job
metadata

cached
input files

job
working dir

trusted
CA certs

runtime
environments

Figure 4.1: The directories on an ARC CE

Control Directory (CD) [Required] contains all the information about jobs handled by the A-REX, such
as job specification files and LRMS submission scripts. The information provider scripts also use this
directory to get information about jobs. This directory is heavily accessed by the A-REX, hence it
should not be on a slow remote storage.

Session Directory (SD) [Required] contains the executable and data files of the jobs. This is where
the jobs run, and this is the only area where they can produce results. Each job is assigned a unique
directory within the session directory. This is usually shared among the worker nodes and the frontend,
and can be remote for the frontend also. (See also Section 6.13, Using a scratch area.)

Grid Certificates Directory [Required] contains the certificates of and other information about the trusted
CAs. It is usually located at /etc/grid-security/certificates. (For setup instructions, see
Section 3.3, Installation of certificates.)

Cache Directory [Optional] can be used to cache downloaded input files, so if a new job requires the same
file, it doesn’t have to be downloaded again. Can reside on a shared filesystem. Caching is discussed
in sections Section 4.4.3, Enabling the cache and Section 6.4, Cache.

Runtime Environments Scripts directory [Optional] contains special scripts that setup a particular
runtime enviroment for a job to access. These include environment variables and software selections.
Can reside on a shared filesystem. Runtime Environments are explained in Section 4.5.2, Runtime
Environments.

When partitioning disks and connecting shared storage, keep in mind the following things:

• The control directory (CD) is frequently accessed by the CE, so it is strongly advised to have it on a
local hard disk. It can, however, grow pretty much with the number of jobs, so it is better to allocate
a separate partition for it. The amount of data per job is generally around 50-100kb, but depending
on the configured log level and the amount of data transfer, the data transfer log for each job can be
much larger than this.

• The session directory (SD) stores all the executables, input and output files, and intermediate results
of the jobs. It should be on a separate partation or even on a remote storage.

4.1. PREPARING THE SYSTEM 27

For more details please refer to sections Section 6.13, Using a scratch area, Section 4.4.3, Enabling the
cache.

The ARC suggested setup for these directories is summarized in table 4.1.

Directory Suggested Location Example Required?

session directory
NFS or shared FS, can be also on
a separate disk partition

/var/spool/arc/session Required

control directory
local to the front-end, also in a
separate disk partition

/var/spool/arc/control Required

CA certificates local to the front-end /etc/grid-security/certificates Required

RTE scripts NFS or shared FS /SOFTWARE/runtime Optional

cache directory
local, NFS, local and published
via NFS

/var/spool/arc/cache Optional

Table 4.1: Summary of ARC CE directories setup

4.1.3 Permissions

By default, the ARC services are run by root. In this case the control directory (CD) and the session
directory (SD) should be writable, readable and executable by the root user, and then the A-REX will set
all the other permissions as needed.

In case the ARC services should be run as a non-privileged (non-root) user, they cannot modify permissions
of directories as easily. After the grid users are mapped to local users, they have to be able to access the
job’s session directory, hence the suggested setup is:

• put all the local users into the same group (e.g. grid)

• to set group ownership of the SD to this group

• the SD has to be writable, readable and executable by members of this group

• the SD and the CD have to be writable, readable and executable by the user running the ARC services

The host credentials need to have special permissions (see Section 3.3, Installation of certificates).

4.1.4 Networking

DNS Requirements For the ARC middleware, the frontend has to have a public IP and a Fully Qualified
Domain Name (FQDN) in order to join an indexing service and thus the grid (more on this on chapter
Section 4.4.5, Registering to an ARC EGIIS). This means that a reverse DNS lookup for the frontend’s IP
has to return the FQDN.

Basic networking recommendations are the following:

• Make sure your frontend has a FQDN. Issuing hostname -f should print it.

• In the /etc/hosts file, make sure that the FQDN of your machine comes first, before other network
names. Example: if 130.235.185.195 is the IP address and gridtest.hep.lu.se is the FQDN
assigned to it, /etc/hosts should look like:

130.235.185.195 gridtest.hep.lu.se gridtest

while the following could lead to problems:

wrong!
130.235.185.195 gridtest gridtest.hep.lu.se

28 CHAPTER 4. CONFIGURATION

Firewalls ARC-CE needs the following incoming and outgoing ports to be opened:

• For the web service interface: HTTP(s), default 80 and 443

• For LDAP Information System, default 2135 (see also Section 4.3.5, The [infosys] section: the local
information system)

• For the gridftp service interface: GridFTP,

– default 2811

– a range of ports for GridFTP data channels, typically 9000-9300

• For HTTPg, default 8443 (outgoing only)

• For SMTP, default 25 (outgoing only)

• For NTP, default 123 (outgoing only, in case NTP is used for time synchronisation, see 2, Requirements)

• For webservices, the port defined for A-REX. See Section 4.5.3, Enabling the Web Services interface.

Most ports, including 2135 and 2811, are registered with IANA and should normally not be changed. The
ports for GridFTP data channels can be chosen arbitrary, based on following considerations: gridftpd by
default handles 100 connections simultaneously; each connection should not use more than 1 additional
TCP port. Taking into account that Linux tends to keep ports allocated even after the handle is closed
for some time, it is a good idea to triple that amount. Hence about 300 data transfer ports should be
enough for the default configuration. Typically, the range of ports from 9000 to 9300 is being opened.
Remember to specify this range in the ARC configuration file (see Section 4.2, Configuration file formats,
globus_tcp_port_range attribute) later on.

For using legacy Globus components it is also worth to read information at this URL: http://dev.
globus.org/wiki/FirewallHowTo

Other network related Internal cluster nodes (i.e. LRMS nodes) are NOT required to be fully avail-
able on the public internet (however, user applications may require it). For information about publishing
nodes’ network connectivity please refer to Section 4.3.5.1, The [cluster] section: information about the host
machine.

4.1.5 Security considerations

SELinux If the system uses SELinux, the startup script should be usually able to create profiles for the
services.

To fine tune LDAP information system permissions, see 5.7.2, How to configure SELinux to use a port other
than 2135 for the LDAP information system.

If any problem in connecting to or starting up services arises, submit a bug report to the ARC bugzilla∗.

If problems arise and it is suspected they are due to SELinux, the best is to set SELinux in permissive mode
and check if the problem persists.

AppArmor On Ubuntu and Debian machines AppArmor profiles have been reported to prevent the infos-
ystem starting. AppArmor profiles are currently not shipped for ARC components. Therefore for the time
being:

• Remove /etc/apparmor.d/usr.sbin.slapd and restart AppArmor.

• If the above doesn’t exist or doesn’t help, disable AppArmor completely or put all the profiles in
complain mode†.

∗http://bugzilla.nordugrid.org/
†https://help.ubuntu.com/community/AppArmor

http://dev.globus.org/wiki/FirewallHowTo
http://dev.globus.org/wiki/FirewallHowTo
http://bugzilla.nordugrid.org/
https://help.ubuntu.com/community/AppArmor

4.2. CONFIGURATION FILE FORMATS 29

4.2 Configuration file formats

Configuration of ARC can be done with a single configuration file usually located at /etc/arc.conf.

This configuration file format is fully compatible with the one for ARC middleware version 0.8.x.

? If you have a legacy file from an ARC 0.8.x version,
you can directly use that file for the new A-REX-based ARC CE.

Using the the arc.conf is sufficient for the majority of use cases, however there is a possibility to use a
lower-level XML-based configuration format (and a corresponding higher-level INI format) in special cases.
For more details, see Section 6.7, The XML and the INI configuration formats.

4.2.1 Structure of the arc.conf configuration file

An ARC configuration file is a text file containing sections and related commands.

Each section identifies one or more components/features of ARC, and commands are used to modify the
behaviour of these component/features.

A section name is sourrounded by square brackets and can contain slashes. Names after the slashes identify
subsections. Examples:

[cluster]
[infosys]
[infosys/glue12]
[queue/fork]
[infosys/cluster/registration/toPGS1]

As a general rule, a section name containing a subsection has to appear after its section. Examples in
Figure 4.2.

...
[infosys]
...
[infosys/glue12]
...
[queue/fork]
...
[infosys/cluster/registration/toPGS1]
...

Correct

...
[infosys/cluster/registration/toPGS1]
...
[infosys/glue12]
...
[infosys]
...
[queue/fork]
...

Wrong

Figure 4.2: Ordering of section names.

A configuration command is a one-line command="value" expression. Examples:

hostname="gridtest.hep.lu.se"
nodecpu="2"
resource_location="Lund, Sweden"
mail="gridmaster@hep.lu.se"

Comments can be added one per line by putting a # at the beginning of the line.

A section starts with a section name and ends at another section name or if the end of the configuration file
is reached. Configuration commands always belong to one section.

Here is an overall example:

30 CHAPTER 4. CONFIGURATION

this is a comment, at the beginning of the [common] section
[common]
hostname="piff.hep.lu.se"
x509_user_key="/etc/grid-security/hostkey.pem"
x509_user_cert="/etc/grid-security/hostcert.pem"
x509_cert_dir="/etc/grid-security/certificates"
gridmap="/etc/grid-security/grid-mapfile"
lrms="fork"

since there is a new section name below, the [common] section ends
and the grid-manager section starts
[grid-manager]
user="root"
controldir="/tmp/control"
sessiondir="/tmp/session"
cachedir="/tmp/cache"
debug="3"

other commands...

[queue/fork]

other commands till the end of file.
This ends the [queue/fork] section.

4.2.2 Description of configuration items

In the descriptions of commands, the following notation will be used:

command=value [value] – where the values in square brackets [...] are optional. They should
be inserted without the square brackets!

A pipe “|” indicates an exclusive option. Example:

securetransfer=yes|no – means that the value is either yes or no.

For a complete list and description of each configuration item, please refer to Section 6.1, Reference of the
arc.conf configuration commands.

The configuration commands are organized in sections. The following is a description of the main manda-
tory sections and of the components and functionalities they apply to, in the order they should appear in
the configuration file. These are needed for minimal and basic functionalities (see Section 4.3, Setting up a
basic CE).

[common] Common configuration affecting networking, security, LRMS. These commands define defaults
for all the ARC components (A-REX, GridFTPd, ARIS), which can be overridden by the specific sections
of the components later. Always appears at the beginning of the config file.

Discussed in Section 4.3.2, The [common] section.

[group] This section and its subsections define access control mappings between grid users and local
users. Applies to all ARC components. Usually follows the [common] section. If there are [vo] sections,
they should come before the [group] section.

Discussed in Section 4.4.1, Access control: users, groups, VOs.

If no access control is planned (for example for tests) this section can be omitted but the administrator must
manually edit the grid-mapfile (see Section 6.10, Structure of the grid-mapfile)

[grid-manager] This section configures the A-REX, including job management behavior, directories,
file staging and logs.

4.3. SETTING UP A BASIC CE 31

Discussed in Section 4.3.3, The [grid-manager] section: setting up the A-REX and the arched.

[gridftpd] This section configures the GridFTPd, which is the server process running the GridFTP
protocol. Its subsections configure the different plugins of the GridFTPd, in particular the job submission
interface: [gridftpd/jobs].

Discussed in Section 4.3.4, The [gridftpd] section: the job submission interface.

[infosys] This section configures the local information system (ARIS) and the information provider
scripts. (This section also can be used to configure an information index server, see [36].) The commands
affect the data published by the information system, the behaviour of the publishing server and its networking
options. The subsections configure registration to information index servers, and extra information for
different information schemas.

Discussed in Section 4.3.5, The [infosys] section: the local information system.

[cluster] Configures the A-REX information provider scripts. The commands here affect the data
published by the local information system, mostly regarding the front-end machine. Must appear after the
[infosys] section.

Discussed in Section 4.3.5.1, The [cluster] section: information about the host machine

[queue/queuename] Configures the queues provided by A-REX. At least one [queue/...] section must
exist. The commands here affect the data published by the information system, mostly regarding the LRMS
queues A-REX is serving. Must appear after the [infosys] section.

Discussed in Section 4.3.5.2, The [queue/fork] section: configuring the fork queue.

Generic commands These commands specify common defaults in the [common] section, and also can
be used to set different values per component in the following sections: [grid-manager], [gridftpd]
and its subsections and [infosys].

logfile=path – where the logs will be written.

pidfile=path – where the PID of the process will be written.

debug=number – specifies the level of logging from 5 (DEBUG) to 0 (FATAL).

4.3 Setting up a basic CE

A basic CE is the starting point of every ARC setup. A basic CE is a stand-alone machine ready to accept
job submission. A basic CE will not be connected to an information index, so clients will have to explicitly
specify its job submission interface URL to connect to. This chapter will show a basic configuration of the
main sections seen in chapter Section 4.2.2, Description of configuration items.

Please make sure all the steps in chapter Section 4.1, Preparing the system are done before proceeding.

The basic CE will have fork as an LRMS, which will allow the machine to process jobs in the environment
provided by the operating system of the front-end machine. Connecting to real LRMSes is discussed in
Section 4.4.2, Connecting to the LRMS.

4.3.1 Creating the arc.conf file

ARC will by default search for its configuration file in the following location:

/etc/arc.conf

The minimal configuration file described in the following is usually installed here:

32 CHAPTER 4. CONFIGURATION

ARC pre-WS CE

HED

GridFTP Server
(GFS)

GFS job
interface

A-REX
downloader
uploader

LRMS job
management
scripts

infoprovider
scriptsARIS (LDAP + BDII)

GridFTP

jobs

inf
o

fi les

client
tools

proxy

/usr/share/doc/nordugrid-arc-doc<version>/examples/arc_computing_element.conf

where <version> varies with every update of the documentation.

The latest one can be downloaded from the ARC Configuration Examples web page‡.

Copy this file into /etc with the name arc.conf, then customize its contents following the instructions
below, although it should work without any customization.

4.3.2 The [common] section

The [common] section maintains informations that will be used by any subsystem of the CE. It has to
appear as the first item in the configuration file.

A minimal configuration for this section is shown here:

[common]
x509_user_key="/etc/grid-security/hostkey.pem"
x509_user_cert="/etc/grid-security/hostcert.pem"
x509_cert_dir="/etc/grid-security/certificates"
gridmap="/etc/grid-security/grid-mapfile"
lrms="fork"

Here we specify the path of the host’s private key and certificate, the directory where the certificates of the
trusted Certificate Authorities (CAs) are located, the path of the grid map file, which defines mapping of
grid users to local users, and the name of the default LRMS, which is “fork” in the basic case, when we only
want to use the frontend as a worker node, not a real cluster.

For details about these configuration commands, please see Section 6.1.1, Generic commands in the [com-
mon] section

For the basic CE, let’s create a “grid map file” which looks like this:

"/DC=eu/DC=KnowARC/O=Lund University/CN=demo1" griduser1
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo2" griduser1
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo3" griduser1

‡http://www.nordugrid.org/arc/configuration-examples.html

http://www.nordugrid.org/arc/configuration-examples.html

4.3. SETTING UP A BASIC CE 33

4.3.3 The [grid-manager] section: setting up the A-REX and the arched

The [grid-manager] section configures A-REX and arched. Its commands will affect the behaviour of
the startup scripts and the A-REX and arched processes.

A sample section would look like this:

[grid-manager]
user="root"
controldir="/tmp/jobstatus"
sessiondir="/tmp/grid"
debug="3"
logfile="/tmp/grid-manager.log"
pidfile="/tmp/grid-manager.pid"
mail="grid.support@somewhere.org"
joblog="/tmp/gm-jobs.log"
delegationdb="sqlite"

Here we specify which user the A-REX should be run as, where should be the directory for the job’s metadata
(the control dir) and data (the session dir), what level of log message we want, where should be the log file
and where should the process ID of the arched daemon be written. We also specify an e-mail contact address
and the path of the “joblog” file, which will contain information about each job’s lifecycle.

For details about these configuration commands, please see Section 6.1.12, Commands in the [grid-manager]
section

4.3.4 The [gridftpd] section: the job submission interface

Currently, the production level job submission interface uses the gridftp protocol which is served by the
GridFTP Server (GFS) running on the frontend.

The [gridftpd] section configures the behaviour of the gridftpd daemon and its startup scripts.

A sample section for a basic CE is the following:

[gridftpd]
user="root"
debug="3"
logfile="/tmp/gridftpd.log"
pidfile="/tmp/gridftpd.pid"
port="2811"
allowunknown="no"

Here we specify which user the GridFTP server should run as, the verbosity of the log messages, the path
of the logfile and the pidfile, the port of the GridFTP server, and that only “known” users (specified in the
grid map file) should be allowed to connect.

For a minimal ARC CE to work, we need the configure the job interface with setting up the “job plugin” of
the GridFTP server in a configuration subsection:

[gridftpd/jobs] controls how the virtual path /jobs for job submission will behave. These paths can
be thought of as those of a UNIX mount command. The name jobs itself is not relevant, but the contents
of the section and especially the plugin command determine the path behaviour.

For a minimal CE to work, it is sufficient to configure the following:

[gridftpd/jobs]
path="/jobs"
plugin="jobplugin.so"
allownew="yes"

34 CHAPTER 4. CONFIGURATION

Here we specify the virtual path where the job plugin will sit, the name of the library of the plugin, and that
new jobs can be submitted (turning allownew to “no” would stop accepting new jobs, but the existing jobs
would still run.)

For a more complex configuration example with fine-grained authentication based on groups see 6.15.4, Con-
figuration Examples and for full details on all configuration commands, please see Section 6.1.4, Commands
in the [gridftpd] section

As GridFTPd interface is planned to be phased out and replaced by the web service interface, no big changes
will be done in the future.

4.3.5 The [infosys] section: the local information system

The [infosys] section and its subsections control the behaviour of the information system. This includes:

• configuration of ARIS and its infoproviders

• customization of the published information

• configuration of the slapd server to publish information via LDAP

• configuration of BDII to generate ldif trees for LDAP

• selection of the LDAP schema(s) to publish

• registration to an EGIIS index service (see Section 4.4.5, Registering to an ARC EGIIS)

• running a EGIIS IS (not covered in this manual, please refer to [36])

After this section, several subsections will appear as well as some other sections which are related to the
information system, such as [cluster] and [queue/...] sections. More on these will be explained
later.

A sample configuration for a basic CE would be the following:

[infosys]
user="root"
overwrite_config="yes"
port="2135"
debug="1"
slapd_loglevel="0"
registrationlog="/tmp/inforegistration.log"
providerlog="/tmp/infoprovider.log"
provider_loglevel="2"

Here we specify which user the slapd server, the infoproviders, the BDII and the registration scripts should
run, then we specify that we want the low-level slapd configs to be regenerated each time, then the port
number, the debug verbosity of the startup script, the slapd server and the infoproviders, and the logfiles
for the registration messages and the infoprovider messages.

For details about these configuration commands, please see Section 6.1.5, Commands in the [infosys] section.

4.3.5.1 The [cluster] section: information about the host machine

This section has to follow the [infosys] section and it is used to configure the information published
about the host machine running ARC CE.

A sample configuration can be seen below:

4.3. SETTING UP A BASIC CE 35

[cluster]
cluster_alias="MINIMAL Computing Element"
comment="This is a minimal out-of-box CE setup"
homogeneity="True"
architecture="adotf"
nodeaccess="inbound"
nodeaccess="outbound"

Here we specify the alias of the cluster, a comment about it, that the worker nodes are homogeneous, that
we want infoprovider scripts to determine the architecture automatically on the frontend (“adotf”), and that
the worker nodes have inbound and outbound network connectivity.

For details about these configuration commands, please see Section 6.1.9, Commands in the [cluster] section.

4.3.5.2 The [queue/fork] section: configuring the fork queue

Each [queue/queuename] section configures the information published about computing queues. At least
one queue must be specified for a CE to work. In this chapter a configuration for the fork LRMS will be
shown.

The fork LRMS is just a simple execution environment provided by the means of the underlying operating
system, that is, usually a shell with the standard linux environment variables provided to the mapped UNIX
user.

A special section name [queue/fork] is used to configure such information, some of its commands can be
used for any queue section, some are specific for the fork queue. More about this will be explained in
Section 4.4.2, Connecting to the LRMS.

A minimal CE configuration for this section would look like this:

[queue/fork]
name="fork"
fork_job_limit="cpunumber"
homogeneity="True"
scheduling_policy="FIFO"
comment="This queue is nothing more than a fork host"
nodecpu="adotf"
architecture="adotf"

Here we specify that this is a “fork” queue, that the number of allowed concurent jobs should equal the
number of CPUs, that the queue is homogeneous, the scheduling policy, an informative comment, and that
the type of the cpu and the architecture should be determined automatically on the frontend. The only fork-
specific command is the fork_job_limit command, the others can be used for other LRMSes also. See
sections Section 4.4.2, Connecting to the LRMS and Section 6.1.10, Commands in the [queue] subsections.

4.3.6 A basic CE is configured. What’s next?

A basic CE is now set. To test its functionality, it must be started first. Please refer to Section 5.1.3,
Starting the CE to start the CE. If none of the startup scripts give any error, the testing can be started.
Please follow the testing suggestions in Section 5.2, Testing a configuration.

If everything works as expected, the next step is the turn the basic CE into a production level CE: connecting
it to the LRMS, turning on input file caching, and registering it to an information index service. Please
follow the instructions in Section 4.4, Production CE setup.

For some additional (optional) features, please proceed to Section 4.5, Enhancing CE capabilities.

36 CHAPTER 4. CONFIGURATION

4.4 Production CE setup

Once a basic CE is in place and its basic functionalities have been tested, these things are usually needed to
make it production-ready:

Configure access control to streamline the maintenance of the authentication and authorization of users,
VOs and authorization groups should be defined and the nordugridmap tool should be utilized to
generate the grid map file automatically. See Section 4.4.1, Access control: users, groups, VOs.

Connect to the LRMS to be able to use the underlying batch system, ARC support several famous
clustering and load balancing systems such as Torque/PBS, Sun Grid Engine, LSF, and others. See
Section 4.4.2, Connecting to the LRMS.

Enabling the cache to keep a copy of the downloaded input files in case the next job needs the same,
which greatly decreases wait time for jobs to start. See Section 4.4.3, Enabling the cache

Configure data staging Staging data in and out for jobs is a critical part of the CE, and it is important
that it is correctly configured to optimise performance. See Section 4.4.4, Configuring Data Staging.

Register to an index service NorduGrid provides an index service that will publish the CE to all the
grid clients that have access to the NorduGrid network. In this way the CE will be part of the GRID.
See Section 4.4.5, Registering to an ARC EGIIS.

Accounting the A-REX makes use of the JURA module that is capable of sending usage records to various
accounting services (APEL and SGAS [10]). See Section 4.4.7, Accounting with JURA.

Monitoring Nagios plugins exist for monitoring the ARC Computing Element. See Section 4.4.8, Moni-
toring the ARC CE: Nagios probes.

4.4.1 Access control: users, groups, VOs

Note: this section is NOT used to publish VO information by the information system. For such a feature,
please check the tips in 5.7.5, How to publish VO information or the authorizedvo configuration command
in 6.1.9, Commands in the [cluster] section and 6.1.10, Commands in the [queue] subsections.

The grid mappings between grid users and local unix accounts are listed in the so-called grid map file,
usually located in the directory /etc/grid-security/. By default this file also serves as list of authorized
users. While this text file can be edited by hand this is not advisible in production environments. To ease
the security administrator’s job, NorduGrid provides a collection of scripts and cron jobs that automatically
keeps the local grid map files synchronized to a central user database. If the CE has to join the Grid, it is
suggested to install the nordugrid-arc-gridmap-utils package from the NorduGrid Downloads area
or EMI repository, see Chapter 3, Installation for details. Once installed, the [groups] and [vo] sections
in the configuration file can be edited as well as optionally the location of the file representing the local list of
mappings (can have any name, but usually called /etc/grid-security/local-grid-mapfile). For
the description of the grid map file, please refer to Section 6.10, Structure of the grid-mapfile.

The two sections [group] and [vo] configure basic access control policies. The [vo] section may be also
used to control automatic mapping of GRID identities to local UNIX users:

[vo] defines Virtual Organizations (VOs). A VO is a simple way of grouping sets of users belonging to
different (real) organizations and, for example, willing to use the same set of software. A common use
of this section is to include users published by VOMS servers [23]. [vo] sections can be referred by
[group] sections. If this happens, it is important that the corresponding [vo] definition appears
before the [group] section that refers to it.

[group] defines authorization rules to access the CE for users or set of users defined by [vo] sections.

The configuration presented here is sufficient for a simple production setup where the identities are known
or are already contained in a file or a collection of files, eventually located and updated remotely.

4.4. PRODUCTION CE SETUP 37

ARC CE

A-REX
client
tools

proxy
jobs

maps to
local user

client
tools

proxy

jobs

local usersgrid users

DN

VO

default

based on

Figure 4.3: The A-REX maps the grid users to local users based on information about their identity and Virtual
Organization membership. It’s also possible to do default mapping.

4.4.1.1 [vo] configuration commands

The following is a sample [vo] section for a minimal CE:

[vo]
id="vo_1"
vo="TestVO"
source="file:///etc/grid-security/local-grid-mapfile"
mapped_unixid="griduser1"
require_issuerdn="no"

We define a VO here with the name of TestVO and the id of vo_1, the list of members comes from a URL
(which here points to a local file, see example below), and all members of this VO will be mapped to the
local user griduser1.

Here’s an example of the file with the list of members:

"/DC=eu/DC=KnowARC/O=Lund University/CN=demo1"
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo2"
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo3"
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo4"
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo5"

For more configuration options, please see Section 6.1.2, Commands in the [vo] section.

To generate the actual grid map file from these [vo] settings, we need the nordugridmap utility, described
below.

4.4.1.2 Automatic update of the mappings

The package nordugrid-arc-gridmap-utils contains a script to automatically update user mappings
(usually located in /usr/sbin/nordugridmap). It does that by fetching all the sources in the source
commands and writing their contents adding the mapped user mapped unixid in the grid-mapfile and each
file specified by the file command. The script is executed from time to time as a cron job.

38 CHAPTER 4. CONFIGURATION

LRMS frontend LRMS node

LR
M

S
no

de

LR
M

S
no

de

LR
M

S
no

de

LR
M

S
no

de

LRMS

control
directory

session
directory

session
directory

job script

local users

A-REX

Figure 4.4: The LRMS frontend and the nodes sharing the session directory and the local users

4.4.1.3 [group] configuration commands

[group] defines authorizations for users accessing the grid.

There can be more than one group in the configuration file, and there can be subsections identified by the
group name such as [group/users].

For a minimal CE with no authorization rules, it is sufficient to have something like the following, preceeded
with the [vo] section previously defined in this chapter:

[group/users]
name="users"
vo="TestVO"

where the name could be omitted and then would be automatically taken from the subsection name.

For more about authorization, please read Section 6.1.3, Commands in the [group] section.

4.4.2 Connecting to the LRMS

A-REX supports several Local Resource Management Systems, with which it interacts by several backend
scripts.

Connecting A-REX to one of these LRMS involves the following steps:

1. creation of shared directories between A-REX, the LRMS frontend and its working nodes. It might
involve setup of shared filesystems such as NFS or similar.

2. configuration of the behaviour of a-rex with respect to the shared directories in the [grid-manager]
section.

3. configuration of the following arc.conf sections: [common], [grid-manager], [queue/*].

In the [common] section the name of the LRMS has to be specified:

lrms=default lrms name [default queue name] – specifies the name of the LRMS and option-
ally the queue.

4.4. PRODUCTION CE SETUP 39

The following [grid-manager] configuration commands affect how A-REX interacts with the LRMS:

gnu time=path – path to time utility.

tmpdir=path – path to directory for temporary files. Default is /tmp.

runtimedir=path – path to directory which contains runtimenvironment scripts.

shared filesystem=yes|no – if computing nodes have an access to session directory through a
shared file system like NFS. Note that the default “yes” assumes that path to the session directory
is the same on both frontend and nodes. If these paths are not the same, then one should set the
scratchdir option.
If set to “no”, this means that the computing node does not share a filesystem with the frontend.
In this case the content of the SD is moved to a computing node using means provided by the
LRMS. Results are moved back after the job’s execution in a similar way. Sets the environment
variable RUNTIME_NODE_SEES_FRONTEND

scratchdir=path – path on computing node where to move session directory before execution. If
defined should contain the path to the directory on computing node which can be used to store a
job’s files during execution. Sets the environment variable RUNTIME_LOCAL_SCRATCH_DIR .

shared scratch=path – path on frontend where scratchdir can be found. If defined should contain
the path corresponding to that set in scratchdir as seen on the frontend machine. Sets the
environment variable RUNTIME_FRONTEND_SEES_NODE .

nodename=command – command to obtain hostname of computing node.

For additional details, see Section 6.1.12.10, Substitutions in the command arguments and Section 6.13,
Using a scratch area.

Each LRMS has his own peculiar configuration options.

4.4.2.1 PBS

The Portable Batch System (PBS) is one of the most popular batch systems. PBS comes in many flavours
such as OpenPBS (unsupported), Terascale Open-Source Resource and QUEue Manager (TORQUE) and
PBSPro (currently owned by Altair Engineering). ARC supports all the flavours and versions of PBS.

Recommended batch system configuration PBS is a very powerful LRMS with dozens of configurable
options. Server, queue and node attributes can be used to configure the cluster’s behaviour. In order to
correctly interface PBS to ARC (mainly the information provider scripts) there are a couple of configuration
REQUIREMENTS asked to be implemented by the local system administrator:

1. The computing nodes MUST be declared as cluster nodes (job-exclusive), at the moment time-shared
nodes are not supported by the ARC setup. If you intend to run more than one job on a single processor
then you can use the virtual processor feature of PBS.

2. For each queue, one of the max user run or max running attributes MUST be set and its value
SHOULD BE IN AGREEMENT with the number of available resources (i.e. don’t set the max running
= 10 if there are only six (virtual) processors in the system). If both max running and max user run
are set then obviously max user run has to be less or equal to max running.

3. For the time being, do NOT set server limits like max running, please use queue-based limits instead.

4. Avoid using the max load and the ideal load directives. The Node Manager (MOM) configuration file
(<PBS home on the node>/mom priv/config) should not contain any max load or ideal load
directives. PBS closes down a node (no jobs are allocated to it) when the load on the node reaches
the max load value. The max load value is meant for controlling time-shared nodes. In case of job-
exclusive nodes there is no need for setting these directives, moreover incorrectly set values can close
down a node.

5. Routing queues are now supported in a simple setup were a routing queue has a single queue behind
it. This leverages MAUI work in most cases.
Other setups (i.e. two or more execution queues behind a routing queue) cannot be used within ARC.

40 CHAPTER 4. CONFIGURATION

Additional useful configuration hints:

• If possible, please use queue-based attributes instead of server level ones (for the time being, do not
use server level attributes at all).

• The “acl user enable = True” attribute may be used with the “acl users = user1,user2” attribute to
enable user access control for the queue.

• It is advisory to set the max queuable attribute in order to avoid a painfully long dead queue.

• Node properties from the <PBS home on the server>/server priv/nodes file together with
the resources default.neednodes can be used to assign a queue to a certain type of node.

Checking the PBS configuration:

• The node definition can be checked by <PBS installation path>/bin/pbsnodes -a. All the
nodes MUST have ntype=cluster.

• The required queue attributes can be checked as <PBS installation path>/bin/qstat -f -Q
queuename. There MUST be a max user run or a max running attribute listed with a REASONABLE
value.

Configuration commands in arc.conf Below the PBS specific configuration variables are collected.

lrms="pbs" – in the [common] section enables the PBS batch system back-end. No need to specify
the flavour or the version number of the PBS, simply use the "pbs" keyword as LRMS configuration
value.

For each grid-enabled (or grid visible) PBS queue a corresponding [queue/queuename] subsection must
be defined. queuename should be the PBS queue name.

pbs bin path=path – in the [common] section should be set to the path to the qstat,pbsnodes,qmgr
etc. PBS binaries.

pbs log path=path – in the [common] sections should be set to the path of the PBS server logfiles
which are used by A-REX to determine whether a PBS job is completed. If not specified, A-REX
will use the qstat command to find completed jobs.

For additional configuration commands, please see Section 6.1.16, PBS specific commands.

Known limitations Some of the limitations are already mentioned under the PBS deployment require-
ments. No support for routing queues, difficulty of treating overlapping queues, the complexity of node
string specifications for parallel jobs are the main shortcomings.

4.4.2.2 Condor

The Condor [35] system, developed at the University of Wisconsin-Madison, was initially used to harness
free cpu cycles of workstations. Over time it has evolved into a complex system with many grid-oriented
features. Condor is available on a large variety of platforms.

Recommended batch system configuration Install Condor on the A-REX node and configure it as a
submit machine. Next, add the following to the node’s Condor configuration (or define CONDOR IDS as an
environment variable):

CONDOR_IDS = 0.0

CONDOR IDS has to be 0.0, so that Condor will be run as root and can then access the Grid job’s session
directories (needed to extract various information from the job log).

4.4. PRODUCTION CE SETUP 41

Make sure that no normal users are allowed to submit Condor jobs from this node. If normal user logins are
not allowed on the A-REX machine, then nothing needs to be done. If for some reason users are allowed to
log into the A-REX machine, simply don’t allow them to execute the condor submit program. This can be
done by putting all local Unix users allocated to the Grid in a single group, e.g. ’griduser’, and then setting
the file ownership and permissions on condor submit like this:

chgrp griduser $condor_bin_path/condor_submit
chmod 750 $condor_bin_path/condor_submit

Configuration commands in arc.conf The Condor-specific configuration commands:

lrms="condor" – in the [common] section enables the Condor batch system back-end.

condor bint path=path – in the [common] section should be set to the directory containing Condor
binaries (f.ex., /opt/condor/bin). If this parameter is missing, ARC will try to guess it out of the
system path, but it is highly recommended to have it explicitly set.

For additional configuration commands, please see Section 6.1.17, Condor specific commands.

Known limitations Only Vanilla universe is supported. MPI universe (for multi-CPU jobs) is not sup-
ported. Neither is Java universe (for running Java executables). ARC can only send jobs to Linux machines
in the Condor pool, therefore excluding other unixes and Windows destinations.

4.4.2.3 LoadLeveler

LoadLeveler(LL), or Tivoli Workload Scheduler LoadLeveler in full, is a parallel job scheduling system
developed by IBM.

Recommended batch system configuration The back-end should work fine with a standard installa-
tion of LoadLeveler. For the back-end to report the correct memory usage and cputime spent, while running.
LoadLeveler has to be set-up to show this data in the llq command. Normally this is turned off for perfor-
mance reasons. It is up to the cluster administrator to decide whether or not to publish this information.
The back-end will work whether or not this is turned on.

Configuration commands in arc.conf Only the two basic LRMS config options are relevant for
LoadLeveler:

lrms="ll" – in the [common] section enables the LoadLeveler batch system.

ll bin path=path – in the [common] section must be set to the path of the LoadLeveler binaries.

Known limitations There is at the moment no support for parallel jobs on the LoadLeveler back-end.

4.4.2.4 Fork

The Fork back-end is a simple back-end that interfaces to the local machine, i.e.: there is no batch system
underneath. It simply forks the job, hence the name. The back-end then uses standard posix commands
(e.g. ps or kill) to manage the job.

Recommended batch system configuration Since fork is a simple back-end and does not use any
batch system, there is no specific configuration needed for the underlying system.

42 CHAPTER 4. CONFIGURATION

Configuration commands in arc.conf Only these commands are applied:

lrms="fork" – in the [common] section enables the Fork back-end. The queue must be named
"fork" in the [queue/fork] subsection.

fork job limit=cpunumber – sets the number of running grid jobs on the fork machine, allowing
a multi-core machine to use some or all of its cores for Grid jobs. The default value is 1.

Known limitations Since Fork is not a batch system, many of the queue specific attributes or detailed
job information is not available. The support for the “Fork batch system” was introduced so that quick
deployments and testing of the middleware can be possible without dealing with deployment of a real batch
system since fork is available on every UNIX box. The “Fork back-end” is not recommended to be used in
production. The back-end by its nature, has lots of limitations, for example it does not support parallel
jobs.

4.4.2.5 LSF

Load Sharing Facility (or simply LSF) is a commercial computer software job scheduler sold by Platform
Computing. It can be used to execute batch jobs on networked Unix and Windows systems on many different
architectures.

Recommended batch system configuration Set up one or more LSF queues dedicated for access by
grid users. All nodes in these queues should have a resource type which corresponds to the one of the the
frontend and which is reported to the outside. The resource type needs to be set properly in the lsb.queues
configuration file. Be aware that LSF distinguishes between 32 and 64 bit for Linux. For a homogeneous
cluster, the type==any option is a convenient alternative.

Example: In lsb.queues set one of the following:

RES_REQ = type==X86_64
RES_REQ = type==any

See the -R option of the bsub command man page for more explanation.

Configuration commands in arc.conf The LSF back-end requires that the following options are
specified:

lrms="lsf" – in the [common] section enables the LSF back-end

lsf bin path=path – in the [common] section must be set to the path of the LSF binaries

lsf profile path=path – must be set to the filename of the LSF profile that the back-end should
use.

Furthermore it is very important to specify the correct architecture for a given queue in arc.conf. Because
the architecture flag is rarely set in the xRSL file the LSF back-end will automatically set the architecture
to match the chosen queue. LSF’s standard behaviour is to assume the same architecture as the frontend.
This will fail for instance if the frontend is a 32 bit machine and all the cluster resources are 64 bit. If this
is not done the result will be jobs being rejected by LSF because LSF believes there are no useful resources
available.

Known limitations Parallel jobs have not been tested on the LSF back-end.

The back-end does not at present support reporting different number of free CPUs per user.

4.4.2.6 SGE

Sun Grid Engine (SGE, Oracle Grid Engine, Codine) is an open source batch system maintained by Sun
(Oracle). It is supported on Linux, and Solaris in addition to numerous other systems.

4.4. PRODUCTION CE SETUP 43

Recommended batch system configuration Set up one or more SGE queues for access by grid users.
Queues can be shared by normal and grid users. In case it is desired to set up more than one ARC queue,
make sure that the corresponding SGE queues have no shared nodes among them. Otherwise the counts of
free and occupied CPUs might be wrong. Only SGE versions 6 and above are supported. You must also
make sure that the ARC CE can run qacct, as this is used to supply accounting information.

Configuration commands in arc.conf The SGE back-end requires that the following options are
specified:

lrms="sge" – in the [common] section enables the SGE batch system back-end.

sge root=path – in the [common] section must be set to SGE’s install root.

sge bin path=path – in the [common] section must be set to the path of the SGE binaries.

sge jobopts=options – in the [queue/queuename] section can be used to add custom SGE op-
tions to job scripts submitted to SGE. Consult SGE documentation for possible options. Example:

lrms="sge"
sge_root="/opt/n1ge6"
sge_bin_path="/opt/n1ge6/bin/lx24-x86"

...

[queue/long]
sge_jobopts="-P atlas -r yes"

For additional configuration commands, please see Section 6.1.21, SGE specific commands.

Known limitations Multi-CPU support is not well tested. All users are shown with the same quotas
in the information system, even if they are mapped to different local users. The requirement that one
ARC queue maps to one SGE queue is too restrictive, as the SGE’s notion of a queue differs widely from
ARC’s definition. The flexibility available in SGE for defining policies is difficult to accurately translate into
NorduGrid’s information schema. The closest equivalent of nordugrid-queue-maxqueuable is a per-cluster
limit in SGE, and the value of nordugrid-queue-localqueued is not well defined if pending jobs can have
multiple destination queues.

4.4.2.7 SLURM

SLURM is an open-source (GPL) resource manager designed for Linux clusters of all sizes. It is designed to
operate in a heterogeneous cluster with up to 65,536 nodes. SLURM is actively being developed, distributed
and supported by Lawrence Livermore National Laboratory, Hewlett-Packard, Bull, Cluster Resources and
SiCortex.

Recommended batch system configuration The backend should work with a normal installation using
only SLURM or SLURM+moab/maui. Do not keep nodes with different amount of memory in the same
queue.

Configuration commands in arc.conf The SLURM back-end requires that the following options are
specified:

lrms="SLURM" – in the [common] section enables the SLURM batch system back-end.

slurm bin path=path – in the [common] section must be set to the path of the SLURM binaries.

Known limitations If you have nodes with different amount of memory in the same queue, this will lead
to miscalculations. If SLURM is stopped, jobs on the resource will get canceled, not stalled. The SLURM
backend is only tested with SLURM 1.3, it should however work with 1.2 as well.

44 CHAPTER 4. CONFIGURATION

4.4.2.8 BOINC

BOINC is an open-source software platform for computing using volunteered resources. Support for BOINC
in ARC is currently at the development level and to use it may require editing of the source code files to fit
with each specific project.

Recommended batch system configuration The BOINC database can be local to the ARC CE or
remote. Read-access is required from the ARC CE to check for finished jobs and gather information on
available resources. The ARC CE must be able to run commands in the project’s bin/ directory.

Project-specific variables can be set up in an RTE which must be used for each job. The following example
shows the variables which must be defined to allow job submission to BOINC for the project “example” to
work:

export PROJECT_ROOT="/home/boinc/project/example" # project directory
export BOINC_APP="example" # app name
export WU_TEMPLATE="templates/example_IN" # input file template
export RESULT_TEMPLATE="templates/example_OUT" # output file template
export RTE_LOCATION="$PROJECT_ROOT/Input/RTE.tar.gz" # RTEs, see below

The last variable is a tarball of runtime environments required by the job.

Configuration commands in arc.conf The BOINC back-end requires that the following options are
specified:

lrms="boinc" – in the [common] section enables the BOINC back-end.

boinc db host=hostname – in the [common] section specifies the database hostname

boinc db port=port – in the [common] section specifies the database port number

boinc db user=username – in the [common] section specifies the database username

boinc db pass=password – in the [common] section specifies the database password

boinc db name=database – in the [common] section specifies the database name

Known limitations The BOINC back-end was designed around projects that use virtualisation. The
prototype implementation in the current ARC version may not be generic enough to suit all BOINC projects.

When preparing a BOINC job, the ARC CE copies a tarball of the session directory to the BOINC project
download area. Once the job is completed and the output uploaded to the BOINC peoject upload area, a
modified assimilator daemon must be used to copy the result back to the session directory so that it can be
retrieved by ARC clients or uploaded to Grid storage by the ARC CE.

4.4.3 Enabling the cache

The A-REX can cache input files, so that subsequent jobs requiring the same file don’t have to wait for
downloading it again: the cached file will be symlinked (or copied) into the session directory of the job (but
only after the permissions of this user and the modification date of the file are checked).

Enabling caching is as simple as providing a directory path with the cachedir configuration command in the
[grid-manager] section and turning on the cache cleaning mechanism with the cachesize command:

cachedir=path
cachesize=high_mark low_mark

Here path points to a directory which will be used by the A-REX to store the cached files. A-REX will
create this directory when the first job is submitted, it should be owned by the same user as which the
A-REX is running. The size of the cache directory is maintained by removing the least recently accessed

4.4. PRODUCTION CE SETUP 45

files. If the cache size exceeds a given percentage (“high mark”) of the file system size, the oldest files will be
removed until the size goes below another given percentage (“low mark”). By default A-REX assumes that
the cache has a dedicated file system, if the cache is shared with other data then the cacheshared="yes"
option should be specified so that limits are imposed on the size of the cache instead of the whole file system
size.

A sample section is shown here:

[grid-manager]
user="root"
controldir="/tmp/control"
sessiondir="/tmp/session"
mail="grid.support@somewhere.org"
joblog="/tmp/gm-jobs.log"
securetransfer="no"
cachedir="/tmp/cache"
cachesize="80 70"

It is possible to use more than one cache directory by simply specifing more than one cachedir command
in the configuration file. When multiple caches are used, a new cache file will go to a randomly selected
cache where each cache is weighted according to the size of the file system on which it is located (e.g. if
there are two caches of 1TB and 9TB then on average 10% of input files will go to the first cache and 90%
will go to the second cache).

By default the files will be soft-linked into the session directory of the job. If it is preferred to copy them
(because e.g. the cache directory is not accessible from the worker nodes), a dot (.) should be added after
the path:

cachedir="path ."

If the cache directory is accessible from the worker nodes but on a different path, then this path can be
specified also:

cachedir="path link_path"

With large caches mounted over NFS and an A-REX heavily loaded with data transfer processes, cache
cleaning can become slow, leading to caches filling up beyond their configured limits. For performance
reasons it may be advantageous to disable cache cleaning by the A-REX (by removing the cachesize
command from the config), and run the cache-clean tool independently on the machine hosting the file
system. (Please refer to Section 5.3, Administration tools.)

Caches can be added to and removed from the configuration as required without affecting any cached data,
but after changing the configuration file, the A-REX should be restarted. If a cache is to be removed and
all data erased, it is recommended that the cache be put in a draining state until all currently running jobs
possibly accessing files in this cache have finished. This can be done by putting the word “drain” as the
link path:

cachedir="path drain"

For more details about the mechanisms of the cache, please refer to Section 6.4, Cache.

4.4.3.1 The Cache Service

The ARC caching system automatically saves to local disk job input files for use with future jobs. The ARC
Cache Service exposes various operations of the cache and can be especially useful in a pilot job model where
input data for jobs is not known until the job is running on the worker node.

It is packaged as nordugrid-arc-cache-service, and it can either be started with its own init script,
or it can be configured to run in the same container as A-REX. For more information about the cache service,
please visit the NorduGrid wiki:

http://wiki.nordugrid.org/index.php/Cache_Service

http://wiki.nordugrid.org/index.php/Cache_Service

46 CHAPTER 4. CONFIGURATION

4.4.3.2 Exposing the Cache

Normally the ARC cache is internal to the CE and is not exposed to the outside. However it may be beneficial
to allow reading cache files, if for example the file is lost from Grid storage or as a fallback when Grid storage
is down. This can be done via HTTPS through the A-REX web services interface (see Section 4.5.3, Enabling
the Web Services interface for details on how to set up the A-REX WS interface).

Specifying cacheaccess configuration commands opens remote read access to certain cache files for certain
credential properties. See Section 6.1.12.4, Commands to configure the cache for details on this configuration
command. When configured this allows cached files to be read from the A-REX WS endpoint, for example
if file gsiftp://my.host/file1 is cached at CE a-rex.host the file is accessible (if credentials allow)
at:

https://a-rex.host/arex/cache/gsiftp://my.host/file1

Since remote reading can increase the load on A-REX, the number of concurrent requests should be limited.
This can be done using the max_data_transfer_requests command.

4.4.3.3 The ARC Cache Index (ACIX)

The ARC Cache Index (ACIX) is a catalog of locations of cached files. It consists of two components,
one on the computing resource: the Cache Server, and the Index Server which indexes the cache lo-
cations retrieved from the Cache Servers. These components can be found respectively in the packages
nordugrid-arc-acix-cache and nordugrid-arc-acix-index. They both depend on a third pack-
age, nordugrid-arc-acix-core.

The Cache Server periodically scans the A-REX cache and constructs a Bloom filter of cache content. This
filter is a way of representing the cache content in an extremely compressed format, which allows fast query
of any element of the filter and efficient upload of the content to an index server. This type of compression
however has the possibility of giving false-positives, i.e. a certain file may appear to be present in the
cache according to the filter when it is not. The Cache Server runs in an HTTPS server and the filter is
accessible at the endpoint https://hostname:5443/data/cache. It scans the caches specified in the
A-REX arc.conf. It does not require any configuration but some options can be changed (see Section 6.1.14,
Commands in the [acix/cacheserver] section) and it is important to make sure the Cache Server port (default
5443) is open in the firewall.

The Index Server runs independently of the Cache Servers and A-REX, but can be deployed on the same
host as both of them. It is configured with a list of Cache Servers and periodically pulls the cache filter
from each one. It runs within an HTTPS server through which users can query the cached locations of files.
Configuration uses the regular arc.conf file in the section [acix/indexserver]. Here Cache Servers are
specified by the cacheserver option. For example:

[acix/indexserver]
cacheserver="https://my.host:5443/data/cache"
cacheserver="https://another.host:5443/data/cache"

The Index Server can be queried at the endpoint https://hostname:6443/data/index and the list of
URLs to check are given as comma-separated values to the option “url” of this URL, e.g.

https://hostname:6443/data/index?url=http://www.nordugrid.org:80/data/echo.sh,\
http://my.host/data1

A JSON-formatted response is returned, consisting of a dictionary mapping each URL to a list of locations.
If remote access to cache is configured as described above then the location will be the endpoint at which
to access the cached file, for example https://a-rex.host/a-rex/cache. If not then simply the
hostname will be returned.

ACIX can be used as a fallback mechanism for A-REX downloads of input files required by jobs by specifying
acix_endpoint in the [grid-manager] section of arc.conf, eg:

4.4. PRODUCTION CE SETUP 47

Global Index
Server CE 4

CE 3

CE 2CE 1bCE 1a

Cache
Server

Cache
Server

Cache
Server

Cache
Server

Cache
Server

Local Index
Server ACIX Index Server

ACIX Cache Server

A-REX

Figure 4.5: ACIX deployment scenario, with one global Index Server and a local Index Server for CE 1a and CE 1b.

acix_endpoint="https://cacheindex.ndgf.org:6443/data/index"

If a download from the primary source fails, A-REX can try to use any cached locations provided in ACIX
if the cache is exposed at those locations. In some cases it may even be preferred to download from a close
SE cache rather than Grid storage and this can be configured using the preferredpattern configuration
option which tells A-REX in which order to try and download replicas of a file.

ACIX can also be used for data-based brokering for ARC jobs. An ACIX-based broker plugin written in
Python comes packaged with the ARC client tools (in ARC LOCATION/share/arc/examples/PythonBroker/
ACIXBroker.py) and can be used for example with

arcsub -b PythonBroker:ACIXBroker.ACIXBroker:https://cacheindex.ndgf.org:6443/data/index

Target sites for job submission are ranked in order of how many input files required by the job are cached there. See
the comments inside this Python file for more information.

Figure 4.5 shows an example ACIX set up. Each CE runs a Cache Server and there is a central Index Server which
pulls content from all CEs. In addition there is one site with two CEs, CE 1a and CE 1b. In order to do data-based
brokering on just those two sites (and ease the load on the global Index Server), a local Index Server is running
which pulls content from only these two sites. In such a setup if may be desired to prefer to dowload data from
the cache on CA 1a to CE 1b and vice versa, so those CEs could be configured with the Local Index Server as the
acix_endpoint and each other’s hostname first in preferredpattern.

4.4.4 Configuring Data Staging

The CE is responsible for collecting input data for a job before submission to the LRMS, and for staging out data
after the job has finished. The component which performs data staging is called DTR (Data Transfer Reloaded). Its
architecture is shown in Figure 4.6.

A-REX sends each job that requires data staging before or after execution to the Generator, which constructs a Data
Transfer Request (DTR) per file that needs to be transferred. These DTRs are sent to the Scheduler for processing.
The Scheduler sends DTRs to the Pre-processor for anything that needs to be done up until the physical transfer
takes place (e.g. cache check, resolve replicas) and then to Delivery for the transfer itself. Once the transfer has
finished the Post-processor handles any post-transfer operations (e.g. register replicas, release requests). The number
of slots available for each component is limited, so the Scheduler controls queues and decides when to allocate slots
to specific DTRs, based on the prioritisation algorithm implemented.

48 CHAPTER 4. CONFIGURATION

Figure 4.6: The architecture of DTR.

DTR configuration is specified in the [data-staging] section, and each parameter is explained in detail in Sec-
tion 6.1.13, Commands in the [data-staging] section. Reasonable (conservative) default values exist which allow
safe operation without any configuration being set, but it is better to tune values according to each set up. Example:

[data-staging]
maxdelivery="40"
maxprocessor="20"
maxemergency="2"
maxprepared="200"
sharetype="voms:role"
definedshare="myvo:production 80"
definedshare="myvo:student 20"

DTR also features a priorities and shares system, as well as the ability to distribute data transfers over multiple nodes.
For more information on this and all other aspects of DTR, please consult the data staging page of the NorduGrid
wiki§.

4.4.5 Registering to an ARC EGIIS

Once a cluster is setup, it needs to communicate to some index service to join the grid. Joining an index will let
clients query the index to find the CE without specifying the CE hostname on the command line.

In the grid world, this is crucial as the user is agnostic about the server his/her jobs will run.

Connection to an index will enable resource sharing in a federated way, among users accepted by the rules in the
[group] and [vo] sections.

National Grid Infrastructures usually run their own index, and NorduGrid runs several:

ldap://index1.nordugrid.org:2135

ldap://index2.nordugrid.org:2135

ldap://index3.nordugrid.org:2135

To connect to an index, add the following to a basic CE configuration file, after all the other existing [infosys]
related sections:

...
[infosys/cluster/registration/toPGS1]

§http://wiki.nordugrid.org/index.php/Data_Staging

http://wiki.nordugrid.org/index.php/Data_Staging

4.4. PRODUCTION CE SETUP 49

information system

information

information

information

client
tools

EGIIS

ARIS

EGIIS

EGIIS

ARISARIS

Figure 4.7: The components of the ARC information system: the ARIS which sits next to a computing element
(or a storage resource) and advertises information about it; and the EGIIS which indexes the location of ARISes
and other EGIIS, creating a hierarchical information mash, where querying the top nodes would provide information
about all the resources.

targethostname="quark.hep.lu.se"
targetport="2135"
targetsuffix="mds-vo-name=PGS,o=grid"
regperiod="300"
...

The special section name [infosys/cluster/registration/toIndex] is used to configure registration of a
cluster (a CE) to an index service (an IS).

Registration commands explained:

targethostname=FQDN – The FQDN of the host running the target index service.

targetport=portnumber – Port where the target Index Service is listening. Defaults to 2135.

targetsuffix=ldapsuffix – ldap suffix of the target index service. This has to be provided by a manager
of the index service, as it is a custom configuration value of the Index Service. Usually is a string of the
form "mds-vo-name=<custom value>,o=grid"

regperiod=seconds – the registration script will be run each number of seconds. Defaults to 120.

These commands will affect the way the registration script is run. Logs about registration information can be found
by looking at the file configured by the registrationlog command in the [infosys] section (see Section 4.3.5,
The [infosys] section: the local information system). For information on how to read the logs see Section 5.4, Log
files

The registration script is called grid-info-soft-register. Once registration to an index is configured, param-
eters of this script can be checked on the system by issuing at the shell:

[root@piff tmp]# ps aux | grep reg
root 29718 0.0 0.0 65964 1316 pts/0 S 14:36 0:00

/bin/sh /usr/share/arc/grid-info-soft-register
-log /var/log/arc/inforegistration.log
-f /var/run/arc/infosys/grid-info-resource-register.conf -p 29710

root 29725 0.0 0.0 66088 1320 pts/0 S 14:36 0:00
/bin/sh /usr/share/arc/grid-info-soft-register
-log /var/log/arc/inforegistration.log

50 CHAPTER 4. CONFIGURATION

-register -t mdsreg2 -h quark.hep.lu.se -p 2135 -period 300
-dn Mds-Vo-Op-name=register, mds-vo-name=PGS,o=grid -daemon
-t ldap -h piff.hep.lu.se -p 2135 -ttl 600
-r nordugrid-cluster-name=piff.hep.lu.se,Mds-Vo-name=local,o=Grid
-T 45 -b ANONYM-ONLY -z 0 -m cachedump -period 0

Other less relevant options are available for registration, please refer to Section 6.1.11, Commands in the [in-
fosys/cluster/registration/registrationname] subsections.

If the registration is successful, the cluster will be shown on the index. To find out that, please refer to the Index
Service documentation [36].

4.4.6 ARC CE to gLite Site and Top BDII integration

The gLite BDII is an information caching system used in EGI to store information about computing services. ARC
LDAP renderings of Glue1.2/1.3 and GLUE2 where espacially designed to achieve interoperability with non ARC
products, among these, Site and Top bdii.

gLite BDII technology is not based on registration, but each Site or Top BDII scans with a certain cadence a list of
LDAP URLs targeting the cached systems and contacts directly the LDAP server of such systems. This technology
is bootstrapped by some database. The means of getting an LDAP URL inside such database are out of the scope
of this manual. Please refer to gLite BDII documentation for such details.

An ARC CE is capable to publish the information needed by such systems.

To act as a resource BDII, that is, publish information suitable for a Site BDII to be collected, the administrator
must:

• Enable the NorduGrid LDAP schema rendering in the [infosys] configuration block;

• Enable the Glue1.2/1.3 schema rendering in the [infosys] configuration block;

• Configure the [infosys/glue12] block

• Configure a Site BDII to scan the CE on LDAP port 2135 instead of 2170.

Since release 12.05, ARC can act as a Site BDII itself, for its information to be directly collected by a Top BDII.
However, this approach is discontinued as GLUE2 will be used as the main schema for information.

To have an ARC CE behaving like a Glue1.2/1.3 Site BDII, that is, to directly produce information for a Top BDII
to collect, the administrator must:

• Enable the NorduGrid LDAP schema rendering in the [infosys] configuration block;

• Enable the Glue1.2/1.3 schema rendering in the [infosys] configuration block;

• Configure the [infosys/glue12] configuration block

• Configure the [infosys/site/sitename] configuration block

Top BDII with GLUE2 support can directly fetch GLUE2 information from an ARC CE, provided that the ARC CE
is publishing GLUE2 AdminDomain information. ARC CE default behavior is to setup an LDAP server capable of
being contacted by a GLUE2 Top BDII out of the box. To configure the ARC CE to that purpose, the administrator
must:

• Enable the GLUE2 schema rendering in the [infosys] configuration block;

• Configure the [infosys/admindomain] configuration block

Refer to the following sections to know how to configure the above items. 4.5.1, Enabling or disabling LDAP schemas,
6.1.5, Commands in the [infosys] section, 6.1.8, Commands in the [infosys/site/sitename] section, 6.1.6, Commands
in the [infosys/admindomain] section

4.4.7 Accounting with JURA

The A-REX can be configured to periodically execute an external usage reporting utility which should create standard-
complient usage records from job usage information provided by the A-REX (called the “job log files”) and send the
records to remote accounting services. The JURA is such an external utility which capable of doing this. It is
distributed with the A-REX.

JURA is capable of creating two types of usage records from the job log files:

4.4. PRODUCTION CE SETUP 51

• Usage Record 1.0 (UR) XML format [13]

• Compute Accounting Record (CAR) XML format [20]

After creating these usage records, JURA can archive them to a given directory and it can send them to remote
services:

• The UR can be sent to an SGAS LUTS (Logging and Usage Tracking Service) [10]

• Experimental feature: The CAR usage record can be sent to the new version of APEL or any other service
supporting the format.

To enable reporting, the jobreport and the jobreport_publisher configuration commands in the [grid-manager]
section has to be set to the URL of an accounting destination and the name of the executable publisher. Required
to use the jobreport_logfile command when want to see log entries in separate log file. Log rotation has been
set for /var/log/arc/accounting-jura.log location. Multiple URLs can be specified in one jobreport command, and
multiple jobreport commands can be used. The usage record of each job will be reported to all of the destinations.
Required to use the jobreport_vo_filters command when want to reported only specified VO’s records to an
SGAS LUTS destination. Currently if the URL starts with “CAR:”, then a Compute Accounting Record (CAR) will
be created, and logged, but it will not be sent anywhere. When the URL starts with “APEL:”, then a Compute Ac-
counting Record (CAR) will be reported directly to APEL. If a HTTPS URL is given, then then a Usage Record 1.0
will be created and sent to an SGAS LUTS destination. (The experimental APEL support can be utilized by running
JURA separately and specifying a “topic” with the -t command line options.) A number can be specified after the
URLs: how many days the job log files will be kept if the reporting fails. The frequency of message publishing able
to set with the jobreport_period configuration command.

The credentials for the HTTPS connection should be set using the jobreport_credentials command, specifying
first the path to the key then the path to the certificate and the path to the CA certificates directory, separated by
space.

Additional options can be given to JURA in the form of comma-separated key:value pairs by setting the jobreport_options
configuration command. Currently these options are recognized:

• General options:

– archiving:dir – JURA can archive the generated usage records to a given directory. This options specifies
the directory and enables archiving. If the directory does not exist, an attempt is made to create it. If
this option is absent, no archiving is performed.

– urbatch:size – JURA sends usage records not one-by-one, but in batches. This options sets the maximum
size of a batch. Zero value means unlimited batch size. Default is 50 by SGAS or 1000 by APEL.

– vo group:attribute of VO – here can be set additional VO group attribute by usage records. Only just
one entry set from this option if you set multiple entries always the latest will be apply.

– vomsless vo:vo name#vo issuer – here can be set VOMS value for VOMS less grid-proxy’s job. First
part of this value is a name of the VO, second part is the issuer of this VO. These two value separated
with ”#” character.

• APEL specific options:

– topic:name of the topic – here can be set a name of the APEL topic where would like to publish an
accounting records. When not set this option then a JURA will be use a default APEL topic.

– gocdb name:GOCDB name of CE – here can be set a GOCDB name of the resource that would be see
as Site attribute in the generated APEL record. When not set this option then a JURA will be use a
hostname (uppercase, ”.” replaced with ”-”) as default Site name.

– benchmark type:type of benchmark – here can be set a name of benchmark that would be published to
an accounting records. CAR related option. for example: Si2k, Sf2k, HEPSPEC

– benchmark value:value of benchmark – here can be set a value of benchmark that would be published
to an accounting records. Type of this value is float. CAR related option.

– benchmark description:additional description for a benchmark – here can be set any other description
for a benchmark that would be important to publish in the CAR.

– use ssl :true or false – here can be set true value for the SSM communication that require for a production
APEL accounting server. False will be used if not set this option.

• SGAS specific options:

– localid prefix :prefix string – here can be set prefix value for the LocalJobID by the SGAS usage records.

52 CHAPTER 4. CONFIGURATION

An example configuration which will report all jobs to both destinations using the given credentials, sending them in
batches of 50, and archiving them into var/urs:

[grid-manager]
jobreport="https://luts1.grid.org:8443/wsrf/services/sgas/LUTS"
jobreport="https://luts2.grid.org:8443/wsrf/services/sgas/LUTS 7"
jobreport_vo_filters="bio.ndgf.org https://luts2.nordugrid.org:8443/wsrf/services/sgas/LUTS"
jobreport="APEL:https://apel.cern.ch:2170"
jobreport_publisher="jura"
jobreport_period="86400"
jobreport_logfile="/var/log/arc/accounting-jura.log"
jobreport_credentials="/etc/grid-security/hostkey.pem

/etc/grid-security/hostcert.pem /etc/grid-security/certificates"
jobreport_options="urbatch:50,archiving:/var/urs,topic:/queue/cpu,

gocdb_name:SE-NGI-CE-GOCDB-NAME,
benchmark_type:Si2k, benchmark_value:1234"

For the configuration commands, see also 6.1.12.7, Commands related to usage reporting.

It is also possible to run JURA separately from the A-REX (e.g. a cron job can be set to execute it periodically).
The command line options of JURA are the following:

jura -E <days> -u <url> -t <topic> -o <path> <control dir>

• -E <days> – for how many days should failed-to-send records be kept

• -u <url> – runs JURA in “interactive mode”, which sends usage reports only to the URLs given as command
line arguments (and not those which were put into the job log files by the A-REX), and does not delete job
log files after a successful report. Multiple -u can be given.

• -t <topic> – after each -u <url> a topic can be specified. This topic is needed for publishing to APEL. If
the URL does not start with “CAR” and a topic is specified, the report will be sent to APEL, if a topic is not
specified, the report will be sent to SGAS.

• -F [<vo url>,...] – makes it possible to send usage records with only certain VO users to the given URL.

• -o <path> – specifies the path of the archiving directory, which will be used only for this run of JURA, and
the usage records will be put into this directory.

• -r <range> – re-report archived accounting records in a given time range. In this case the ¡control dir¿
parameter is a path of the archived directory.

• -v – version of JURA (ARC)

• <control dir> [<control dir> ...] – one or more control directories has to be specified. JURA looks
for the job log files in the “logs” subdirectory of the control directories given here.

For more details about JURA, see 6.6, JURA: The Job Usage Reporter for ARC.

4.4.8 Monitoring the ARC CE: Nagios probes

Nagios scripts (probes) exist that allow monitoring of ARC-CEs. The scripts are available in the EGI repository¶.

NorduGrid provides a set of Nagios tests that can be used to monitor the functionality of an ARC computing
element. These tests were originally developed by the NDGF in order to provide availability monitoring to WLCG.
The maintenance of the tests has since been taken over by the EMI project.

The tests are available in the workarea of the nordugrid subversion server:

http://svn.nordugrid.org/trac/workarea/browser/nagios

They are also available packaged as an RPM: grid-monitoring-probes-org.ndgf.

The configuration of the tests is collected in one configuration file called org.ndgf.conf. Make sure that the user
configured to run the tests is authorized at the CEs under test and has the necessary access rights to the storage
locations and catalogues configured.

Some of the tests send test jobs to the CE and will report the result when the test job has finished. If the job does
not complete within 12 hours it will be killed and a warning is reported in Nagios.

More information about the tests can be found here:

http://wiki.nordugrid.org/index.php/Nagios_Tests

¶https://wiki.egi.eu/wiki/EMI_Nagios_probes

http://svn.nordugrid.org/trac/workarea/browser/nagios
http://wiki.nordugrid.org/index.php/Nagios_Tests
https://wiki.egi.eu/wiki/EMI_Nagios_probes

4.5. ENHANCING CE CAPABILITIES 53

4.5 Enhancing CE capabilities

Once a basic CE is in place and its basic functionalities have been tested, is possible to add more features to it.

These include:

Enable glue1.2/1,3, GLUE2 LDAP schemas To be compliant with other grid systems and middlewares, ARC
CE can publish its information in these other schemas. In this way its information can show up also in
information systems compliant with gLite [4]. ARC CE can act as a resource-BDII, to be part of a site-BDII
and join the European grid.
See Section 4.5.1, Enabling or disabling LDAP schemas

Provide customized execution environments on-demand As every experiment can have its own libraries, de-
pendencies and tools, ARC provides a means of creating such environments on demand for each user. This
feature is called Runtime Environment (RTE). See Section 4.5.2, Runtime Environments.

Use web services instead/together with of GridFTPd/LDAP Next generation ARC Client and servers are
Web Service ready. Job submission and the Information System can now be run as a single standardized service
using the https protocol. See Section 4.5.3, Enabling the Web Services interface.

4.5.1 Enabling or disabling LDAP schemas

ARIS, the cluster information system, can publish information in three schemas and two protocols. Information
published via the LDAP protocol can follow the following three schemas:

NorduGrid Schema The default NorduGrid schema, mostly used in Nordic countries and within all the NorduGrid
Members. Definition and technical information can be found in [34].

Glue 1.2 / 1.3 schema Default currently used by gLite middleware[4] and the European grids. Specifications can
be found here: [15, 16].

GLUE 2 schema Next generation glue schema with better granularity. Will be the next technology used in pro-
duction environments. Specification can be found here: [25].

The benefits of enabling these schemas are the possibility to join grids other than NorduGrid, for example to join
machines allotted to do special e-Science experiments jobs, such as the ATLAS experiment[2].

To enable or disable schema publishing, the first step is to insert the enable commands in the [infosys] section as
explained in 6.1.5, Commands in the [infosys] section.

The Glue 1.2/1.3 schemas carry geographical information and have to be configured in a separate section, [infosys/glue12].

If the nordugrid-arc-doc package is installed, two arc.conf examples are available in

/usr/share/doc/nordugrid-arc-doc/examples/

Glue 1.2/1.3 arc_computing_element_glue12.conf

Glue 2 arc_computing_element_glue2.conf

More examples can be found on svn:

http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/

An example configuration of the [infosys/glue12] section is given in Figure 4.8.

Explanation of the commands can be found in the technical reference, section 6.1.7, Commands in the [infosys/glue12]
section.

For the GLUE 2.0 it is enough set the command to enable. The default behaviour is enabled. However, there are
other options to let the system administrator configure more features, like the AdminDomain information used for a
cluster to join a domain that might be distributed across different geographical sites. A minimal example is detailed
in Figure 4.9 and it just contains the domain name.

NOTE: AdminDomain GLUE2 ID is a URI. ARC automatically adds the URI prefix to the GLUE2DomainID. This
prefix is urn:ad: .

Example:
name="ARC-TESTDOMAIN"
ARC will create a GLUE2DomainID = "urn:ad:ARC-TESTDOMAIN"
The corresponding LDAP url pointing at the AdminDomain object will be:
ldap://myserver.domain:2135/GLUE2DomainID=urn:ad:ARC-TESTDOMAIN,o=glue

For detailed information please see 6.1.6, Commands in the [infosys/admindomain] section.

http://svn.nordugrid.org/repos/nordugrid/doc/trunk/examples/

54 CHAPTER 4. CONFIGURATION

[infosys/glue12]
resource_location="Somewhere, Earth"
resource_latitude="54"
resource_longitude="25"
cpu_scaling_reference_si00="2400"
processor_other_description="Cores=1,Benchmark=9.8-HEP-SPEC06"
glue_site_web="http://www.eu-emi.eu"
glue_site_unique_id="MINIMAL Infosys configuration"
provide_glue_site_info="true"

Figure 4.8: An example [infosys/glue12] configuration section

[infosys/admindomain]
name="ARC-TESTDOMAIN"

Figure 4.9: An example [infosys/admindomain] configuration section

4.5.1.1 Applying changes

Once arc.conf is modified, restart the infosystem as explained in Section 5.1, Starting and stopping CE services.

To test information is being published, follow the instructions in Section 5.2.1, Testing the information system.

4.5.2 Runtime Environments

A general description of Runtime Environments (RTEs) can be found in Section 1.7, Application software in ARC:
The RunTime Environments.

The A-REX can run specially prepared BASH scripts prior to creation of the job’s script, before and after executing
job’s main executable. These scripts are usually grouped in a directory and called RTE scripts.

To configure a RTE, it is enough to add to the [grid-manager] block the following:

runtimedir="/SOFTWARE/runtime"

where /SOFTWARE/runtime is a directory that contains different RTEs, usually organized in different directories.

Each RTE SHOULD have its own directory containing its scripts. A proposal on how to organize such directories
can be seen here: http://pulse.fgi.csc.fi/gridrer/htdocs/concept.phtml .

It is important that each directory is replicated or accessible by all the computing nodes in the LRMS that are
intended to use those Runtime Environments. A-REX will scan each directory and identify the different RTEs.

A specific set of scripts for an RTE is requested by client software in the job description, through the runtimeenvi-
ronment attribute in XRSL, JSDL or ADL, with a value that identifies the name of the RTE.

The scripts are run with first argument set to ’0’,’1’ or ’2’, and executed in specific moments of the job’s lifetime, in
this way:

’0’ is passed during creation of the job’s LRMS submission script. In this case the scripts are run by A-REX on the
frontend, before the job is sent to the LRMS. Some enviroment variables are defined in this case, and can be
changed to influence the job’s execution later. A list is presented in table 4.2.

’1’ is passed before execution of the main executable. The scripts are executed on the computing node of the LRMS.
Such a script can prepare the environment for some third-party software package. The current directory in this
case is the one which would be used for execution of the job. Variable $HOME also points to this directory.

’2’ is passed after the main executable has finished. The scripts are executed on the computing node of the LRMS.
The main purpose is to clean possible changes done by scripts run with ’1’ (like removing temporary files).
Execution of scripts on computing nodes is in general not reliable: if the job is killed by LRMS they most
probably won’t be executed.

http://pulse.fgi.csc.fi/gridrer/htdocs/concept.phtml

4.5. ENHANCING CE CAPABILITIES 55

If the job description specifies additional arguments for corresponding RTE those are appended starting at second
position.

The scripts all are run through BASH’s ’source’ command, and hence can manipulate shell variables.

For a description on how to organize and create a RTE, please follow the instructions here: http://pulse.fgi.
csc.fi/gridrer/htdocs/maintainers.phtml

For publicly available runtime environments please see the RTE Registry at http://pulse.fgi.csc.fi/gridrer/
htdocs/index.phtml.

4.5.3 Enabling the Web Services interface

A-REX provides a standard-compliant Web Service (WS) interface to handle job submission/management. The WS
interface of A-REX is however disabled by default in ARC and EMI distributions as of 2011. To experiment with this
advanced A-REX feature, setting the option arex_mount_point in the [grid-manager] section of arc.conf
enables the web service interface, e.g.

arex_mount_point="https://your.host:60000/arex"

Remember to enable incoming and outgoing traffic in the firewall for the chosen port; in the example above, port
60000.

Then jobs can be submitted through this new WS interface with the arcsub command (available in the ARC client
package) and jobs can be managed with other arc* commands.

A-REX also has an EMI Execution Service interface. To enable it, in addition to the above option the following
option must be specified

enable_emies_interface="yes"

IMPORTANT: this web service interface does not accept legacy proxies created by voms-proxy-init by default.
RFC proxies must be used, which can be created by specifying voms-proxy-init -rfc or using arcproxy.

The WS interface can run alongside the GridFTP interface. Enabling the WS interface as shown above does not
disable the GridFTP interface - if desired “gridftpd” service must be explicitly stopped.

4.5.4 Virtual Organization Membership Service (VOMS)

Classic authentication of users in grid environment is based on his/her certificate subject name (SN). Authorization
of users is performed by checking the lists of permitted user SNs, also known as grid-mapfiles. The classic scheme is
the simplest to deal with, but it may have scalability and flexibility restrictions when operating with dynamic groups
of researchers – Virtual Organizations (VO).

From the computing element perspective, all members of a particular VO are involved in the same research field
having common predictable requirements for resources that allows flexibly configured LRMS scheduler policies. In
general, VOs have an internal structure that regulate relationships between members that is implemented via groups,
roles and attributes. VO membership parameters are controlled by means of the VOMS specialized software‖.

VOMS consists of two parts:

• VO Management interface (VOMS-Admin) – web-based solution to control membership parameters. Along
with the management interface, the service provides a SOAP interface to generate lists of VO members’ SNs.
EDG VOMS-Admin is a classic VO Management solution distributed by EMI [3]. There is also alternative
lightweight solution available – PHP VOMS-Admin [21].

• Credentials signing service (vomsd) – standalone daemon that fortifies user VO membership and its parameters.
A credentials signing daemon issues an Attribute Certificate (AC) extension attached to the user’s proxy-
certificate and is used in a delegation process. VOMS processing API of the middleware or some external
authorization processing executables may parse and verify the VOMS AC extension and make a decision
taking into account group affiliation instead of just using the personal certificate SN.

‖There are other existing technologies for group management, but VOMS is the most popular and widely supported

http://pulse.fgi.csc.fi/gridrer/htdocs/maintainers.phtml
http://pulse.fgi.csc.fi/gridrer/htdocs/maintainers.phtml
http://pulse.fgi.csc.fi/gridrer/htdocs/index.phtml
http://pulse.fgi.csc.fi/gridrer/htdocs/index.phtml

56 CHAPTER 4. CONFIGURATION

Variable Description

joboption directory session directory of job.

joboption controldir control directory of job. Various internal information related to this job is
stored in file in this directory under names job.job gridid.*. For more informa-
tion see section 6.11.

joboption arg # command with arguments to be executed as specified in the JD (not bash
array).

joboption arg code exit code expected from executable if execution succeeded.

joboption pre # # command with arguments to be executed before main executable (not bash
array). There may be multiple such pre-executables numbered from 0.

joboption pre # code exit code expected from corresponding pre-executable if execution succeeded.

joboption post # # command with arguments to be executed after main executable (not bash
array). There may be multiple such post-executables numbered from 0.

joboption post # code exit code expected from corresponding post-executable if execution succeeded.

joboption stdin name of file to be attached to stdin handle.

joboption stdout same for stdout.

joboption stderr same for stderr.

joboption env # array of ’NAME=VALUE’ environment variables (not bash array).

joboption cputime amount of CPU time requested (minutes).

joboption walltime amount of execution time requested (minutes).

joboption memory amount of memory requested (megabytes).

joboption count number of processors requested.

joboption runtime # array of requested runtimeenvironment names (not bash array).

joboption num runtimeenvironment currently beeing processed (number starting from 0).

joboption jobname name of the job as given by user.

joboption lrms LRMS to be used to run job.

joboption queue name of a queue of LRMS to put job into.

joboption starttime execution start time as requested in the JD in MDS format.

joboption gridid identifier of the job assigned by A-REX. It is an opaque string representing
the job inside the A-REX service. It may be not same as the job identifier
presented to an external client.

joboption inputfile # local name of pre-staged file (not bash array).

joboption outputfile # local name of file to be post-staged or kept locally after execution (not bash
array).

joboption localtransfer if set to ’yes’ data staging is done on computing node.

joboption nodeproperty # array of properties of computing nodes (LRMS specific, not bash array).

For example joboption arg # could be changed to wrap the main executable. Or joboption runtime could
be expanded if the current one depends on others.

Table 4.2: RTEs predefined environment variables when the scripts are run with option ’0’

4.5. ENHANCING CE CAPABILITIES 57

To maintain the grid-mapfiles based on information in the VOMS database (using the SOAP interface of the VO
Management service), use voms:// or vomss:// sources in the [vo] configuration block for the nordugridmap
utility (see section 6.1.2, Commands in the [vo] section for details).

A VOMS credentials signing daemon is used directly by client tools (see arcproxy manual) to create a VOMS AC-
enabled proxy. The computing element does not interact with the credentials signing daemon directly, but verifies
the digital signature of the VOMS server against a configured list of trusted VOMS AC issuers instead.

All general VOMS-related configurations described below are supported by the ARC API as well as other EMI
products based on classic VOMS libraries.

4.5.4.1 Configuring trusted VOMS AC issuers

The VOMS AC signature included in a client’s proxy certificate can be verified in two ways:

1. Get the issuing VOMS server certificate to trust beforehand and use it for signature verification.

2. Configure the lists of certificates (LSC) to verify the certificate chain in the VOMS AC.

In case of errors detected in VOMS AC processing, A-REX behavior depends on the voms_processing configuration
variable (see Section 6.1.12.2, Commands affecting the A-REX Web Service communication interface and 6.1.4.1,
General commands).

Getting the VOMS server certificate. This was historically the first method of VOMS server signature
verification based on retrieval of the server public key.

THIS CONFIGURATION METHOD IS NOW OBSOLETE AND UNSUPPORTED SINCE ARC 1.0.0!

Among all EGI-supported grid services there are only few that do not support LSC files configuration – glite-FTS and
glite-WMS for gLite 3.1. If legacy VOMS credentials setup is required for those services, please refer to appropriate
documentation.

Configure lists of certificates. The trust chain from the Certificate Authority (CA) to the VOMS AC issuing
server certificate needs to be described in order to verify ACs in clients’ proxies issued by that server. Generally, the
VOMS server certificate is signed by the CA directly, so there is only two certificates in the chain of trust, but it can
be much longer in other cases.

Chains of trust are configured in *.LSC files. Each line of the LSC file lists a single certificate SN starting from the
VOMS server and continues up the trust chain ending with the root CA certificate SN. The following is an example
of an LSC file for the voms.ndgf.org server:

/O=Grid/O=NorduGrid/CN=host/voms.ndgf.org
/O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority

In some rare cases (e.g. host certificate change and/or moving to different CA) it is possible to specify several lists
per hostname, separating them with ------ NEXT CHAIN ------ line (the ARC parser uses NEXT CHAIN match
only, but classic VOMS libraries require exactly six dashes and space around it, so it is better to put it there for
compatibility).

The following is an example of several chains in a single LSC-file:

/DC=org/DC=ugrid/O=hosts/O=KNU/CN=host/grid.org.ua
/DC=org/DC=ugrid/CN=UGRID CA
------ NEXT CHAIN ------
/DC=org/DC=ugrid/O=hosts/O=KNU/CN=grid.org.ua
/DC=org/DC=ugrid/CN=UGRID CA

To get the trust chain of SNs for the VOMS server either contact the VO manager or use openssl for known VOMS
servers:

echo | openssl s_client -connect <server:port> 2>/dev/null \
| openssl x509 -noout -subject -issuer

https://voms.ndgf.org:8443/vomses/

58 CHAPTER 4. CONFIGURATION

Here <port> is typically the standard VOMS-Admin https interface port – 8443. Port of the vomsd daemon listed
in the vomses file can also be used.

The location of LSC files for ARC is fixed and compatible with other EMI software’s default setup:

/etc/grid-security/vomsdir/<VO>/<hostname>.lsc

Creation of an additional LSC file or modifying an old can be performed without A-REX restart.

Another ARC-specific way exists to configure trust chains without creation of *.LSC files for each VOMS server –
define voms_trust_chain configuration options that contain information about all trusted issuers in one place.

This approach is more useful with A-REX standalone installations that provide resources for a few VOs. In contrast
the LSC files based solution is more scalable and compatible with other EMI software.

These variables can be specified in the [common] configuration block and extended in [grid-manager] and/or
[gridftpd] blocks:

voms_trust_chain="/O=Grid/O=NorduGrid/CN=host/arthur.hep.lu.se" "/O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority"
voms_trust_chain="/O=Grid/O=NorduGrid/CN=host/emi-arc.eu" "/O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority"
voms_trust_chain="ˆ/O=Grid/O=NorduGrid"

NOTE! A defined voms_trust_chain option will override the information in *.LSC files.

Unlike LSC files the voms_trust_chain option supports regular expressions syntax. After voms_trust_chain
modification services should be restarted to apply changes.

4.5.4.2 Configuring VOMS AC signing servers to contact

Clients rely on VOMSes configuration. VOMSes refers to a list of VOMS servers that are used to manage
the supported VOs, more precisely speaking – VOMS AC signing daemons’ contact parameters.

The old way of specifying VOMSes is to put all VOs configuration into a single file /etc/vomses. Each
line should be written in the following format:

"alias" "host address" "TCP port" "host certificate SN" "official VO name"

It is advised to have alias the same as official VO name: several VOMS client versions mix them. If several
VOMS servers are used by the VO for redundancy, specify them on separate lines. These parameters can be
found in the “Configuration” section of VOMS-Admin labeled “VOMSES string for this VO”.

With recent versions of grid software it is possible to maintain a separate VOMSes files for each VO.
This files should be placed in the VOMSes directory – /etc/grid-security/vomses/ is used by de-
fault but can be redefined with X509_VOMSES environmental variable. Please refer to client documenta-
tion for more information. For example, to configure support of the nordugrid.org VO, create a file
/etc/grid-security/vomses/nordugrid.org with the following content:

"nordugrid.org" "voms.ndgf.org" "15015" "/O=Grid/O=NorduGrid/CN=host/voms.ndgf.org" "nordugrid.org"

4.5.4.3 Configuring ARC to use VOMS extensions

From the client side, arcproxy already has built-in support for VOMS AC extensions, so no additional
configuration is required unless it is desired to redefine VOMSes path.

To utilize VOMS AC extensions in A-REX there are several possibilities:

• using an access control filter based on VOMS AC (see section 4.4.1, Access control: users, groups,
VOs for details)

• using LCAS/LCMAPS authorization and mapping (see section 4.5.7, Using LCAS/LCMAPS for de-
tails)

• using external plugins that operate with VOMS AC (e.g. arc-vomsac-check)

4.5. ENHANCING CE CAPABILITIES 59

4.5.5 Dynamic vs static mapping

There are many debates on using static or dynamic local account mapping policy. Historically, ARC initially
supported only static mapping. Currently, ARC and all middlewares involved in the EMI project support
and can be configured to use any combination of the two.

4.5.5.1 Static mapping

The main reason of using a static account mapping policy is to simplify administration of grid services.
Static mapping works by assigning a fixed operating system account to a grid user identified by his/her SN.
General practice is to map all grid users to one or a few operating system accounts dedicated to grid jobs.

The most significant drawback of sharing local accounts is that different grid users are indistinguishable for
the underlying system infrastructure. There is no easy way to securely isolate different jobs running with
the same credentials or implement complex scheduling policy in the LRMS with reservations and priorities
as well as employ flexible disk space allocation policy.

On the other hand, if every grid user is mapped to a dedicated local account, there is significant increase of
administration burden. Individual mappings and their permissions may need to be manually synchronized
with grid user directories (like VOMS or Globus CAS).

4.5.5.2 Dynamic mapping

A dynamic mapping policy allows to provide every grid user with a separate dynamically leased local account
and to deploy more secure and flexible configurations. Generally, dynamic mapping involves using multiple
pools of local accounts for different classes of grid users.

Common examples of such classes include VOs and groups/roles in the VOs. This allows for building
authorization and mapping policies in terms of VOMS FQANs additionally to user SNs, which is very
common as a site usually provides resources for more than one VO.

Each grid user accessing some site service gets mapped to a local account which is leased from an appropriate
pool. Policy rules define how to select that pool depending on the VOMS AC presented by the user as a
part of his/her proxy-certificate. A user accessing the same site with different credentials generally will be
mapped differently, depending on FQANs included.

Each grid user gets separated from other local and grid users by means of the underlying operating system
because with dynamic mapping every grid user is mapped to a dedicated local account. If the local account
lease is not used for some period of time, it is released and can be assigned to another grid user.

Pool accounts can belong to specific local groups which can be a subject of LRMS scheduling policy or disk
quotas. Authorization and mapping policies should be updated only in the case when a new role or group
is introduced in a VO, update in case of user membership changes is not necessary.

There are different approaches to the implementation of a dynamic mapping policy, including:

• deploying the ARC built-in simplepool mapping plugin

• using LCMAPS from Site Access Control framework (see section 4.5.7, Using LCAS/LCMAPS)

• using the Argus dedicated authorization service (see section 4.5.6, Using Argus authorization service)

• using any third-party solution which can be implemented through a call to an external executable

Please note that to completely disable static mapping, an empty grid-mapfile needs to be specified in
the configuration. This is needed because users are always mapped to accounts in the grid-mapfile by
default. And because the grid-mapfile is used as the primary authorization list by default the option
allowunknown="yes" must be specified in the [gridftpd] section to turn that check off.

Also for security purposes it is advisable to always provide a fallback mapping rule to map the user to a safe
or nonexiting local account in case all the dynamic mapping rules failed for some reason.

60 CHAPTER 4. CONFIGURATION

4.5.6 Using Argus authorization service

A-REX with the Web Service (WS) interface enabled (see section 4.5.3, Enabling the Web Services interface)
may directly use the Argus service [1] for requesting authorization decisions and performing client mapping
to a local user account. To make A-REX communicate to Argus PEP or PDP service for every operation
requested through WS interface add the following option to the [grid-manager] section of arc.conf:

arguspep_endpoint="https://arguspep.host:8154/authz"

or

arguspdp_endpoint="https://arguspdp.host:8154/authz"

A-REX can use different XACML profiles for communicating to Argus. Available are

• direct - pass all authorization attributes (only for debugging). No deployed Argus service implements
this profile.

• subject - pass only subject name of client. This is a simplified version of the ’cream’ profile.

• cream - makes A-REX pretend it is a gLite CREAM service. This is currently the recommended profile
for interoperability with gLite based sites.

• emi - a new profile developed in the EMI project. This is the default choice.

Example:

arguspep_profile="cream"

or

arguspdp_profile="cream"

To choose whether the username of the local account provided by Argus PEP should be accepted, the
arguspep_usermap option is used. By default the local account name provided by Argus is ignored. This
can be changed by setting

arguspep_usermap="yes"

Although a corresponding option for Argus PDP server exists, the Argus PDP server itself does not provide
a local user identity in its response yet.

IMPORTANT: note that first mapping rules defined in the [grid-manager] section are processed and
then Argus is contacted. Hence the account name provided by Argus will overwrite the one defined by local
rules.

IMPORTANT: although direct communication with the Argus PEP server is only possible for a WS
enabled A-REX server it is possible to use Argus command line utilities as authorization and account
mapping plugins in the [grid-manager] section of the configuration file. For example:

[grid-manager]
authplugin="ACCEPTED timeout=20 pepcli_wrapper.sh %C/job.%I.proxy"

Content of pepcli_warpper.sh:
#!/bin/sh
pepcli --pepd https://arguspep.host:8154/authz --certchain "$1" -v --cert \

/etc/grid-security/hostcert.pem --key /etc/grid-security/hostkey.pem \
--capath /etc/grid-security/certificate | grep -F "Permit"

4.5. ENHANCING CE CAPABILITIES 61

The example above uses the authplugin feature of A-REX to perform authorization for the job submission
operation. More sophisticated scenarios may be covered by a more complex pepci-wrapper.sh. For more
information see Argus documentation [1] and description of various plugins sections: 6.1.3, Commands in
the [group] section, 6.1.4, Commands in the [gridftpd] section and 6.1.12.8, Other general commands in the
[grid-manager] section.

4.5.7 Using LCAS/LCMAPS

LCAS stands for Local Centre Authorization Service. Based on configured policies, LCAS makes binary
authorization decisions. Most of LCAS functionality is covered by ARC’s internal authorization mechanism
(see section 6.1.3, Commands in the [group] section), but it can be used for interoperability to maintain a
common authorization policy across different Grid Middlewares.

LCMAPS stands for Local Credential Mapping Service, it takes care of translating Grid credentials to Unix
credentials local to the site. LCMAPS (as well as LCAS) is modular and supports flexible configuration
of complex mapping policies. This includes not only classical mapping using a grid-mapfile generated by
nordugridmap (see section 4.4.1, Access control: users, groups, VOs) but primarily using dynamic pools
and VOMS AC-based mapping using FQAN match which differs in some aspects from the functionality
provided by ARC natively. LCMAPS can be used to implement VO integration techniques and also for
interoperability to maintain a common account mapping policy.

LCAS/LCMAPS libraries are provided by the Site Access Control (SAC) framework [28] that was originally
designed to be called from the gLite middleware stack and the pre-WS part of Globus Toolkit version 4.
ARC can also be configured to employ these libraries.

The main goal of using SAC is to maintain common authorization and Unix account mapping policies for a
site and employ them on multiple services of a site. The framework allows to configure site-wide autorization
policies independently of the contacted service and consistent identity mapping among different services that
use LCAS/LCMAPS libraries, e.g. A-REX, LCG CE (GT4), CREAM CE or GSISSH.

Additionally, the SAC framework provides the SCAS mapping service, an ARGUS client and the gLExec
enforcement executable. More information about its functionality and configuration can be found in the
SAC documentation [9, 19, 18].

4.5.7.1 Enabling LCAS/LCMAPS

LCAS and LCMAPS can be used by configuring them in the corresponding sections of the configura-
tion file and will be used by the gridftpd jobplugin or fileplugin and the A-REX WS interface. To
avoid undesired behavior of the SAC framework - changing user identity of running process, use and ma-
nipulation of environment variables, etc. - which is harmful for a multithreaded execution environment,
mediator executables are used called arc-lcas and arc-lcmaps correspondingly. They are located at
<ARCinstallation path>/libexec/arc and are invoked by ARC services with grace 60 seconds time-
out to avoid hanging connections. Both executables invoke appropriate functions from shared libraries
(usually liblcas.so and liblcmaps.so respectively), so LCAS/LCMAPS must be installed to use it.
Installing the SAC framework is not covered by this manual, please refer to the corresponding EMI docu-
mentation [19, 18].

Although the advised way to use LCAS and LCMAPS is through corresponding dedicated authorization and
mapping rules it is also possible to use the generic plugin capability of ARC and call those executables directly.
Their arguments syntax is the same as one of the corresponding configuration rules with two additional
arguments prepended - subject name of user and path to file containing user credentials. Credentials must
include the full chain of user credentials with optional CA certificate. If file containing X.509 proxy is used
its private key is ignored.

Using LCAS LCAS is configured in the [group] section using an lcas authorization rule. This com-
mand requires several parameters:

lcas=<LCAS library name> <LCAS library path> <LCAS policy description file>

The corresponding system command to call the mediator executable is

62 CHAPTER 4. CONFIGURATION

arc-lcas <user subject> <user credentials> <LCAS library name> <LCAS library path> \
<LCAS policy description file>

This command can be invoked manually to check the desired operation of LCAS.

The user subject and credentials path can be substituted by A-REX using %D and %P syntax. It is also
necessary to pass the LCAS library name and path to the SAC installation location. The syntax of the
LCAS policy description file is provided later in this section.

Enabling LCAS in arc.conf example:

[group/users]
lcas="liblcas.so /opt/glite/lib /etc/lcas.db"

[gridftpd/jobs]
groupcfg="users"
path="/jobs"
plugin="jobplugin.so"

And if using authorization plugin functionality section [group/users] can be written

[group/users]
plugin="5 /opt/arc/libexec/arc/arc-lcas %D %P liblcas.so /opt/glite/lib /etc/lcas.db"

As one can see this syntax may be used to achieve an even higher degree of flexibility by tweaking more
parameters.

Using LCMAPS LCMAPS is configured with an lcmaps rule for one of the identity mapping commands
- unixmap, unixgroup or unixvo - in the [gridftpd] section. This rule requires several parameters:

lcmaps <LCMAPS library name> <LCMAPS library path> <LCMAPS policy description file> \
<LCMAPS policy name> [<LCMAPS policy name>...]

The corresponding system command to call the mediator executable is

arc-lcmaps <user subject> <user credentials> <LCMAPS library name> \
<LCMAPS library path> <LCMAPS policy description file> \
<LCMAPS policy name> [<LCMAPS policy name>...]

An LCMAPS policy description file can define multiple policies, so additional LCMAPS policy name
parameter(s) are provided to distinguish between them. The syntax of LCMAPS policy description is
provided later in this section.

Enabling LCMAPS in arc.conf example:

[gridftpd]
gridmap="/dev/null"
allowunknown="yes"
unixmap="* lcmaps liblcmaps.so /opt/glite/lib /etc/lcmaps.db voms"

And if using generic plugin functionality section unixmap command can be written

unixmap="* mapplugin 30 /opt/arc/libexec/arc/arc-lcmaps %D %P liblcmaps.so \
/opt/glite/lib /etc/lcmaps.db voms"

4.5.7.2 LCAS/LCMAPS policy configuration

LCAS and LCMAPS provide a set of plugins to be used for making the policy decisions. All configuration
is based on the plugins used and their parameters.

4.5. ENHANCING CE CAPABILITIES 63

LCAS configuration To create an access control policy using LCAS, the following set of basic plugins is
needed:

lcas userallow.mod allows access if SN of the user being checked is listed in the config file provided.

lcas userban.mod denies access if SN of the user being checked is listed in the config file provided.

lcas voms.mod checks if FQANs in user’s proxy certificate VOMS AC match against config file provided.

lcas timeslots.mod makes authorization decisions based on available time slots (as mentioned in LCAS
documentation “the most useless plugin ever” :-))

The LCAS configuration file (lcas.db) contains several lines with the following format:

pluginname="<module name/path to plugin file>", pluginargs="<arguments>"

Each line represents an authorization policy rule. A positive decision is only reached if all the modules listed
permit the user (logical AND).

LCMAPS configuration LCMAPS plugins can belong to one of two classes, namely acquisition and
enforcement. Acquisition modules gather the information about user credentials or find mapping decisions
that determine the user’s UID, primary GID and secondary GIDs that can then be assigned by enforcement
modules.

LCMAPS basic acquisition modules:

lcmaps localaccount.mod uses account name corresponding to user’s SN in static mapfile (mostly like
classic grid-mapfile).

lcmaps poolaccount.mod allocates account from a pool corresponding to user’s SN in static mapfile (like
grid-mapfile with “dot-accounts” for Globus with GRIDMAPDIR patch).

lcmaps voms.mod parses and checks proxy-certificate VOMS AC extension and then fills internal LCMAPS
data structures with that parsed information, which can be used by other plugins invoked later.

lcmaps voms localaccount.mod uses static UID value corresponding to user’s VOMS FQAN.

lcmaps voms localgroup.mod uses static GID value corresponding to user’s VOMS FQAN.

lcmaps voms poolaccount.mod allocates account from a pool corresponding to user’s VOMS FQAN.

lcmaps voms poolgroup.mod allocate GID from a pool corresponding to user’s VOMS FQAN.

lcmaps scas client.mod passes request to a SCAS server for making the decision.

LCMAPS basic enforcement modules:

lcmaps posix enf.mod sets UID/GID by POSIX setreuid()/setregid() calls so that the LCMAPS
caller process after successful enforcement continues running with credentials of an account mapped.

lcmaps ldap enf.mod change an information about an account in the LDAP database (uidnumber, gid-
number, memberuid, etc.).

lcmaps dummy good.mod does not perform enforcing and returns success in case the mapping was found.

The LCMAPS configuration file (lcmaps.db) is more complex than LCAS one due to flexibility of policies.

define path to plugable modules
path = /path/to/lcmaps/modules
define actions
<action1 name> = "<module1 name> [<module1 options>]"
<action2 name> = "<module2 name> [<module2 options>]"
...

64 CHAPTER 4. CONFIGURATION

<actionM name> = "<moduleN name> [<moduleN options>]"
define policies
<policy1 name>:
<actionX1> -> <action on success> [| <action on fault>]
<actionX2> -> <action on success> [| <action on fault>]
...
<actionXN> -> <action on success> [| <action on fault>]
...
<policyN name>:
<actionY1> -> <action on success> [| <action on fault>]
<actionY2> -> <action on success> [| <action on fault>]
...
<actionYN> -> <action on success> [| <action on fault>]

After specifying the path to LCMAPS modules, several actions need to be defined. Each action can be
either an acquisition or enforcement action, depending on the specific module used. If a module requires
parameters, they are specified just after the module filename.

Then defined actions are combined into sequences defining the mapping policy. The first line after policy
name starts the sequence. A module defined by action from the left side of the arrow “->” is executed and
depending on the execution result (positive or negative) another action gets called. The action sequence
ends on enforcement module execution.

To find more information about available pluggable modules and their configuration options, please follow
the LCMAPS documentation [19].

Environment variables To fine-tune or debug LCAS/LCMAPS framework operation, special environ-
mental variables should be used. There is no another way to change e.g. debug level.

LCAS environmental variables:

LCAS LOG FILE sets location of the logfile

LCAS LOG TYPE determines method of logging (logfile, syslog, both or none)

LCAS LOG STRING specifies text to be prepended to each line to be logged

LCAS DB FILE specifies location of lcas policy file (either absolute or relative to LCAS DIR)

LCAS DEBUG LEVEL sets debug level (0-5)

LCAS MOD DIR sets location of the LCAS plugins (/modules will be added to the end of value specified)

LCAS DIR sets location of LCAS configuration files

LCAS ETC DIR can be used alternatively to LCAS DIR for the same purpose

LCMAPS enviromental variables:

LCMAPS LOG FILE sets location of the logfile

LCMAPS LOG TYPE determines method of logging (logfile, syslog, both or none)

LCMAPS LOG STRING specifies text to be prepended to each line to be logged

LCMAPS DB FILE specifies location of lcas policy file (either absolute or relative to LCMAPS DIR)

LCMAPS DEBUG LEVEL sets debug level (0-5)

LCMAPS MOD DIR sets location of the LCMAPS plugins (/modules will be added to the end of value
specified)

LCMAPS DIR sets location of LCMAPS configuration files

LCMAPS ETC DIR can be used alternatively to LCMAPS DIR for the same purpose

LCMAPS POLICY STRING determines the list of policies to apply from a configuration file

4.5. ENHANCING CE CAPABILITIES 65

4.5.7.3 Example LCAS configuration

Here is an example of LCAS configuration file:

pluginname=lcas_userban.mod,pluginargs=/etc/grid-security/lcas/ban_users.db
pluginname=lcas_voms.mod,pluginargs="-vomsdir /etc/grid-security/vomsdir/"
" -certdir /etc/grid-security/certificates/"
" -authfile /etc/grid-security/voms-user-mapfile"
" -authformat simple"

There are two modules used: lcas userban.mod and lcas voms.mod. The list of particular users to ban
(their certificate SNs) is stored in the file /etc/grid-security/lcas/ban users.db that is passed to
lcas userban.mod.

If the user’s certificate SN is not directly banned, then VO membership check is performed by lcas voms.mod.
The plugin accepts several parameters: vomsdir and certdir paths used to check proxy-certificate and
VOMS AC extension; authfile contains allowed FQANs specified in a format set by authformat.

Example content of /etc/grid-security/voms-user-mapfile:

"/dteam" .dteam
"/dteam/Role=lcgadmin" .sgmdtm"
"/dteam/Role=NULL/Capability=NULL" .dteam
"/dteam/Role=lcgadmin/Capability=NULL" .sgmdtm
"/VO=dteam/GROUP=/dteam" .dteam
"/VO=dteam/GROUP=/dteam/ROLE=lcgadmin" .sgmdtm
"/VO=dteam/GROUP=/dteam/ROLE=NULL/Capability=NULL" .dteam
"/VO=dteam/GROUP=/dteam/ROLE=lcgadmin/Capability=NULL" .sgmdtm

Only the first parameter (FQAN) is used. The second parameter is valuable only for LCMAPS, when it
is configured to use the same file. The several FQAN specification formats are used to support different
versions of the VOMS library. If the latest VOMS library (later than version 2.0.2 from EMI-1) is installed
on a site then just the first two lines are enough, but to keep things safe and support older VOMS, all of
them should be given.

A GACL format of authfile can also be used as well as more options and plugins. Please refer LCAS
documentation for more information.

4.5.7.4 Example LCMAPS configuration

LCMAPS configuration for ARC is not an enforcing configuration (it means that LCMAPS does not actu-
ally apply UID/GID assignment on execution), so the lcmaps dummy good.mod plugin must be used to
accomplish this. The arc-lcmaps executable returns the user name and optionally group name to stdout
which is then used by ARC to perform enforcing by itself.

Simple gridmap behavior For gridmap behaviour the lcmaps localaccount.mod plugin can be used
with a grid-mapfile, where the users are mapped to some Unix account(s).

Example lcmaps.db configuration file:

path = /opt/glite/lib/modules
ACTIONS
do not perform enforcement
good = "lcmaps_dummy_good.mod"
statically mapped accounts
localaccount = "lcmaps_localaccount.mod"
" -gridmapfile /etc/grid-security/grid-mapfile"

POLICIES
staticmap:
localaccount -> good

66 CHAPTER 4. CONFIGURATION

There is only one policy staticmap defined: after localaccount action is called, LCMAPS execution
gets finished.

VOMS AC-based mapping to pools Parsing the VOMS AC is accomplished via the lcmaps voms
family of plugins. Account pools and gridmapdir should be created beforehand.

path = /opt/glite/lib/modules
ACTIONS
do not perform enforcement
good = "lcmaps_dummy_good.mod"
parse VOMS AC to LCMAPS data structures
vomsextract = "lcmaps_voms.mod"
" -vomsdir /etc/grid-security/vomsdir"
" -certdir /etc/grid-security/certificates"
FQAN-based pool account mapping
vomspoolaccount = "lcmaps_voms_poolaccount.mod"
" -override_inconsistency"
" -max_mappings_per_credential 1"
" -do_not_use_secondary_gids"
" -gridmapfile /etc/grid-security/voms-user-mapfile"
" -gridmapdir /etc/grid-security/gridmapdir"
FQAN-based group mapping
vomslocalgroup = "lcmaps_voms_localgroup.mod"
" -groupmapfile /etc/grid-security/voms-group-mapfile"
" -mapmin 1"

#POLICIES
voms:
vomsextract -> vomspoolaccount | good
vomspoolaccount -> vomslocalgroup | good
vomslocalgroup -> good

Configuration requires voms-group-mapfile which maps FQANs to groups and voms-user-mapfile
which maps FQANs to accounts from pools. Directories vomsdir and certdir in vomsextract config-
uration are used to check VOMS AC validity.

Example content of /etc/grid-security/voms-user-mapfile is provided in section 4.5.7.3, Exam-
ple LCAS configuration. The second parameter indicates the Unix account used to accomplish mapping for
specified FQAN. Notice the dot prepending an account name – that means that a free pool account will be
used instead of a single account.

For example, there are 50 pool accounts named dteam01, dteam02 . . .dteam50. Specifying .dteam in
voms-user-mapfile means that LCMAPS needs to get any unused account from the pool and assign
it to the user’s SN:FQAN pair. Already leased accounts are tracked by hard-linking the account file to a
url-encoded SN:FQAN pair file in the gridmapdir.

File voms-group-mapfile is simillar to voms-user-mapfile, but the second parameter indicates a
group name. If the parameter has a dot prepended like in voms-user-mapfile, it defines the name of
the pool of groups that can be used with the lcmaps voms poolgroup.mod plugin.

There is only one policy defined – voms. Action vomsextract gets executed first and on success vomspoolaccount
module is used. If validation and parsing the VOMS AC has failed then LCMAPS execution finishes. When
called vomspoolaccount allocates an account from the pool, LCMAPS moves on to finding an appropriate
group by vomslocalgroup action. LCMAPS execution is finished if vomspoolaccount had no success
and after vomslocalgroup has finished operation successfully.

4.5.8 Enabling the Arex ganglia implementation

Ganglia has been integrated with Arex, and can be turned on in the [grid-manager] block. It can run
alongside the standalone gangliarc tool (). The Arex-ganglia histograms have the name ”AREX-JOBS-
XXX”. At the moment only a few sample histograms are produced, and the use of them is still in testing
mode. Both options must be enabled:

http://wiki.nordugrid.org/wiki/Gangliarc

4.5. ENHANCING CE CAPABILITIES 67

enable_ganglia="yes"
ganglialocation="/usr/bin"

The ganglialocation should point to your specific ganglia installation, which usually is /usr/bin, unless
you have a local installation.

The benefit of eventually using the Arex ganglia implementation over the standalone tool is that Arex holds
all job information ganglia needs, which provides a more efficient and direct access to information used to
produce the metrics. However, system-related things, such as cpu metrics will still need the standalone
gangliarc tool.

68 CHAPTER 4. CONFIGURATION

Chapter 5

Operations

5.1 Starting and stopping CE services

5.1.1 Overview

There are three components needed for a production level CE to work:

• gridftpd : Starts the gridftpd interface. Brings up the server (configured in the [gridftpd] block)
and all the services related to it (configured in all the [gridftpd/subsection] blocks).
Usually located in /etc/init.d/
See Section 4.3.4, The [gridftpd] section: the job submission interface for configuration details.

• a-rex : Starts A-REX, the grid manager (configured in the [grid-manager] block). It prepares
the configuration files and starts the arched hosting environment process.
Starts the Web Services interface only if it has been enabled. See Section 4.5.3, Enabling the Web
Services interface
Starts LRMS scripts. See Section 4.4.2, Connecting to the LRMS for configuration details.
Usually located in /etc/init.d/
See Section 4.3.3, The [grid-manager] section: setting up the A-REX and the arched for configuration
details.

• nordugrid-arc-ldap-infosys and nordugrid-arc-inforeg : Starts the LDAP server, the
infosystem scripts and infosystem registration scripts (configured in the [infosys] configuration
block and its subsections).
Usually located in /etc/init.d/
See Section 4.3.5, The [infosys] section: the local information system for configuration details.

5.1.2 Validating CE setup

Before starting the CE, and also after any configuration changes are made, it is a good idea to validate the
setup using the validate option of the A-REX init script. Run (as root user):

/etc/init.d/a-rex validate

This checks the CE environment and configuration and prints a summary of issues. Please read the output
carefully and make any necessary changes before starting the CE. Example output:

/etc/init.d/a-rex validate
W: Timecheck: Your time differs slightly 0.005378 seconds) from the public \
time server ’europe.pool.ntp.org’.

E: Permission of ’/etc/grid-security/hostkey.pem’ must be ’r--------’
E: cachedir: not existing at ’/home/grid/cache’
W: /etc/arc.conf:101: duplicate parameter path
/etc/grid-security/hostcert.pem: OK

69

70 CHAPTER 5. OPERATIONS

Found 2 failures.
Found 2 non-critical issues.

The exit code is the number of failures found.

5.1.3 Starting the CE

To start a CE, issue the following commands with root rights in the following order:

1. # service gridftpd start

2. # service a-rex start

3. # service nordugrid-arc-ldap-infosys start

4. # service nordugrid-arc-inforeg start

Alternatively the exact same procedure can be used calling the scripts directly:

1. # /etc/init.d/gridftpd start

2. # /etc/init.d/a-rex start

3. # /etc/init.d/nordugrid-arc-ldap-infosys start

4. # /etc/init.d/nordugrid-arc-inforeg start

Note: If ARC-related environment variables are set, for example $ARC LOCATION or $ARC CONFIG,
then the second form must be used in order to pass those variables through to the script.

5.1.4 Stopping the CE

To stop a CE, issue the following commands with root rights in the following order:

1. # service nordugrid-arc-inforeg stop

2. # service nordugrid-arc-ldap-infosys stop

3. # service a-rex stop

4. # service gridftpd stop

Alternatively the exact same procedure can be used calling the scripts directly:

1. # /etc/init.d/nordugrid-arc-inforeg stop

2. # /etc/init.d/nordugrid-arc-ldap-infosys stop

3. # /etc/init.d/a-rex stop

4. # /etc/init.d/gridftpd stop

5.1. STARTING AND STOPPING CE SERVICES 71

5.1.5 Verifying the status of a service

To check the status of a service, issue the command:

service <servicename> status

Alternatively the exact same procedure can be used calling the scripts directly:

/etc/init.d/<servicename> status

where <servicename> is one of gridftpd, a-rex, grid-infosys

Depending on the security configuration, root permissions might be needed to execute these commands.

A CE is fully funtional when all the three scripts return an OK status.

72 CHAPTER 5. OPERATIONS

5.2 Testing a configuration

This chapter gives instructions on how to test and troubleshoot that a given configuration is correct, and
that everything is running properly.

Things to check are, in order of importance:

1. The information system is running and publishing the correct information. Without a
properly configured information system, the clients will not be able to query the cluster for its resources
and do an efficient brokering.
See Section 5.2.1, Testing the information system

2. A-REX is running with valid certificates installed.
See Section 5.2.2, Testing whether the certificates are valid

3. The job submission interface is listening and accepting jobs.
See Section 5.2.3, Testing the job submission interface

4. LRMS configuration is correct and a job can be executed on the queues.
See Section 5.2.4, Testing the LRMS

5.2.1 Testing the information system

The ARC-CE information system publishes in LDAP and WebServices/XML format.

To test if the LDAP information system is running, ldap tools must be installed. In particular the tool called
ldapsearch [5].

To test if the WS information system is running, ARC suggests its own tool called arcwsrf [29].

5.2.1.1 Check NorduGrid Schema publishing

To check if the information system is creating the needed ldap trees and publishing them, issue the following:

ldapsearch -x -H ldap://localhost:2135 -b ’mds-vo-name=local,o=grid’

and the result should be something like the one in Figure 5.1.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the
same query on its hostname, preferrably from a remote machine:

ldapsearch -x -H ldap://<hostname>:2135 -b ’mds-vo-name=local,o=grid’

The result must be the similar to the one in Figure 5.1.

All the values must be consistent with the setup. For example, nordugrid-cluster-name must be the machine’s
hostname.

5.2.1.2 Check Glue 1.x Schema publishing

To check if the information system is creating the needed ldap trees and publishing them, issue the following:

ldapsearch -x -H ldap://localhost:2135 -b ’mds-vo-name=resource,o=grid’

and the result should be something like the one in Figure 5.2.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the
same query on its hostname, preferrably from a remote machine:

ldapsearch -x -H ldap://<hostname>:2135 -b ’mds-vo-name=resource,o=grid’

The result must be the similar to the one in Figure 5.2.

5.2. TESTING A CONFIGURATION 73

extended LDIF
#
LDAPv3
base <mds-vo-name=local,o=grid> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

local, Grid
dn: Mds-Vo-name=local,o=Grid
objectClass: Mds
objectClass: MdsVo
Mds-Vo-name: local
Mds-validfrom: 20110811172014Z
Mds-validto: 20110811182014Z

piff.hep.lu.se, local, grid
dn: nordugrid-cluster-name=piff.hep.lu.se,Mds-Vo-name=local,o=grid
nordugrid-cluster-totalcpus: 2
nordugrid-cluster-homogeneity: TRUE
nordugrid-cluster-name: piff.hep.lu.se
nordugrid-cluster-lrms-version: 0.9
nordugrid-cluster-middleware: nordugrid-arc-1.0.1
nordugrid-cluster-middleware: globus-5.0.3
nordugrid-cluster-trustedca: /O=Grid/O=NorduGrid/CN=NorduGrid Certification Au
thority
nordugrid-cluster-cpudistribution: 2cpu:1
nordugrid-cluster-sessiondir-lifetime: 10080
nordugrid-cluster-issuerca: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12
nordugrid-cluster-credentialexpirationtime: 20110807141455Z
nordugrid-cluster-lrms-type: fork
nordugrid-cluster-sessiondir-free: 129566
nordugrid-cluster-sessiondir-total: 143858
nordugrid-cluster-architecture: x86_64
nordugrid-cluster-prelrmsqueued: 0
nordugrid-cluster-comment: This is a minimal out-of-box CE setup
nordugrid-cluster-contactstring: gsiftp://piff.hep.lu.se:2811/jobs
nordugrid-cluster-issuerca-hash: 8050ebf5
nordugrid-cluster-totaljobs: 0
nordugrid-cluster-aliasname: MINIMAL Computing Element
nordugrid-cluster-usedcpus: 0
objectClass: Mds
objectClass: nordugrid-cluster
Mds-validfrom: 20110811172104Z
Mds-validto: 20110811172204Z

fork, piff.hep.lu.se, local, grid
dn: nordugrid-queue-name=fork,nordugrid-cluster-name=piff.hep.lu.se,Mds-Vo-nam
e=local,o=grid
nordugrid-queue-running: 0

Figure 5.1: Output of an ldapsearch on a CE

74 CHAPTER 5. OPERATIONS

ldapsearch -x -h piff.hep.lu.se -p 2135 -b ’mds-vo-name=resource,o=grid’
extended LDIF
#
LDAPv3
base <mds-vo-name=resource,o=grid> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

resource, Grid
dn: Mds-Vo-name=resource,o=Grid
objectClass: Mds
objectClass: MdsVo
Mds-Vo-name: resource
Mds-validfrom: 20110822130627Z
Mds-validto: 20110822140627Z

piff.hep.lu.se, resource, grid
dn: GlueClusterUniqueID=piff.hep.lu.se,Mds-Vo-name=resource,o=grid
objectClass: GlueClusterTop
objectClass: GlueCluster
objectClass: GlueSchemaVersion
objectClass: GlueInformationService
objectClass: GlueKey
GlueClusterUniqueID: piff.hep.lu.se
GlueClusterService: piff.hep.lu.se
GlueSchemaVersionMinor: 2
GlueForeignKey: GlueCEUniqueID=piff.hep.lu.se:2811/nordugrid-fork-arc
GlueForeignKey: GlueSiteUniqueID=MINIMAL Infosys configuration
GlueSchemaVersionMajor: 1
GlueClusterName: MINIMAL Infosys configuration

MINIMAL Infosys configuration, resource, grid
dn: GlueSiteUniqueID=MINIMAL Infosys configuration,Mds-Vo-name=resource,o=grid
GlueSiteDescription: ARC-This is a minimal out-of-box CE setup
GlueSiteSecurityContact: mailto: -1
objectClass: GlueTop
objectClass: GlueSite
objectClass: GlueKey
objectClass: GlueSchemaVersion
GlueSiteSysAdminContact: mailto: -1
GlueSiteName: MINIMAL Infosys configuration
GlueSiteUniqueID: MINIMAL Infosys configuration
GlueSchemaVersionMinor: 2
GlueSiteLongitude: 25
GlueSiteLatitude: 54
GlueSchemaVersionMajor: 1
GlueForeignKey: None
GlueSiteOtherInfo: Middleware=ARC
GlueSiteUserSupportContact: mailto: -1
GlueSiteWeb: http://www.eu-emi.eu
GlueSiteLocation: Somewhere, Earth

piff.hep.lu.se:2811/nordugrid-fork-arc, resource, grid
dn: GlueCEUniqueID=piff.hep.lu.se:2811/nordugrid-fork-arc,Mds-Vo-name=resource
,o=grid
GlueCEStateStatus: Production
GlueCEStateTotalJobs: 0
GlueCEInfoJobManager: arc
GlueCEInfoHostName: piff.hep.lu.se
GlueCEUniqueID: piff.hep.lu.se:2811/nordugrid-fork-arc
GlueCEStateFreeJobSlots: 2
GlueForeignKey: GlueClusterUniqueID=piff.hep.lu.se

...

search result
search: 2
result: 0 Success

numResponses: 9
numEntries: 8

Figure 5.2: Sample glue 1.x infosystem output on a ldap query. The output has been shortened for ease of
reading.

5.2. TESTING A CONFIGURATION 75

5.2.1.3 Check LDAP GLUE2 Schema publishing

To check if the information system is creating the needed ldap trees and publishing them, issue the following:

ldapsearch -x -H ldap://localhost:2135 -b ’o=glue’

and the result should be something like the one in Figure 5.3.

To check that the information system is publishing outside the cluster, i.e. on its public IP, execute the
same query on its hostname, preferrably from a remote machine:

ldapsearch -x -H ldap://<hostname>:2135 -b ’o=glue’

The result must be the similar to the one in Figure 5.3.

5.2.1.4 Check WS/XML GLUE2 Schema publishing

First a proxy certificate is needed and these credentials must be authorised on the CE to test, see [29].

Call the arcwsrf test tool:

$ arcwsrf https://<hostname>:<a-rex port>/<a-rex path>

where <a-rex port> <a-rex path> are those specified in Section 4.5.3, Enabling the Web Services
interface.

The output should look like in Figure 5.4

5.2.1.5 Further testing hints

If nothing is published or the query hangs, then there can be something wrong with ldap or A-REX.

Check slapd logs to find out the problem in the former case, A-REX logs in the latter. Please see also
Section 5.4, Log files.

5.2.2 Testing whether the certificates are valid

While A-REX is running, check the logfile specified with the logfile option in the [grid-infosys]
block in /etc/arc.conf:

[grid-infosys]
...
logfile="/tmp/grid-manager.log"
...

It will contain information on expired certificates or certificates about to expire, see Figure 5.5.

While ARIS is running, is possible to get that information as well from its logfiles specified with the
providerlog option in the [infosys] block in /etc/arc.conf :

[infosys]
...
providerlog="/tmp/infoprovider.log"
...

It will contain information about expired certificates, see Figure 5.6.

The certificates’ dates can be inspected by using openssl commands. Please refer to the certificate mini
How-to

To understand how to read the logs please refer to Section 5.4, Log files

http://www.nordugrid.org/documents/certificate_howto.html
http://www.nordugrid.org/documents/certificate_howto.html

76 CHAPTER 5. OPERATIONS

$ ldapsearch -x -h piff.hep.lu.se -p 2135 -b ’o=glue’
[...]
glue
dn: o=glue
objectClass: top
objectClass: organization
o: glue

urn:ogf:AdminDomain:hep.lu.se, glue
dn: GLUE2DomainID=urn:ogf:AdminDomain:hep.lu.se,o=glue
objectClass: GLUE2Domain
objectClass: GLUE2AdminDomain
GLUE2EntityName: hep.lu.se
GLUE2DomainID: urn:ogf:AdminDomain:hep.lu.se

urn:ogf:ComputingService:hep.lu.se:piff, urn:ogf:AdminDomain:hep.lu.se, glue
dn: GLUE2ServiceID=urn:ogf:ComputingService:hep.lu.se:piff,

GLUE2DomainID=urn:ogf:AdminDomain:hep.lu.se,o=glue
GLUE2ComputingServiceSuspendedJobs: 0
GLUE2EntityValidity: 60
GLUE2ServiceType: org.nordugrid.execution.arex
GLUE2ServiceID: urn:ogf:ComputingService:hep.lu.se:piff
objectClass: GLUE2Service
objectClass: GLUE2ComputingService
GLUE2ComputingServicePreLRMSWaitingJobs: 0
GLUE2ServiceQualityLevel: development
GLUE2ComputingServiceWaitingJobs: 0
GLUE2ServiceComplexity: endpoint=1,share=1,resource=1
GLUE2ComputingServiceTotalJobs: 0
GLUE2ServiceCapability: executionmanagement.jobexecution
GLUE2ComputingServiceRunningJobs: 0
GLUE2ComputingServiceStagingJobs: 0
GLUE2EntityName: piff
GLUE2ServiceAdminDomainForeignKey: urn:ogf:AdminDomain:hep.lu.se
GLUE2EntityCreationTime: 2011-08-22T13:23:24Z

urn:ogf:ComputingEndpoint:piff.hep.lu.se:443,
urn:ogf:ComputingService:hep.lu.se:piff, urn:ogf:AdminDomain:hep.lu.se, glue

dn: GLUE2EndpointID=urn:ogf:ComputingEndpoint:piff.hep.lu.se:443,
GLUE2ServiceID=urn:ogf:ComputingService:hep.lu.se:piff,
GLUE2DomainID=urn:ogf:AdminDomain:hep.lu.se,o=glue

GLUE2ComputingEndpointRunningJobs: 0
GLUE2ComputingEndpointStaging: staginginout
GLUE2EntityValidity: 60
GLUE2EndpointQualityLevel: development
GLUE2EndpointImplementor: NorduGrid
GLUE2EntityOtherInfo: MiddlewareName=EMI
GLUE2EntityOtherInfo: MiddlewareVersion=1.1.2-1
GLUE2EndpointCapability: executionmanagement.jobexecution
GLUE2EndpointHealthState: ok
GLUE2EndpointServiceForeignKey: urn:ogf:ComputingService:hep.lu.se:piff
GLUE2EndpointTechnology: webservice
GLUE2EndpointWSDL: https://piff.hep.lu.se/arex/?wsdl
GLUE2EndpointInterfaceName: ogf.bes
GLUE2ComputingEndpointWaitingJobs: 0
GLUE2ComputingEndpointComputingServiceForeignKey: urn:ogf:ComputingService:hep.lu.se:piff
GLUE2EndpointURL: https://piff.hep.lu.se/arex
GLUE2ComputingEndpointSuspendedJobs: 0
GLUE2EndpointImplementationVersion: 1.0.1
GLUE2EndpointSemantics: http://www.nordugrid.org/documents/arex.pdf
GLUE2ComputingEndpointPreLRMSWaitingJobs: 0
GLUE2EndpointIssuerCA: /DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29
GLUE2EndpointServingState: production
GLUE2ComputingEndpointStagingJobs: 0
objectClass: GLUE2Endpoint
objectClass: GLUE2ComputingEndpoint
GLUE2EndpointInterfaceVersion: 1.0
GLUE2EndpointSupportedProfile: http://www.ws-i.org/Profiles/BasicProfile-1.0.html
GLUE2EndpointSupportedProfile: http://schemas.ogf.org/hpcp/2007/01/bp
GLUE2EndpointImplementationName: ARC
GLUE2EndpointTrustedCA: /DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29
GLUE2EndpointTrustedCA: /O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority
GLUE2ComputingEndpointJobDescription: ogf:jsdl:1.0
GLUE2ComputingEndpointJobDescription: nordugrid:xrsl
GLUE2EndpointID: urn:ogf:ComputingEndpoint:piff.hep.lu.se:443
GLUE2EntityCreationTime: 2011-08-22T13:23:24Z
[...]
search result
search: 2
result: 0 Success
numResponses: 6
numEntries: 5

Figure 5.3: Sample LDAP search output on GLUE2 enabled infosystem. The output has been shortened
with [...] for ease of reading.

5.2. TESTING A CONFIGURATION 77

<wsrf-rp:GetResourcePropertyDocumentResponse><InfoRoot>
<Domains xmlns="http://schemas.ogf.org/glue/2008/05/spec_2.0_d41_r01" [...]>
<AdminDomain BaseType="Domain">

<ID>urn:ogf:AdminDomain:hep.lu.se</ID>
<Name>hep.lu.se</Name>
<Services>

<ComputingService BaseType="Service" CreationTime="2011-08-22T13:34:56Z" Validity="60">
<ID>urn:ogf:ComputingService:hep.lu.se:piff</ID>
<Name>piff</Name>
<Capability>executionmanagement.jobexecution</Capability>
<Type>org.nordugrid.execution.arex</Type>
<QualityLevel>development</QualityLevel>
<Complexity>endpoint=1,share=1,resource=1</Complexity>
<TotalJobs>0</TotalJobs>
<RunningJobs>0</RunningJobs>
<WaitingJobs>0</WaitingJobs>
<StagingJobs>0</StagingJobs>
<SuspendedJobs>0</SuspendedJobs>
<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<ComputingEndpoint BaseType="Endpoint" CreationTime="2011-08-22T13:34:56Z" Validity="60">

<ID>urn:ogf:ComputingEndpoint:piff.hep.lu.se:60000</ID>
<OtherInfo>MiddlewareName=EMI</OtherInfo>
<OtherInfo>MiddlewareVersion=1.1.2-1</OtherInfo>
<URL>https://piff.hep.lu.se:60000/arex</URL>
<Capability>executionmanagement.jobexecution</Capability>
<Technology>webservice</Technology>
<InterfaceName>ogf.bes</InterfaceName>
<InterfaceVersion>1.0</InterfaceVersion>
<WSDL>https://piff.hep.lu.se:60000/arex/?wsdl</WSDL>
<SupportedProfile>http://www.ws-i.org/Profiles/BasicProfile-1.0.html</SupportedProfile>
<SupportedProfile>http://schemas.ogf.org/hpcp/2007/01/bp</SupportedProfile>
<Semantics>http://www.nordugrid.org/documents/arex.pdf</Semantics>
<Implementor>NorduGrid</Implementor>
<ImplementationName>ARC</ImplementationName>
<ImplementationVersion>1.0.1</ImplementationVersion>
<QualityLevel>development</QualityLevel>
<HealthState>ok</HealthState>
<ServingState>production</ServingState>
<IssuerCA>/DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29</IssuerCA>
<TrustedCA>/DC=eu/DC=KnowARC/CN=LUEMI-1313588355.29</TrustedCA>
<TrustedCA>/O=Grid/O=NorduGrid/CN=NorduGrid Certification Authority</TrustedCA>
<Staging>staginginout</Staging>
<JobDescription>ogf:jsdl:1.0</JobDescription>
<JobDescription>nordugrid:xrsl</JobDescription>
<TotalJobs>0</TotalJobs>
<RunningJobs>0</RunningJobs>
<WaitingJobs>0</WaitingJobs>
<StagingJobs>0</StagingJobs>
<SuspendedJobs>0</SuspendedJobs>
<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<Associations>
<ComputingShareID>urn:ogf:ComputingShare:hep.lu.se:piff:fork</ComputingShareID>

</Associations>
<ComputingActivities>
</ComputingActivities>

</ComputingEndpoint>
<ComputingShare BaseType="Share" CreationTime="2011-08-22T13:34:56Z" Validity="60">

<ID>urn:ogf:ComputingShare:hep.lu.se:piff:fork</ID>
<Name>fork</Name>
<Description>This queue is nothing more than a fork host</Description>
<MappingQueue>fork</MappingQueue>

[...]
<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<FreeSlots>2</FreeSlots>
<FreeSlotsWithDuration>2</FreeSlotsWithDuration>
<UsedSlots>0</UsedSlots>
<RequestedSlots>0</RequestedSlots>
<Associations>
<ComputingEndpointID>urn:ogf:ComputingEndpoint:piff.hep.lu.se:60000</ComputingEndpointID>
<ExecutionEnvironmentID>urn:ogf:ExecutionEnvironment:hep.lu.se:piff:fork</ExecutionEnvironmentID>

</Associations>
</ComputingShare>
<ComputingManager BaseType="Manager" CreationTime="2011-08-22T13:34:56Z" Validity="60">

<ID>urn:ogf:ComputingManager:hep.lu.se:piff</ID>
[...]

</ComputingManager>
</ComputingService>

</Services>
</AdminDomain>

</Domains>
</InfoRoot>
</wsrf-rp:GetResourcePropertyDocumentResponse>

Figure 5.4: Sample ARC WS information system XML output. The output has been shortened with [...] for
ease of reading.

78 CHAPTER 5. OPERATIONS

...
[2011-08-05 11:12:53] [Arc] [WARNING] [3743/406154336] Certificate /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12

will expire in 2 days 5 hours 2 minutes 1 second
[2011-08-05 11:12:53] [Arc] [WARNING] [3743/406154336] Certificate /DC=eu/DC=KnowARC/O=Lund University/CN=demo1
will expire in 2 days 5 hours 2 minutes 1 second

...

Figure 5.5: A sample certificate information taken from A-REX logs.

...
[2011-08-12 10:39:46] HostInfo: WARNING: Host certificate is expired in file: /etc/grid-security/hostcert.pem
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1305883423.79
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1301496779.44
[2011-08-12 10:39:46] HostInfo: WARNING: Issuer CA certificate is expired in file:

/etc/grid-security/certificates/8050ebf5.0
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12
[2011-08-12 10:39:46] HostInfo: WARNING: Issuer CA certificate is expired in file:

/etc/grid-security/certificates/917bb2c0.0
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1310134495.12
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1305883423.79
[2011-08-12 10:39:46] HostInfo: WARNING: Certificate is expired for CA: /DC=eu/DC=KnowARC/CN=LUEMI-1301496779.44
...

Figure 5.6: A sample certificate information taken from ARIS logs.

5.2.3 Testing the job submission interface

To test the job submission interface an ARC Client is needed, such as the arc* tools.

To install an ARC Client refer to http://www.nordugrid.org/documents/arc-client-install.
html.

Once the clients are installed, the arctest utility can be used to submit test jobs.

Usage of this tool is out of the scope of this manual. Refer to [29] for further information.

To test basic job submission try the following command:

arctest -c <hostname fqdn> -J 1

The job should at least be submitted succesfully.

5.2.4 Testing the LRMS

Each LRMS has its own special setup. Nevertheless it is good practice to follow this approach:

1. submit a job that includes at least these two lines:

("stderr" = "stderr")
("gmlog" = "gmlog")

The first one will pipe all standard errors to a file called stderr, while the second will generate all the
needed debugging information in a folder called gmlog.

2. retrieve the job with arcget -a.

3. In the job session folder just downloaded, check the gmlog/errors file to see what the job submission
script was and if there are some LRMS related errors.

The rest of LRMS troubleshooting is LRMS dependent, so please refer to each LRMS specific guide and
logs.

http://www.nordugrid.org/documents/arc-client-install.html
http://www.nordugrid.org/documents/arc-client-install.html

5.3. ADMINISTRATION TOOLS 79

5.3 Administration tools

A-REX comes with some administration utilities to help the system administrator. These tools are located
at $ARC LOCATION/libexec/arc and $ARC LOCATION/sbin ($ARC LOCATION is normally /usr for
standard installation from packages on Linux). Most of the utilities in this directory are for A-REX’s own
internal use, but the following may also be used by humans:

• gm-jobs – displays information related to jobs handled by A-REX. Different types of information may
be selected by using various options. This utility also can perform simple management operations -
currently cancelling processing of specific jobs and removing them. Default behavior is to print minimal
information about all jobs currently handled by A-REX and some statistics. See gm-jobs -h for a list
of possible options.

• gm-delegation-converter – converts format of delegations database between supported formats - cur-
rently SQLite and Berkeley DB. Due to severe instability of Berkeley DB currently recommended
format is SQLite. It is only safe to perform database conversion with A-REX not running. By calling
gm-delegation-converter with parameters it will try to convert existing database from format specified
in configuration file into opposite one. For more options see output of gm-delegation-converter -h.

• cache-clean – This tool is used periodically by A-REX to keep the size of each cache within the
configured limits. cache-clean -h gives a list of options. The most useful option for administrators is
-s, which does not delete anything, but gives summary information on the files in the cache, including
information on the ages of the files in the cache.
It is not recommended to run cache-clean manually to clean up the cache, unless it is desired to
temporarily clean up the cache with different size limits to those specified in the configuration, or to
improve performance by running it on the file system’s local node as mentioned in 4.4.3, Enabling the
cache.

• cache-list – This tool is used to list all files present in each cache or, given a list of URLs as arguments,
shows the location of each URL in the cache if present. In the first case it simply reads through all the
cache .meta files and prints to stdout a list of all URLs stored in each cache and their corresponding
cache filename, one per line. In the second case the cache filename of each URL is calculated and then
each cache is checked for the existence of the file.

• a-rex-backtrace-collect – This tool processes core files collected in $ARC LOGS DIR/arccore folder
(default /var/log/arc/arccore) and produces their backtraces. The backtrace(s) are stored in files
<core name>.backtrace.

80 CHAPTER 5. OPERATIONS

Component Configuration section Default Location More information

A-REX [grid-manager] /var/log/arc/grid-manager.log in subsection 4.3.3

gridftpd interface [gridftpd] /var/log/arc/gridftpd.log in subsection 4.3.4

infoproviders [infosys] /var/log/arc/infoprovider.log in subsection 4.3.5

BDII information system [infosys] /var/log/arc/bdii/bdii-update.log in subsection 4.3.5

information registration [infosys] /var/log/arc/inforegistration.log in subsection 4.3.5

cache cleaning [grid-manager] /var/log/arc/cache-clean.log in section 5.3

JURA [grid-manager] - in subsection 4.4.7

Table 5.1: Log files and their default location

5.4 Log files

ARC CE log files paths are configured in arc.conf for each component according to table 5.1:

5.4.1 The format of the log files

The format of ARC log files is the following:

A-REX [Date] [Component name] [debug level] [pid/thread] Message

gridftpd [Date] [Component name] [debug level] [pid/thread] Message

infoproviders [Date] infprovider script name: debug level: Message

BDII information system Date [debug level] Message

[Date] Infosyshelper: debug level: Message

registration to index Date pid file of script process Message

JURA [Date] [Component name] [debug level] [pid/thread] Message

5.4.2 Log files rotation

When installing from packages, all ARC subsystems make use of the logrotate utility present on many linux
distribution. This software splits big logs in smaller files and saves them compressed.

NOTE: ARC provides configurations for such a system but they only work when log files are locate in
default folders (see table 5.1). If the system administrator plans to relocate such files, he should reconfigure
logrotate as documented by the specific operating system.

A-REX and GridFTP feature their own algorithm for logrotation of each own log file, via the logsize
configuration command. See 6.1.4.1, General commands, 6.1.12.1, Commands affecting the A-REX process
and logging. If this is enabled, then the relevant logrotate configuration should be disabled.

5.5 Modules of the A-REX

The A-REX consists of several separate modules. These are:

• libarex.so – The main module providing main functionality and web interface. It is implemented as
HTTP and SOAP service inside HED. It is responsible for processing jobs, moving them through states
and running other modules.

• gm-kick – Sends a signal to the A-REX though a FIFO file to wake it up. It’s used to increase
responsiveness of A-REX.

5.6. MIGRATION OF AN A-REX SERVICE TO ANOTHER HOST 81

• CEinfo.pl – Collects and generates information about computing resource as XML document in Nordu-
Grid and Glue 2 format.

The following modules are always run under the Unix account to which a Grid user is mapped.

• smtp-send.sh and smtp-send – These are the modules responsible for sending e-mail notifications to
the user. The format of the mail messages can be easily changed by editing the simple shell script
smtp-send.sh.

• submit-*-job – Here * stands for the name of the LRMS. Currently supported LRMS are PBS/Torque,
Condor, LoadLeveler, LSF, SLURM, and SGE. Also fork pseudo-LRMS is supported for testing pur-
poses. This module is responsible for job submission to the LRMS.

• cancel-*-job – This script is for canceling jobs which have been already submitted to the LRMS.

• scan-*-job -This shell script is responsible for notifying the A-REX about completion of jobs. Its
implementation for PBS uses server logs to extract information about jobs. If logs are not available it
uses the less reliable qstat command for that. Other backends use different techniques.

5.6 Migration of an A-REX service to another host

It is possible to move A-REX and all its managed jobs to another host, if for example the machine or the
disk hosting the service has issues and need to be replaced.

When planning migration, the system administrator has to take into account the following facts:

• A-REX does not stop jobs running in the underlying LRMS when it stops. Jobs in the LRMS will
continue being processed until they finish or fail. A-REX will check their status when restarted. The
outcome of this check depends on LRMS scripts implementation.

• The SD or Cache Directory (see 4.1.2, Disk, partitioning, directories) cannot be moved while there
are running jobs. The reason for this is in most setups cached files are accessed via symlinks in the
SD, so moving both or just one of them to a new filesystem, eventually with different paths, will cause
the soft linking between files will be lost. This restriction does not apply if A-REX is set up so that
cached files are copied to the SD.

• In general, A-REX does NOT support hotswapping. SD, CD, Cache Directory, Runtime Environments
Scripts directory should not be moved while A-REX is running.

As a consequence of the above facts, A-REX is best migrated when all these conditions hold:

1. All managed grid jobs are finished

2. SD and Cache Directory are on a storage that does not belong to the machine from which A-REX will
be removed, for example a NFS share and they will be remounted on the target migration machine
with the same filesystem paths

3. A-REX is stopped

If SD is hosted on the A-REX machine all grid jobs must be completed and results retrieved by the users
before migration. If Cache Directory is hosted on the A-REX machine it may be copied to the new machine,
otherwise it will be lost during migration. In the procedure described below, it is assumed that SD and
Cache directory are on a separate NFS share.

82 CHAPTER 5. OPERATIONS

5.6.1 Planned Service Migration

In this scenario, A-REX is planned to be moved from an old cluster (OLD) to a new one (NEW). The service
running on OLD can be shut down on a maintenance schedule. SD and Cache directory are on a separate
NFS share, that does not reside on OLD.

1. Open arc.conf and add the keyword drain to ALL the sessiondir configuration commands in the
[gridmanager] section:

[gridmanager]
...
sessiondir="/mnt/grid drain"
...

See section 6.1.12.3, Commands setting control and session directories for description of the drain
behaviour.

2. If the [gridftpd/jobs] section is present, set allownew=no to prevent A-REX accepting new jobs
via the org.nordugrid.gridftpjob interface.

3. Restart the a-rex service. gridftpd reads configuration dynamically and does not need to be restarted.
At this point A-REX will not accept any new jobs.

4. Wait for A-REX submitted jobs to finish. Checking that A-REX managed jobs are done can be done
in three ways:

• Using the gm-jobs command line utility directly on the cluster, and verify there is 0 Running jobs:

/usr/libexec/arc/gm-jobs 2>/dev/null | grep Running
Running: 0/-1

• Using the LDAP information system and ldapsearch command:

ldapsearch -x -LLL -h hostname -p 2135 -b o=glue \
’(objectclass=GLUE2ComputingService)’ GLUE2ComputingServiceRunningJobs

dn: GLUE2ServiceID=urn:ogf:ComputingService:hostname:arex,GLUE2GroupID=services,o=glue

GLUE2ComputingServiceRunningJobs: 0

Or, using the NorduGrid schema:

ldapsearch -x -LLL -h hostname -p 2135 -b mds-vo-name=local,o=grid \
’(objectclass=nordugrid-cluster)’ nordugrid-cluster-totaljobs \
nordugrid-cluster-prelrmsqueued

dn: nordugrid-cluster-name=hostname,Mds-Vo-name=local,o=grid
nordugrid-cluster-totaljobs: 0
nordugrid-cluster-prelrmsqueued: 0

5. Shut down the services (in this order): nordugrid-arc-inforeg, a-rex, nordugrid-arc-ldap-infosys, gridftpd.

6. Backup host certificate files and custom grid-mapfile. If you have customized information system
scripts, remember to backup those as well.

7. Copy arc.conf and CD from OLD to NEW, and reconfigure arc.conf to point at the correct CD path
in NEW if it’s different from the previous one. Remove the drain option from SDs.

8. Mount sessiondir(s) and cachedir(s) in NEW. Be sure that NEW has the same permissions, UIDs
and GIDs on files as in OLD. This might require some work with the /etc/passwd, /etc/shadow and
/etc/group in the NEW to replicate IDs from OLD, or reassigning permissions to the session directories.

9. Copy the backed up certificates and grid-mapfiles.

5.7. COMMON TASKS 83

10. Restart the services (in this order): gridftpd, a-rex, nordugrid-arc-ldap-infosys, nordugrid-arc-inforeg.

If the migration resulted in a change of hostname as seen by the outside world, users who wish to retrieve
results from jobs that completed during the migration may have to use the arcsync command to synchronise
their local job store.

5.7 Common tasks

In this section the sysadmin will find some acknowledged ways of performing common tasks on an ARC
CE. The information gathered here has been collected over time by ARC experts to fulfill the needs of the
communities using ARC.

Tags on each task will show what is the related area of expertise.

5.7.1 How to ban a single user based on his/her subject name

Tags:Security, Authorization

The first step would be to prevent user from accessing resource by disallowing any remote requests identified
by given subject name. This task can be different ways described below.

Solution 1 Quick and simple

If You use grid-mapfile for authorization and [vo] section for generation of the grid-mapfile, then
filter= command can be used to prevent some subject names from being accepted. After modifying
vo section it is advisable to run nordugridmap utility to initiate immediate re-generation of the
grid-mapfile. This solution to be used for quick result when there is no time for establishing more
sophisticated authorization setup.

Solution 2 Local

1. Create a file containing the subject names of the users to ban, say, /etc/grid-security/banned,
one per line. Use quotes to handle subject names with spaces in them.

2. In the [group] section used for authorization, add a line:

-file=/etc/grid-security/banned

Remember that the rules are processed in order of comparison, so this rule must appear before a
rule that will allow users to access the cluster. See 6.1.3, Commands in the [group] section for
a detailed explanation of the rule parsing process. Make sure You have this line in all relevant
[group] sections. Maybe consider using agregating [group] section which gathers results of
processing of other groups by using group= keyword.

3. If You modified configuration file restart the A-REX service. The gridftpd service does not need
to be restarted because it re-reads configuration on every connection made. If You only modified
file containing subject names of banned users then You do not need to restart anything.

This solution to be used when pure local authorization solution is needed. It allows every site to
have own set of banned users.

Solution 3 Distributed

1. Setup Argus PEP or PDP service locally.

2. Adjust configuration to use your local Argus service (see section 4.5.6, Using Argus authorization
service).

3. Restart A-REX service after You changed configuration file.

This solution has an advantage in case You need to handle more than one service. You may also
integrate your Argus service into hierarchy of other Argus services and use advantage of quick automatic
propagation of information about banned users from participating authorities. For more information
see Argus documentation at [1].

84 CHAPTER 5. OPERATIONS

Solution 4 Relaying to LCAS

In a way similar to Argus one may use setup based on LCAS. If You are familiar with LCAS or need
to integrate with gLite infrastructure this may be solution for You.

The next step is to identify and cancel all activity already initiated by banned user. For that gm-jobs utility
may be used. See gm-jobs -h and man gm-jobs for the avaialble options. You may check all jobs belonging
to user by calling gm-jobs -f subject name and cancel active ones with gm-jobs -K subject name. Cancel
request is passed to A-REX. So it may take some time till jobs are canceled. If You want to immediately
cancel all running jobs of the user gm-jobs -l -f subject name can be used to obtain identifier of job in LRMS
aka batch system (look for values labeled LRMS id). You may then use LRMS tools to cancel those jobs. It
is still advisable to use gm-jobs -K first to avoid new jobs being started and canceled ones being re-started.

When You are done investigating harm caused by the banned user You may wipe his/her jobs with gm-jobs
-R subject name.

5.7.2 How to configure SELinux to use a port other than 2135 for the LDAP
information system

Tags:SELinux, port, LDAP, information system, Security

The defined SELinux rules for the default port 2135 are as follows:

semanage port -a -t ldap_port_t -p tcp 2135 2>/dev/null || :
semanage fcontext -a -t slapd_db_t "/var/run/arc/bdii(/.*)?" 2>/dev/null || :

To use a port other than 2135, change the port number in the above in SELinux configuration.

NOTE: ARC packages postinstall scripts will always default to 2135, so make sure the specific SELinux
configuration is loaded independently from ARC.

5.7.3 How to debug the ldap subsystem

Tags:information system, LDAP, debugging

In case there are problems with ldap publishing, it’s strongly advised not to turn on slapd logs, as they will
slow down performance. Most of the problems can arise in the process of updating the LDAP trees, for
example due to odd values in some of the attributes. This process is performed by the BDII component, in
particular by the bdii-update script.

To increase verbosity of such script, modify or add the value of the bdii debug level option in the [infosys]
block.

1. Stop the ldap subsystem by running

service nordugrid-arc-ldap-infosys stop

2. edit arc.conf so to have:

[infosys]
...
bdii_debug_level="ERROR"
...

3. Restart the ldap subsystem by running

service nordugrid-arc-ldap-infosys start

/var/log/arc/bdii/bdii-update.log will contain relevant LDAP errors.

5.7. COMMON TASKS 85

5.7.4 Missing information in LDAP or WSRF

Tags:information system, LDAP, WSRF, EMIES, missing, empty, tree

A known issue in ARC new infoproviders is some slowdown in the information system when a huge amount
of jobs are sitting in the control directory. Symptoms of this issue are unresponsive ldap server and job
status not retrieved by arc tools.

Also by looking at A-REX logs, it’s possible to see the error message:

... Resource information provider timeout: ...

To overcome this limitation there is a current workaround, which allows a system administrator to let
infoproviders run for more time. This is done by increasing the timeout.

The default in ARC ≥ 6.x is 3 hours (10800 seconds) and a new mechanism should prevent the above to
happen. The default in ARC < 6.x is 600 seconds and should be suitable up to 5000 jobs. The rule of thumb
is to increase this value of 600 seconds each 5000 jobs.

1. Stop a-rex and the ldap subsystem by running

service a-rex stop; service nordugrid-arc-ldap-infosys stop

2. edit arc.conf so to have:

[infosys]
...
infoproviders_timeout="1200"
...

the value is in seconds. One may need to fine tune it.

3. Restart A-REX and the ldap subsystem by running

service a-rex start; service nordugrid-arc-ldap-infosys start

/var/log/arc/grid-manager.log should not show the above error anymore. If this happens, increase
the timeout.

The ARC team is working on a smarter solution that will let A-REX infoproviders process this information
faster and eventually change the timeout automatically.

5.7.5 How to publish VO information

Tags:VO, Top BDII, ATLAS, ALICE, CMS, publish

Clusters usually are meant to serve several VOs, but to do this, they need to advertise such information in
order for ARC clients, gLite BDII or WLCG monitoring and accounting tools to know.

Note: This is NOT about authorization of a VO to access a cluster. For that, refer to section 4.4.1, Access
control: users, groups, VOs.

To publish which VOs the cluster is serving, edit the [cluster] block of arc.conf, and add:

...
authorizedvo=<VO1 name>
authorizedvo=<VO2 name>
...

86 CHAPTER 5. OPERATIONS

Example:

...
authorizedvo=ATLAS
authorizedvo=CMS
authorizedvo=LundUniversity
...

Add one line for each VO you want to serve.

Starting from ARC 5, it is possible to publish VO information per queue/Share. Simply add the authorizedvo
command to any of the [queue/queuename] blocks. Note that this feature only works on GLUE2 by
adding information in the AccessPolicy (affects Endpoints) and MappingPolicy (affects Shares) objects.

The following applies:

• The AccessPolicy objects will be filled with the union of all declared authorized VOs across all the
[cluster] and [queue/queuename] blocks for all Endpoints.

• Starting from ARC 5.2, for each authorizedvo, a new GLUE2 ComputingShare object will be created,
to aggregate job statistics per VO. Its MappingPolicy object will contain the authorized VO string.
The system administrator can override the values in [cluster] for specific queues, by adding the
authorizedvo option in [queue/queuename] block.

The above implies that if one wants to publish VO authorization exclusively on separate queues, then is
better to add authorizedvo only to the queue blocks and not in the cluster block.

To know more about the authorizedvo parameter see 6.1.9, Commands in the [cluster] section and 6.1.10,
Commands in the [queue] subsections.

The rendered information looks like this in XML for each VO:

<ComputingShare BaseType="Share" CreationTime="2016-07-07T16:20:07Z" Validity="1200">
<ID>urn:ogf:ComputingShare:mowgli.hep.lu.se:fork_atlas</ID>
<Name>fork_atlas</Name>
<MappingPolicy BaseType="Policy" CreationTime="2016-07-07T16:20:07Z" Validity="1200">

<ID>urn:ogf:MappingPolicy:mowgli.hep.lu.se:basic:atlas</ID>
<Scheme>basic</Scheme>
<Rule>vo:atlas</Rule>

</MappingPolicy>
<MappingQueue>fork</MappingQueue>
<MaxVirtualMemory>600</MaxVirtualMemory>
<ServingState>production</ServingState>
<TotalJobs>0</TotalJobs>
<RunningJobs>0</RunningJobs>
<LocalRunningJobs>0</LocalRunningJobs>
<WaitingJobs>0</WaitingJobs>
<LocalWaitingJobs>0</LocalWaitingJobs>
<SuspendedJobs>0</SuspendedJobs>
<LocalSuspendedJobs>0</LocalSuspendedJobs>
<StagingJobs>0</StagingJobs>
<PreLRMSWaitingJobs>0</PreLRMSWaitingJobs>
<FreeSlots>0</FreeSlots>
<FreeSlotsWithDuration>0</FreeSlotsWithDuration>
<RequestedSlots>0</RequestedSlots>
<Associations>

<ComputingEndpointID>urn:ogf:ComputingEndpoint:mowgli.hep.lu.se:gridftpjob:gsiftp://mowgli.hep.lu.se:2811/jobs</ComputingEndpointID>
<ComputingEndpointID>urn:ogf:ComputingEndpoint:mowgli.hep.lu.se:xbes:https://mowgli.hep.lu.se:50000/arex</ComputingEndpointID>
<ComputingEndpointID>urn:ogf:ComputingEndpoint:mowgli.hep.lu.se:emies:https://mowgli.hep.lu.se:50000/arex</ComputingEndpointID>
<ExecutionEnvironmentID>urn:ogf:ExecutionEnvironment:mowgli.hep.lu.se:execenv0</ExecutionEnvironmentID>

5.7. COMMON TASKS 87

</Associations>
</ComputingShare>

88 CHAPTER 5. OPERATIONS

Chapter 6

Technical Reference

6.1 Reference of the arc.conf configuration commands

6.1.1 Generic commands in the [common] section

x509 user key=path – sets the path to the host private key, usually
/etc/grid-security/hostkey.pem

x509 user cert=path – sets the path to the host public certificate, usually
/etc/grid-security/hostcert.pem

x509 cert dir=path – sets the path to the CA certificates, usually
/etc/grid-security/certificates

gridmap=path – the path of the “grid map file”, which maps Grid users to local unix accounts. This
has to be set even if the mappings are dynamically created by the nordugrid-arc-gridmap-utils
package is installed (see sections Section 4.4.1, Access control: users, groups, VOs and Section 6.10,
Structure of the grid-mapfile for a brief explanation).

hostname=hostname – sets the hostname of the front-end. hostname is just a FQDN string. If not
specified, hostname will be the one returned by the shell command hostname -f. Make sure this
hostname is the same listed in /etc/hosts (see also Section 4.1.4, Networking). This hostname
has to be the same FQDN in the host certificates (see also Section 3.3, Installation of certificates).

lrms=lrms name [default queue name] – specifies names for the LRMS and queue.
Queue name can also be specified in the JD.

x509 voms dir=path – sets the path to the directory containing *.lsc files needed for checking validity
of VOMS extensions. If not specified default value /etc/grid-security/vomsdir is used.

enable perflog reporting=expert-debug-on|no – switches on or off performance reporting.
Default is no. In versions before 5.2.2 the performance reporting is turned on or off by (yes—no).
Be aware that this makes the directory world writable, and that root also writes to this directory.
Be absolutely sure it is acceptable for your site before enabling this feature.

perflogdir=logdir – is the directory where performance logs should be stored. Default is
/var/log/arc/perfdata.

6.1.2 Commands in the [vo] section

Note: this section is NOT used to publish VO information by the information system. For such a feature,
please check the authorizedvo configuration command in the 6.1.9, Commands in the [cluster] section
and 6.1.10, Commands in the [queue] subsections.

These sections are also used by the nordugridmap utility which reads sources and generates list of Grid
users belonging to particular VO or some other group.

vo=vo name – specifies name of VO. It is required.

89

90 CHAPTER 6. TECHNICAL REFERENCE

id=unique id – defines an unique id for the VO.

file=path – path to file which contains list of users’ DNs belonging to VO and their mappings. This
file follows the format stated in Section 6.10, Structure of the grid-mapfile. If nordugridmap is
used it fills that file. If this VO is used as a vo option in a [group] block then file must be
specified.

source=URL – specifies the URL from which a list of users may be obtained. There can be more than
one source entries in the same [vo] section. URL is in the form < protocolname : // < path >
where < protocolname > is one of: vomss, http, https, ldap, file and < path > is a path in the
form accepted by the protocol standard. In production environments, this URL to source files can
be requested to the Grid organization who hosts the CA or the Grid computing organizations the
CE is meant to be part of.

Some examples:

source="http://www.nordugrid.org/community.dn"
source="vomss://sample.hep.lu.se:8443/voms/knowarc.eu?/knowarc.eu"
source="file:///etc/grid-security/local-grid-mapfile"

mapped unixid=uid – This is the local UNIX user account to which the DNs contained in the source
command will be mapped. Only one mapped unixid can be defined per [vo] section!

require issuerdn=[yes|no] – yes would map only those DNs obtained from the urls which have
the corresponding public CA packages installed. Default is no.

6.1.3 Commands in the [group] section

The [group] sections and subsections define authorization unities called groups.

name=group name – specifies the name of an authorization group. If used within a [group/subsection]
it has to be the same as the subsection name. If this command is omitted, name will implicitly
taken from the subsection name.

Authorization is performed by applying a set of rules to users credentials. Credentials are certificates or
certificates content (DN subject name, VO the user belongs to, CA that released the certificate...). Rules
have the same < command >=< value > format as rest of configuration file, with the difference that each
rule command is prepended with optional modifiers: [+|-][!].

The rules are process sequentially in same order as presented in configuration. Processing stops at first
matched rule.

A rule is said to match a credential if the credential “satisfies” the value specified by the command. By
prepending rule with ! matching is reversed. Matching rules turns into non-matching and non-matching
into matching.

There are two kinds of matching. Rule prepended by + sign is called to produce positive match and matched
credentials are considered to be belonging to this group. If rule is prepended with - sign it produces negative
match and credentials are considered not belonging to this group. In both cases processing of rules for this
groups is stopped. By default rule produces positive match - so + is optional.

Examples:

vo=TESTVO – This rule matches all the users belonging to the TESTVO Virtual Organization.

!vo=TESTVO – This rule matches all the users NOT belonging to the TESTVO Virtual Organization.

A credential (and therefore the user presenting it) can be accepted or rejected.

Accepted means that the credential becomes member of the group being processed - positive match.

Rejected means that the credential does not become member of group being processed - negative match.

Examples:

+vo=TESTVO – all the users belonging to the TESTVO Virtual Organization are Accepted into group.
It can also be written as vo = TESTVO

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 91

-vo=TESTVO – all the users belonging to the TESTVO Virtual Organization are Rejected from this
group.

+!vo=TESTVO – all the users NOT belonging to the TESTVO Virtual Organization are Accepted into
group. It can also be written as !vo = TESTVO

-!vo=TESTVO – all the users NOT belonging to the TESTVO Virtual Organization are Rejected from
group.

Note that -vo = TESTVO and +!vo = TESTVO do not do same thing. In first case user is rejected from
group immediately. In second case following rules will be processed - if any - and user may finally be accepted.

A summary of the modifiers is on 6.1, Basic Access Control modifiers and their meaning.

! invert matching. Match is treated as non-match. Non-match is treated as match, either positive (+ or
nothing) or negative (-).

+ accept credential if matches following rule (positive match, default action);

- reject credential if matches following rule (negative match);

Figure 6.1: Basic Access Control modifiers and their meaning

Group membership does not automatically mean user is allowed to access resources served by A-REX.
Whenever a GRID user submits a job to or requests information from the CE, A-REX will try to find a rule
that matches that credential, for every [group...] section. Groups and rules will be processed in the order
they appear in the arc.conf file.

Processing of rules in every group stops after the first positive or negative match, or when failure is reached.
All groups are always processed. Failures are rule-dependent and may be caused by conditions like missing
files, unsupported or mistyped rule, etc.

The following rule words and arguments are supported:

subject=subject [subject [...]] – match user with one of specified subjects

file=[filename [...]] – read rules from specified files. Format of file similar to format of
commands in group section with = replaces with space. Also in this file subject becomes default
command and can be omitted. So it becomes possible to use files consisting of only subject names
of user credentials and Globus grid-mapfiles can be used directly.

remote=[ldap://host:port/dn [...]] – match user listed in one of specified LDAP directories
(uses network connection hence can take time to process)

voms=vo group role capabilities – accept user with VOMS proxy with specified vo, group,
role and capabilities. * can be used to accept any value.

vo=[vo [...]] – match user belonging to one of specified Virtual Organizations as defined in vo
section configuration section (see [vo] above). Here VO membership is determined from corre-
sponding vo section by comparing subject name of credentials to one stored in VO list file.

group=[groupname [groupname [...]]] – match user already belonging to one of specified
groups.

plugin=timeout plugin [arg1 [arg2 [...]]] – run external plugin (executable or function
in shared library) with specified arguments. Execution of plugin may not last longer than timeout
seconds.
If plugin looks like function@path then function int function(char*,char*,char*,...)
from shared library path is called (timeout has no effect in that case). Rule matches if plugin or
executable exit code is 0. Following substitions are applied to arguments before plugin is started:

• %D - subject of userss certificate,

• %P - name of credentials proxy file.

92 CHAPTER 6. TECHNICAL REFERENCE

lcas=library directory database – - call LCAS functions to check rule. Here library is path
to shared library of LCAS, either absolute or relative to directory ; directory is path to LCAS instal-
lation directory, equivalent of LCAS DIR variable; database is path to LCAS database, equivalent
to LCAS DB FILE variable. Each arguments except library is optional and may be either skipped
or replaced with *.

all accept any user

Here is an example of authorization group:

(1) [group/admins]
(2) -subject=/O=Grid/OU=Wrong Place/CN=Bad Person
(3) file=/etc/grid-security/internal-staff
(4) voms=nordugrid admin * *

The processing will work in the following way:

Let credential has subject /O=Grid/OU=Wrong Place/CN=Bad Person. Then, subject matches (1) and
the credential is Rejected from this group, processing of this group will stop.

Let credential has subject /O=Grid/OU=Internal-Staff/CN=Good Person, and let this subject be
inside the file /etc/grid-security/internal-staff. Then, (1) doesn’t match, processing continues
to (2). Since subject is present inside the file specified by the file command, then the credential is Accepted
in this group and the processing of this group stops.

Let credential has subject /O=Grid/OU=SomeoneNotStaffButInnordugridVO/CN=Loyal Person,
and supplied credentials contain VOMS extension issued by nordugrid VO with group admin assigned.
Let this credential be NOT present in the internal-staff file. Then, neither (1) nor (2) match and
processing passes to (3). Since the credential belongs to that VO and group matches, the credential is
Accepted in this group and processing of this group stops.

Let credential be /O=Grid/OU=SomeOrg/CN=UN Known, not present in the file neither belonging to VO.
Processing passes through (1), (2), (3) without matching. Credential is Rejected from this group.

6.1.4 Commands in the [gridftpd] section

This section describes configuration options used in the [gridftpd] section, including how to set up fine-grained
authorisation based on groups and VOs explained in the previous sections.

6.1.4.1 General commands

daemon=yes|no – defines if GFS must run in daemon mode. Default is yes.

logfile=path – specifies log file for GFS. Default is /var/log/arc/gridftpd.log.

logsize=size [number] – restricts log file size to size and keeps number archived log files. If
installed from packages, the log properties are managed by logrotate. If logrotate or another
external log management tool is used then logsize should not be used.

logreopen=yes|no – defines if GFS closes log file after every write into log file and reopens it for
every write. Default is no.

user=username[:groupname] – tell GFS to switch to specified user username and optionally to
group groupname after start. Default is not to change user account.

pidfile=path – file containing the PID of the gridftpd process. Default is /var/run/gridftpd.pid.

debug=number – defines numerical - from 0 to 5 - verbosity of messages written into log file. Default
is 3.

pluginpath=path – non-standard location of plugins location directory. Default is ARC LOCATION/lib/arc.

port=number – specifies TCP/IP port number. Default is 2811.

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 93

maxconnections=number – limits number of simultaneously served clients. Default is 100. Specify-
ing 0 removes this limit. Connections over limit are rejected.

defaultbuffer=number – defines size of every buffer for data reading/writing. Default is 64kB.
Actual value may decrease if cumulative size of all buffers exceeds value specified by maxbuffer.

maxbuffer=number – defines maximal amount of memory in bytes to be allocated for all data read-
ing/writing buffers. Default is 640kB. Number of buffers is parallelism level requested by connecting
client multiplied by 2 and increased by 1. Final number is limited by 41 from top and 3 from bottom.
Hence even without parallel streams enabled number of buffers will be 3.

firewall=hostname – defines hostname or IP address of firewall interface in case of GFS situated
behind firewall with Network Address Translation functionality. If this command is specified GFS
will use corresponding IP address instead of IP address of interface used for accepting client request
in response to PASV and similar commands.

encryption=yes|no – specifies if encryption of data channel is allowed. Default is yes. Data
encryption is a heavy operation which can create significant load on the GFS host and increase
data transfer time.

include=path – include contents of another config file.

allowunknown=yes|no – if set to no all clients with subject not in grid-mapfile are immediately
rejected. If set to yes, this check is not performed. Default is no.

voms processing=relaxed|standard|strict|noerrors – specifies how to behave if failure
happens during VOMS processing. See description of this option in Section 6.1.12.2, Commands
affecting the A-REX Web Service communication interface.

voms trust chain=subject [subject [...]] – specifies chain of VOMS credentials subject
names tobe trusted during VOMS processing. See description of this option in Section 6.1.12.2,
Commands affecting the A-REX Web Service communication interface.

globus tcp port range=min, max – Globus TCP port range. Equivalent to the
$GLOBUS TCP PORT RANGE environment variable. By default, leave it up to Globus.

globus udp port range=min, max – Globus UDP port range. Equivalent to the
$GLOBUS UDP PORT RANGE environment variable. By default, leave it up to Globus.

x509 user key=path – path to the X509 certificate key file. Equivalent to the $X509 USER KEY
environment variable. Default is /etc/grid-security/hostkey.pem.

x509 user cert=path – path to the X509 certificate file. Equivalent to the $X509 USER CERT
environment variable. Default is /etc/grid-security/hostcert.pem.

x509 cert dir=path – path to a directory where to search for X509 CA certificates. Equivalent to the
$X509 CERT DIR environment variable. Default is /etc/grid-security/certificates.

http proxy=url – HTTP proxy setting. Equivalent to the $ARC HTTP PROXY environment vari-
able. Default is not to use HTTP proxy.

maxconnections=number – defines the maximum number of simultaneous connections. Default is
100.

defaultbuffer=number – default buffer size. Default is 65536.

maxbuffer=number – maximum buffer size. Default is 655360.

6.1.4.2 Commands for fine-grained authorisation

These commands use the VOs and groups set up in Sections 6.1.2, Commands in the [vo] section and 6.1.3,
Commands in the [group] section to perform user mapping.

unixgroup=group rule – define local UNIX user and optionally UNIX group to which user belong-
ing to specified authorization group is mapped. Local names are obtained from the specified rule.
If the specified rule could not produce any mapping, the next command is used. Mapping stops at
first matched rule. The following rules are supported:

94 CHAPTER 6. TECHNICAL REFERENCE

mapfile=file – the user’s subject is matched against a list of subjects stored in the specified
file, one per line followed by a local UNIX name.

simplepool=directory – the user is assigned one of the local UNIX names stored in a file
directory/pool, one per line. Used names are stored in other files placed in the same directory.
If a UNIX name was not used for 10 days, it may be reassigned to another user.

lcmaps=library directory database policy name [policy name [...]] – call LCMAPS
functions to do mapping. Here library is the path to the shared library of LCMAPS, either
absolute or relative to directory ; directory is the path to the LCMAPS installation directory,
equivalent to the LCMAPS DIR variable; database is the path to the LCMAPS database,
equivalent to the LCMAPS DB FILE variable. The policy name refers to name of policy as
defined in database. The must be at least one policy name specified. Each argument except
library is optional and may be either skipped or replaced with ’*’. See Section 4.5.7, Using
LCAS/LCMAPS for more information on LCMAPS.

mapplugin=timeout plugin [arg1 [arg2 [...]]] – run external plugin executable with
specified arguments. Execution of plugin may not last longer than timeout seconds. A rule
matches if the exit code is 0 and there is a UNIX name printed on stdout. A name may be
optionally followed by a UNIX group separated by ’:’. In arguments the following substitutions
are applied before the plugin is started:

• %D – subject of user’s certificate,

• %P – name of credentials’ proxy file.

unixvo=vo rule – same as unixgroup for users belonging to Virtual Organization (VO) vo.

unixmap=[unixname][:unixgroup] rule – define a local UNIX user and optionally group used
to represent connected client. rule is one of those allowed for authorization groups and for unix-
group/unixvo. In case of a mapping rule, username is the one provided by the rule. Otherwise
the specified unixname:unixgroup is taken. Both unixname and unixgroup may be either omitted
or set to ’*’ to specify missing value.

6.1.4.3 Commands to configure the jobplugin

The GFS comes with 3 plugins: fileplugin.so, gaclplugin.so and jobplugin.so. For the computing element, only
the jobplugin (jobplugin.so) is needed - the others are described in [22]. The jobplugin and it is configured
in a subsection [gridftpd/jobs] (the name jobs is used by convention but is not enforced).

Configuration options for all plugins:

path=path – virtual path to which the service will be associated (by convention “/jobs” for jobplugin)

plugin=library name – use plugin library name to serve virtual path (“jobplugin.so” for jobplugin)

groupcfg=[group [group [...]]] – defines authorization groups which are allowed to use func-
tionality of this plugin. Default is to allow any client.

Configuration options for jobplugin:

configfile=path – defines non-standard location of the arc.conf file. You only need this option if
GFS and A-REX are configured in separate configuration files.

allownew=yes|no – specifies if new jobs can be submitted. Default is yes

unixgroup/unixvo/unixmap=rule – same options as in the top-level GFS configuration, but can
be specified here to allow different rules per GFS plugin. If the mapping succeeds, the obtained
local user will be used to run the submitted job.

remotegmdirs=control dir session dir [drain] – specifies control and session directories
under the control of another A-REX to which jobs can be assigned. This option is useful if several
A-REX services should be accessed via one GFS interface. Remote directories can be added and
removed without restarting the GFS. However, it may be desirable to drain them prior to removal
by adding the drain option. In this case no new jobs will be assigned to these directories but their
contents will still be accessible.

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 95

maxjobdesc=size – specifies maximal allowed size of job description in bytes. Default value is 5MB.
If value is missing or set to 0 no limit is applied.

For information about how to communicate with the jobplugin.so see section 6.15, GridFTP Interface
(jobplugin).

Simple and detailed configuration examples for the jobplugin are given in Section 6.15.4, Configuration
Examples.

6.1.5 Commands in the [infosys] section

The user command here defines the UNIX user ID with which the slapd server, the infoproviders, BDII
and registration scripts will run.

oldconfsuffix=.suffix – sets the suffix of the backup files of the low-level slapd config files in
case they are regenerated. Default is “.oldconfig”.

overwrite config=yes|no – determines if the grid-infosys startup script should generate new low-
level slapd configuration files. By default the low-level configuration files are regenerated with every
server startup making use of the values specified in the arc.conf.

hostname=FQDN – the hostname of the machine running the slapd service.

port=port number – the port number where the slapd service runs. Default infosys port is 2135.

debug=0|1 – sets the debug level/verbosity of the startup script. Default is 0.

slapd loglevel=verbosity level – sets the native slapd syslog loglevel (see man slapd for ver-
bosity level values). The default is set to no-logging (0) and it is RECOMMENDED not to be
changed in a production environment. Non-zero slap loglevel value causes serious performance
decrease.

slapd hostnamebind=*| – may be used to set the hostname part of the network interface to which
the slapd process will bind. Most of the cases no need to set since the hostname config parameter
is already sufficient. The default is empty, but this can lead to problems in systems where slapd is
set by security policies to be run only on the localhost interface. The wildcard will bind the slapd
process to all the network interfaces available on the server. However, this is not recommended in
clusters with many network interfaces. The recommended setting is the hostname assigned to the
interface that will be publicly accessible.

threads=num threads – the native slapd threads parameter, default is 32. If you run an Index
Service too (see [36]) you should modify this value.

timelimit=seconds – the native slapd timelimit parameter. Maximum number of seconds the slapd
server will spend answering a search request. Default is 3600.

slapd cron checkpoint=enabled|disabled – introduced to solve bug 2032 to prevent BDII to
create huge logs with lots of files. Enable this if you’re experiencing this problem. Default is
disabled as latest versions of BDII doesn’t seem to be affected.

ldap schema dir=path – allows to explicitly specify a path to the schema files. Note that this
doesn’t override standard location, but adds the specified path to the standard locations /etc/ldap
and /etc/openldap. If one plans to relocate Glue1 and GLUE2 schemas, all these should be in the
same directory specified here. This option does NOT apply to nordugrid.schema file: such file has
a release dependent location.
Default is to use only standard locations described above.
Example: ldap schema dir="/nfs/ldap/schema/"

providerlog=path – Specifies log file location for the information provider scripts. Default is
/var/log/arc/infoprovider.log.

provider loglevel=[0-5] – loglevel for the infoprovider scripts (0, 1, 2, 3, 4, 5). The default is 1
(critical errors are logged). This corresponds to different verbosity levels, from less to maximum,
namely: FATAL, ERROR, WARNING, INFO, VERBOSE, DEBUG

infoproviders timeout=seconds – this only applies to new infoproviders. It changes A-REX
behaviour with respect to a single infoprovider run. Increase this value if you have many jobs in

96 CHAPTER 6. TECHNICAL REFERENCE

the controldir and infoproviders need more time to process. The value is in seconds. Default is
600 seconds for ARC < 6.x, 10800 seconds (3 hours) for ARC ≥ 6.x . See also 5.7.4, Missing
information in LDAP or WSRF.

registrationlog=path – specifies the logfile for the registration processes initiated by your ma-
chine. Default is /var/log/arc/inforegistration.log. For registration configuration, see
Section 4.4.5, Registering to an ARC EGIIS.

infosys nordugrid=enable|disable – Activates or deactivates NorduGrid infosys schema [34]
data generation and publishing. Default is enabled. This schema doesn’t need further configuration.

infosys glue12=enable|disable – Activates or deactivates Glue 1.x [15] infosys schema data
generation and publishing. Default is disabled. For configuration of this schema, see Section 4.5.1,
Enabling or disabling LDAP schemas.

infosys glue2 ldap=enable|disable – Activates or deactivates Glue 2 [25] infosys schema data
generation and publishing. Default is enabled. For configuration of this schema, see Section 4.5.1,
Enabling or disabling LDAP schemas.

infosys glue2 ldap showactivities=enable|disable – Activates or deactivates Glue 2[25]
infosys schema Computing Activities (jobs) data generation and publishing. Default is disabled. It
is recommended to keep this disabled as it might slow down LDAP and CE performance. Turn it
on only for debugging purposes.

infosys glue2 ldap service qualitylevel=production | pre-production | testing
| development – Allows a sysadmin to define a different GLUE2 QualityLevel for the A-REX
ComputingService. This can be used for operations. Default: production
The only allowed values are those listed. Refer to GLUE2 documentation[25] for the meaning of
these strings.

infosys compat=enable|disable – This option only applies to ARC releases prior to
13.11. Old infoproviders have been removed from ARC 13.11 on. If enabled, A-REX will
use old infoproviders (ARC ≤ 0.8 infoproviders). These infoproviders cannot produce GLUE2 data,
therefore default is disabled. If there is a need for features belonging to this set of infoproviders, or if
there is some performance issue with the new infoproviders, it is possible to enable this compatibility
mode, but it will only allow NorduGrid and Glue1 schema.

validity ttl=seconds – This option only applies to ARC releases later than to 15.03.
Allows the sysadmin to define a specific validity time for the records in the information system.
The number is in seconds. This number appears “as is“ in the GLUE2 Validity fields. Default is
1200 seconds for ARC < 6.x, 10800 for ARC ≥ 6.x .

BDII related commands

bdii debug level=CRITICAL | ERROR | WARNING | INFO | DEBUG – Defines verbosity of
BDII debug messages, from less verbose (CRITICAL) to maximum verbosity (DEBUG). Default
is (ERROR). Set this to (DEBUG) if experiencing LDAP publication problems. See also 5.7.3,
How to debug the ldap subsystem.

provider timeout=seconds – This variable allows a system administrator to modify the behaviour
of the bdii-update script. This is the time BDII waits for the scripts generated by A-REX
inforproviders to produce their output. Default is 300 seconds for ARC < 6.x, 10800 for ARC ≥
6.x. The total waiting time is given by this value plus A-REX wakeupperiod, see 6.1.12.8, Other
general commands in the [grid-manager] section .
Use this command to tweak bdii in case inforproviders are producing a lot of data. This has been
reported to happen when infosys_glue2_ldap_showactivities is enabled.

Legacy commands

The following command only affect old infoproviders, that is, when infosys_compat=enable, hence only
ARC releases prior to 13.11

cachetime=seconds – The validity time in seconds that will be used to fill information system
records about the cluster.

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 97

6.1.6 Commands in the [infosys/admindomain] section

Commands in this subsection are used to fill the AdminDomain GLUE2 data. This extends and generalizes
the glue12 “site” concept.

name=domain name – The string that identifies uniquely a domain name. Case sensitive. This is
mandatory if the [infosys/admindomain] block is enabled.
NOTE: GLUE2 AdminDomain ID is a URI. ARC automatically adds the URI prefix to the
GLUE2DomainID. This prefix is urn:ad: .

Example:
name="TestDomain1"
ARC will create a GLUE2DomainID = "urn:ad:TestDomain1"
The corresponding LDAP url pointing at the AdminDomain object will be:
ldap://myserver.domain:2135/GLUE2DomainID=’urn:ad:TestDomain1’,o=glue

description=text – A human-readable description of the domain. Optional.

www=domain url – A url pointing to relevant Domain information. Optional.

distributed=yes|no – A flag indicating the nature of the domain. Yes if services managed by the
AdminDomain are considered geographically distributed by the administrator themselves. Most
likely this has to be set to no only if the CE is standalone and not part of other organizations.
Optional

owner=string – A string representing some person or legal entity which pays for the services or
resources. Optional.

otherinfo=text – This field is only for further development purposes. It can fit all the information
that doesn’t fit above.

6.1.7 Commands in the [infosys/glue12] section

All the commands are mandatory if infosys glue12 is enabled in the [infosys] section.

resource location=City, Country – The field is free text but is a common agreement to have
the City and the Country where the CE is located, separated by comma.

resource latitude=latitudevalue – latitude of the geolocation where the CE is, expressed as
degrees, e.g. 55.34380

resource longitude=longitudevalue – latitude of the geolocation where the CE is, expressed
as degrees, e.g. 12.41670

cpu scaling reference si00=number – number represent the scaling reference number wrt si00.
Please refer to the GLUE schema specification [] to know which value to put.

processor other description=string – String representing information on the processor, i.e.
number of cores, benchmarks.... Please refer to the GLUE schema specification [] to know which
value to put. Example: Cores=3,Benchmark=9.8-HEP-SPEC06

glue site web=url – full url of the website of the site running the CE. Example: http://www.ndgf.org

glue site unique id =siteID – Unique ID of the site where the CE runs. Example: NDGF-T1

provide glue site info=true|false – This variable decides if the GlueSite should be published,
in case a more complicated setup with several publishers of data to a GlueSite is needed.

6.1.8 Commands in the [infosys/site/sitename] section

This command is used for an ARC CE to mimic the Glue1.2/1.3 Site BDII behavior. This option was an
early attempt to overcome the needs to install a Site BDII, so that ARC CE information could directly
be fetched by a Top BDII. This worlaround has performance issues on the CE, as it increases the amount
of information contained in the local LDAP server. Thus is strongly discouraged. If one wants a similar
functionality, should enable the GLUE2 rendering instead.

98 CHAPTER 6. TECHNICAL REFERENCE

Site information will be rendered according to the specified sitename and the previously described [in-
fosys/glue12] section. For a correct behavior, Glue1.2/1.3 rendering MUST be enabled (see above blocks)

unique id=sitename – a string, the unique id of the Site, MUST be the same as sitename in the
block identifier. Example: ”LundTestSite”

Administrator should take care that this value is the same as with glue site unique id in the [infosys/glue12]
block.

url=ldap url – a url to an existing Glue1.2/1.3 resource bdii. In the case of ARC, the Glue1.2/1.3
renderings presents information as a resource bdii. Therefore the url MUST be:

”ldap://localhost:2135/mds-vo-name=resource,o=grid”.

The URL value can be changed to any valid LDAP URL that returns a Glue1.2/1.3 compliant rendering.
This is, however, strongly discouraged. ARC CE is not a Site BDII.

6.1.9 Commands in the [cluster] section

These commands will affect the GLUE2 ComputingService, ComputingManager, ExecutionEnvironment,
Policies objects, in how the information providers will fetch information about the frontend and computing
nodes managed by the LRMS.

For a decent brokering, at least architecture, nodecpu, nodememory and opsys should be published.

cluster alias=name – an arbitrary alias name of the cluster, optional

comment=text – a free text field for additional comments on the cluster in a single line, no newline
character is allowed!

lrmsconfig=description – an optional free text field to describe the configuration of your Local
Resource Management System (batch system).

homogeneity=True|False – determines whether the cluster consists of identical NODES with re-
spect to cputype, memory, installed software (opsys). The frontend is NOT needed to be homoge-
neous with the nodes. In case of inhomogeneous nodes, try to arrange the nodes into homogeneous
groups assigned to a queue and use queue-level attributes. Default is True. If set to False, the in-
fosystem will try to fill GLUE2 ExecutionEnvironment information for each inhomogeneous node.

architecture=string|adotf – sets the hardware architecture of the NODES. The ”architecture”
is defined as the output of the ”uname -m” (e.g. i686). Use this cluster attribute if only the
NODES are homogeneous with respect to the architecture. Otherwise the queue-level attribute may
be used for inhomogeneous nodes. If the frontend’s architecture agrees to the nodes, the ”adotf”
(Automatically Determine On The Frontend) can be used to request automatic determination.

opsys=string|adotf – this multivalued attribute is meant to describe the operating system of the
computing NODES. Set it to the opsys distribution of the NODES and not the frontend! opsys can
also be used to describe the kernel or libc version in case those differ from the originally shipped
ones. The distribution name should be given as distroname-version.number, where spaces are not
allowed. Kernel version should come in the form kernelname-version.number. If the NODES are
inhomogeneous with respect to this attribute do NOT set it on cluster level, arrange your nodes
into homogeneous groups assigned to a queue and use queue-level attributes. opsys will be used to
fill GLUE2 OSName, OSVersion and OSFamily unless these values are explicitly defined.

nodecpu=string|adotf – this is the cputype of the homogeneous nodes. The string is constructed
from the /proc/cpuinfo as the value of ”model name” and ”@” and value of ”cpu MHz”. Do NOT set
this attribute on cluster level if the NODES are inhomogeneous with respect to cputype, instead
arrange the nodes into homogeneous groups assigned to a queue and use queue-level attributes.
Setting the nodecpu=”adotf” will result in Automatic Determination On The Frontend, which
should only be used if the frontend has the same cputype as the homogeneous nodes. String can
be like: ”AMD Duron(tm) Processor @ 700 MHz”

nodememory=number MB – this is the amount of memory (specified in MB) on the node which can
be guaranteed to be available for the application. Please note in most cases it is less than the
physical memory installed in the nodes. Do NOT set this attribute on cluster level if the NODES

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 99

are inhomogeneous with respect to their memories, instead arrange the nodes into homogeneous
groups assigned to a queue and use queue-level attributes.

defaultmemory=number MB – If a user submits a job without specifying how much memory should be
used, this value will be taken first. The order is: job specification→ defaultmemory→ nodememory
→ 1GB. This is the amount of memory (specified in MB) that a job will request(per count for parallel
jobs).

nodeaccess= |inbound|outbound – determines how the nodes can connect to the internet. Not
setting anything means the nodes are sitting on a private isolated network. ”outbound” access
means the nodes can connect to the outside world while ”inbound” access means the nodes can
be connected from outside. inbound & outbound access together means the nodes are sitting on a
fully open network.

cluster location=XX-postalcode – The geographycal location of the cluster, preferably specified
as a postal code with a two letter country prefix, like ”DK-2100”

cluster owner=name – it can be used to indicate the owner of a resource, multiple entries can be
used

clustersupport=email – this is the support email address of the resource, multiple entries can be
used

authorizedvo=string – a free-form string used to advertise which VOs are authorized on all the
services on the CE. Multiple entries are allowed, each authorizedvo= entry will add a new GLUE2
ComputingShare and a new GLUE2 MappingPolicy, and VO values to the non-GLUE2 renderings
in the infosystem. For a more detailed description of the rendering please see authorizedvo in
the [queue] subsections. Example:

authorizedvo="atlas"
authorizedvo="support.nordugrid.org"

cpudistribution=[ncpu:m, ...]ncpu:m – This is the CPU distribution over nodes given in
the form: ncpu:m where

• n is the number of CPUs per machines

• m is the number of such computers

Example: 1cpu:3,2cpu:4,4cpu:1
represents a cluster with 3 single CPU machines, 4 dual CPU machines, one machine with 4
CPUs.
This command is needed to tweak and overwrite the values returned by the underlying LRMS.
In general there is no need to configure it.

GLUE2 specific configuration

OSName, OSVersion and OSFamily are a replacement for nordugrid opsys configuration variable. They
define which operating system is running on the hardware (ExecutionEnvironment) behind a Computing-
Share (a specific set of resources, for example a batch system queue) These strings are lowercase text and
they should be listed and existing in the GLUE2 open enumerations at:

https://github.com/OGF-GLUE/Enumerations

However the sysadmin is free to enter new values if these are not present in the above registry. If defined,
these options will have the following effects:

• GLUE2 rendering: their values override whatever is defined in opsys

• NorduGrid rendering: their value will be added as an new entry to existing nordugrid-cluster-opsys or
nordugrid-queue-opsys as new entries with the following format:
nordugrid-queue-opsys: <OSName value> − <OSversion value>

OSName=string – This single valued attribute is meant to describe the operating system name in
GLUE2 in a similar way as the opsys command is used.

https://github.com/OGF-GLUE/Enumerations

100 CHAPTER 6. TECHNICAL REFERENCE

OSVersion=string – This single valued attribute is meant to contain the vendor specific string that
identifies the operating system.

OSFamily=string – This single valued attribute is meant to contain the open enumeration string
that identifies a family of operating systems, e.g. linux

Example:

OSName="Ubuntu"
OSVersion="12.04"
OSFamily="linux"

6.1.10 Commands in the [queue] subsections

These commands will affect the ComputingShare GLUE2 object. Special GLUE2 MappingPolicies publishing
configuration per queue is not yet supported.

fork job limit=number|cpunumber – sets the allowed number of concurrent jobs in a fork system,
default is 1. The special value cpunumber can be used which will set the limit of running jobs to
the number of cpus available in the machine. This parameter is used in the calculation of freecpus
in a fork system.

name=queuename – The name of the grid-enabled queue, it must also be in the queue section
name[queue/queuename]. Use ”fork” for the fork LRMS.

homogeneity=True|False – - determines whether the queue consists of identical NODES with
respect to cputype, memory, installed software (opsys). In case of inhomogeneous nodes, try to
arrange the nodes into homogeneous groups and assigned them to a queue. Default is True.

scheduling policy=FIFO|MAUI – this optional parameter tells the scheduling policy of the queue,
PBS by default offers the FIFO scheduler, many sites run the MAUI. At the moment FIFO &
MAUI is supported. If you have a MAUI scheduller you should specify the ”MAUI” value since it
modifies the way the queue resources are calculated. BY default the ”FIFO” scheduler is assumed.
More about this in chapter Section 4.4.2, Connecting to the LRMS.

comment=text – a free text field for additional comments on the queue in a single line, no newline
character is allowed!

The following commands only apply to old infoproviders, that is, when infosys_compat=enable:

cachetime=seconds – The validity time in seconds that will be used to fill information system
records about the queue.

maxslotsperjob=integer – this optional parameter configures the GLUE2 MaxSlotsPerJob value
on a particular queue (see GLUE2 definition [25]). This value is usually generated by LRMS
infocollectors, but there are cases in which a system administrator might like to tweak it.
Default is to publish what is returned by the LRMS, and if nothing is returned, NOT to publish
the MaxSlotsPerJob attribute. If a system administrator sets the value here, that value will be
published instead, regardless of what the LRMS returns. Each LRMS might have a different
meaning for this value.
Example: maxslotsperjob="5"

authorizedvo=string – Introduced in ARC 5. A free-form string used to advertise which VOs are
authorized on a specific queue on the CE. Multiple entries are allowed, each authorizedvo= entry
will add a VO name to the infosystem. This feature only applies to the GLUE2 schema. This
information will be published in the AccessPolicies and MappingPolicies objects.

In particular, if the option is already defined in the [cluster] block, then the resulting published elements
will be:

• For AccessPolicy objects: the union of all declared authorized VOs across all the [cluster] and all
[queue/queuename] blocks for all Endpoints’ AccessPolicy objects.

• Starting from ARC 5.2, a new GLUE2 ComputingShare object will be created for each authorizedvo
entry, that will contain jobs statistics for that specific VO. A MappingPolicy object will contain the

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 101

VO information for each share. Values in the [queue/queuename] blocks will override whatever is
already present on the [cluster] block for that specific queue.

The above implies that if one wants to publish VO authorization exclusively on separate queues, then is
better to add authorizedvo only to the queue blocks and not in the cluster block.

Example:

authorizedvo="LocalUsers"
authorizedvo="atlas"
authorizedvo="support.nordugrid.org"

GLUE2 specific configuration

OSName, OSVersion and OSFamily can be specified for each queue. See analogue description for the
[cluster] block in Section 6.1.9. Specifying these in a selected queue will override what is specified in the
[cluster] block for that queue.

6.1.11 Commands in the [infosys/cluster/registration/registrationname] sub-
sections

Computing resource (cluster) registration block, configures and enables the registration process of a Com-
puting Element to an Index Service. The string infosys/cluster/registration/ identifies the block,
while registrationname is a free form string used to identify a registration to a specific index. A cluster
can register to several Index Services. In this case, each registration process should have its own block, each
with its own registrationname.

Registration commands explained:

targethostname=FQDN – The FQDN of the host running the target index service.

targetport=portnumber – Port where the target Index Service is listening. Defaults to 2135.

targetsuffix=ldapsuffix – ldap suffix of the target index service. This has to be provided by a
manager of the index service, as it is a custom configuration value of the Index Service. Usually is
a string of the form "mds-vo-name=<custom value>,o=grid"

regperiod=seconds – the registration script will be run each number of seconds. Defaults to 120.

registranthostname=FQDN – the registrant FQDN. This is optional as ARC will try to guess it from
the system of from then [common] block. Example: registranthostname="myhost.org"

registrantport=port – the port where the local infosystem of the registrant is running. Optional,
as this port is already specified in the [infosys] block. Example: registrantport="2135"

registrantsuffix=ldap base string – the LDAP suffix of the registrant cluster resource. Op-
tional, as it is automatically determined from the [infosys] block and the registration blockname.
In this case the default registrantsuffix will be:
nordugrid-cluster-name=FQDN,Mds-Vo-name=local,o=Grid. Please mind uppercase/lowercase
characters above if defining allowreg in an index! Don’t set it unless you want to overwrite the
default. Example:
registrantsuffix="nordugrid-cluster-name=myhost.org,Mds-Vo-name=local,o=grid"

6.1.12 Commands in the [grid-manager] section

6.1.12.1 Commands affecting the A-REX process and logging

pidfile=path – specifies file where process id of A-REX process will be stored.
Defaults to /var/run/arched-arex.pid if running as root and $HOME/arched.pid other-
wise.

logfile=path – specifies name of file for logging debug/informational output.
Defaults to /var/log/arc/grid-manager.log. Note: if installed from binary packages, ARC

102 CHAPTER 6. TECHNICAL REFERENCE

comes with configuration for logrotate log management utility and A-REX log is managed by
logrotate by default.

logsize=size number – restricts log file size to size and keeps number archived log files. This
command enables log rotation by ARC and should only be used if logrotate or other external log
rotation utility is not used. Using ARC log rotation and external log management simultaneously
may result in strange behaviour.

logreopen=yes|no – specifies if log file must be opened before writing each record and closed after
that. By default log file is kept open all the time (default is no).

debug=number – specifies level of debug information. More information is printed for higher lev-
els. Currently the highest effective number is 5 (DEBUG) and lowest 0 (FATAL). Defaults to 2
(WARNING).

user=username[:groupname] – specifies username and optionally groupname to which the A-REX
must switch after reading configuration. Defaults to not switch.

watchdog=yes|no – specifies if service container (arched) to be restarted if A-REX fails or stops pro-
ducing internal heartbeat signals. For that purpose intermediate process is started which monitors
main executable and performs restart when needed.

helperlog=path – specifies location for storing log messages (stderr) produced by helper processes.
By default it is set to backward compatible value ¡control dir¿/job.helper.error. If set to empty
value the output of helper processes will not be logged.

6.1.12.2 Commands affecting the A-REX Web Service communication interface

voms processing=relaxed|standard|strict|noerrors – specifies how to behave if failure
happens during VOMS processing.

• relaxed – use everything that passed validation.

• standard – same as relaxed but fail if parsing errors took place and VOMS extension is marked as
critical. This is a default.

• strict – fail if any parsing error was discovered.

• noerrors – fail if any parsing or validation error happened.

Default is standard. This option is effective only if A-REX is started using startup script.

voms trust chain=subject [subject [...]] – specifies chain of VOMS credentials to trust
during VOMS processing. There can be multiple voms trust chain commands one per trusted
chain/VOMS server. Content of this command is similar to the information *.lsc file, but with
two differences with one voms trust chain corresponding to one *.lsc file. Differently from *.lsc
this command also accepts regular expressions - one per command. If this command is specified
information in *.lsc files is not used even if *.lsc exist. This option is effective only if A-REX is
started using startup script.

fixdirectories=yes|missing|no – specifies during startup A-REX should create all directories
needed for it operation and set suitable default permissions. If no is specified then A-REX does
nothing to prepare its operational environement. In case of missing A-REX only creates and
sets permissions for directories which are not present yet. For yes all directories are created and
permisisons for all used directories are set to default safe values. Default behavior is as if yes is
specified.

arex mount point=URL – specifies URL for accessing A-REX through WS interface. This option is
effective only if A-REX is started using startup script. The presence of this option enables WS
interface. Default is to not provide WS interface for communication with A-REX.

enable arc interface=yes|no – turns on or off the ARC own WS interface based on OGSA BES
and WSRF. If enabled the interface can be accessed at the URL specified by arex mount point (this
option must also be specified). Default is yes.

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 103

enable emies interface=yes|no – turns on or off the EMI Execution Service interface. If enabled
the interface can be accessed at the URL specified by arex mount point (this option must also be
specified). Default is no.

max job control requests=number – specifies maximal number of simultaneously processed job
control requests. Requests above that threshold are put on hold and client is made to wait for
response. Default value is 100. Setting value to -1 turns this limit off. This option is effective only
if A-REX is started using startup script.

max infosys requests=number – specifies maximal number of simultaneously processed informa-
tion requests. Requests above that threshold are put on hold and client is made to wait for response.
Default value is 1. Setting value to -1 turns this limit off. This option is effective only if A-REX is
started using startup script.

max data transfer requests=number – specifies maximal number of simultaneously processed
data read/write requests. Requests above that threshold are put on hold and client is made to wait
for response. Default value is 100. Setting value to -1 turns this limit off. This option is effective
only if A-REX is started using startup script.

arguspep endpoint=URL – specifies URL of Argus PEP service to use for authorization and user
mapping. If this option is set Argus is contacted for every operation requested through WS interface.

arguspep profile=profile name – - defines which communication profile to use for passing in-
formation to Argus PEP service. Possible values are:
direct – pass all authorization attributes (only for debugging),
subject – pass only subject name of client,
cream – makes A-REX pretend it is gLite CREAM service,
emi – new profile developed in EMI project. This is default choice.

arguspep usermap=yes|no – - specifies either response from Argus servie may define mapping of
client to local account. Possible values are ’yes’ and ’no’. Default is ’no’ and that means any user
mapping information is ignored. Argus is contacted after all other user mapping is performed.
Hence it overwrites all other decisions.

arguspdp endpoint=URL – specifies URL of Argus PDP service to use for authorization and user
mapping. If this option is set Argus is contacted for every operation requested through WS interface.

arguspdp profile=profile name – - defines which communication profile to use for passing in-
formation to Argus PEP service. Possible values are:
subject – pass only subject name of client,
cream – makes A-REX pretend it is gLite CREAM service,
emi – new profile developed in EMI project. This is default choice.

6.1.12.3 Commands setting control and session directories

controldir=path – sets the directory for A-REX to store control files containing information on
jobs. Since this directory is heavily accessed by A-REX it should not be on a remote file system.
This is a required command.

sessiondir=path [drain] – specifies the path to the directory in which the session directory (SD)
is created. A-REX creates subdirectories in the SD for each job. Multiple SDs may be specified by
specifying multiple sessiondir commands. In this case jobs are spread evenly over the directories.
If the path is * the default sessiondir is used for each locally-mapped user - $HOME/.jobs. When
adding a new SD, ensure to restart the A-REX so that jobs assigned there are processed. A SD
can be drained prior to removal by adding the “drain” option (no restart is required in this case
if gridftp interface is used). No new jobs will be assigned to this SD but running jobs will still be
accessible. When all jobs are processed and the SD is empty, it can be removed from configuration
and the A-REX should be restarted. The information system will mark the GLUE2 endpoints in
the state of ’draining’ only when all the configured session directories are in “drain” state. This is
a required command.

defaultttl=ttl [ttr] – specifies the time in seconds for a job’s SD to be available after the job
finishes (ttl). A second optional number (ttr) defines the time from removal of the SD until all

104 CHAPTER 6. TECHNICAL REFERENCE

information about the job is discarded - the job stays in DELETED state during that period.
Defaults are 7 days for ttl and 30 days for ttr. The minumum value for both parameters is 2 hours.

6.1.12.4 Commands to configure the cache

cachedir=path [link path] – specifies a directory to store cached data (see Section Section 6.4,
Cache). Multiple cache directories may be specified by specifying multiple cachedir commands.
Cached data will be distributed over multiple caches according to free space in each. Specifying
no cachedir command or commands with an empty path disables caching. The optional link path
specifies the path at which path is accessible on computing nodes, if it is different from the path
on the A-REX host. If link path is set to ’.’ files are not soft-linked, nor are per-job links created,
but files are copied to the session directory. If a cache directory needs to be drained, then cachedir
should specify “drain” as the link path.

remotecachedir=path [link path] – specifies caches which are under the control of other A-
REXs, but which this A-REX can have read-only access to (see Section 6.4.3). Multiple remote
cache directories may be specified by specifying multiple remotecachedir commands. If a file is not
available in paths specified by cachedir, the A-REX looks in remote caches. link path has the same
meaning as in cachedir, but the special path “replicate” means files will be replicated from remote
caches to local caches when they are requested.

cachesize=high mark [low mark] – specifies high and low watermarks for space used on the file
system on which the cache directory is located, as a percentage of total file system capacity. When
the max is exceeded, files will be deleted to bring the used space down to the min level. If the
caches do not have their own separate file system then cacheshared should be set to “yes” so that
the limits are applied on the size of the cache rather than the file system. If no cachesize is specified,
or it is specified without parameters, no cleaning is done. These cache settings apply to all caches
specified by cachedir commands.

cachelifetime=lifetime – if cache cleaning is enabled, files accessed less recently than the lifetime
time period will be deleted. Example values of this option are 1800, 90s, 24h, 30d. When no suffix
is given the unit is seconds.

cacheshared=yes|no – specifies whether the caches share a filesystem with other data. If set to yes
then cache-clean calculates the size of the cache instead of using filesystem used space. Defaults to
no.

cachespacetool=path [options] – specifies an alternative tool to “df” that cache-clean should
use to obtain space information on the cache file system. The output of this command must be
“total bytes used bytes”. The cache directory is passed as the last argument to this command.

cachelogfile=path – specifies the filename where output of the cache-clean tool should be logged.
Defaults to /var/log/arc/cache-clean.log.

cacheloglevel=number – specifies the level of logging by the cache-clean tool, between 0 (FATAL)
and 5 (DEBUG). Defaults to 3 (INFO).

cachecleantimeout=timeout – the timeout in seconds for running the cache-clean tool. If using
a large cache or slow file system this value can be increased to allow the cleaning to complete.
Defaults to 3600 (1 hour).

cacheaccess=rule – rules for allowing access to files in the cache remotely through the A-REX web
interface. A rule has three parts:

1. Regular expression defining a URL pattern

2. Credential attribute to match against a client’s credential

3. Credential value to match against a client’s credential

A client is allowed to access the cached file if a URL pattern matches the cached file URL and
the client’s credential has the attribute and value required for that pattern. Possible values for
credential attribute are dn, voms:vo, voms:role and voms:group. Remote cache access requires that
the A-REX web interface is enabled via arex mount point. The maximum number of concurrent
cache accesses can be limited using max data transfer requests.

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 105

6.1.12.5 Commands setting limits

maxjobs=max processed jobs [max running jobs [max jobs per dn [max jobs total]]] –
specifies maximum number of jobs being processed by the A-REX at different stages:
max processed jobs – maximum number of concurrent jobs processed by A-REX. This does not
limit the amount of jobs which can be submitted to the cluster.
max running jobs – maximum number of jobs passed to Local Resource Management System
max jobs per dn – maximum number of concurrent jobs processed by A-REX per user DN. If this
option is used the total maximum number of jobs processed is still max processed jobs.
max jobs total – total maximum number of jobs associated with service. It is advised to use this
limit only in exceptional cases because it also accounts for finished jobs.

Missing value or -1 means no limit.

maxrerun=number – specifies maximal number of times job will be allowed to rerun after it failed at
any stage. Default value is 5. This only specifies a upper limit. The actual number is provided in
job description and defaults to 0.

maxtransfertries=number – specifies the maximum number of times download and upload will be
attempted per file (retries are only performed if an error is judged to be temporary, for example a
communication error with a remote service). This number must be greater than 0 and defaults to
10.

6.1.12.6 Commands related to file staging

securetransfer=yes|no – specifies whether to use encryption while transferring data. Currently
works for GridFTP only. Default is no. It may overridden for every source/destination by values
specified in URL options.

passivetransfer=yes|no – specifies whether GridFTP transfers are passive. Setting this option
to yes can solve transfer problems caused by firewalls. Default is no.

localtransfer=yes|no – specifies whether to pass file downloading/uploading task to computing
node. If set to yes the A-REX will not download/upload files but compose script submitted to the
LRMS in order that the LRMS can execute file transfer. This requires installation of A-REX and all
related software to be accessible from computing nodes and environment variable ARC LOCATION
to be set accordingly. Default is no.

httpgetpartial=yes|no – specifies whether HTTP GET transfers may transfer data in chunks/parts.
If no - data is always transfered in one piece. Default is yes.

speedcontrol=min speed min time min average speed max inactivity –
specifies how long or slow data transfer is allowed to take place. Transfer is canceled if transfer
rate (bytes per second) is lower than min speed for at least min time seconds, or if average rate
is lower than min average speed, or no data is received for longer than max inactivity seconds. To
allow statistics to build up, no transfers will be stopped within the first 3 minutes.

acix endpoint=URL – The ARC Cache Index specified here will be queried for every input file
specified in a job description and any replicas found in sites with accessible caches will be added to
the replica list of the input file. The replicas will be tried in the order specified by preferredpattern.

preferredpattern=pattern – specifies how to order multiple replicas of an input file according to
preference. It consists of one or more patterns (strings) separated by a pipe character (|) listed in
order of preference. Input file replicas will be matched against each pattern and then ordered by
the earliest match. If the dollar character ($) is used at the end of a pattern, the pattern will be
matched to the end of the hostname of the replica.

copyurl=template replacement – specifies that URLs starting from template should be accessed
at replacement instead. The template part of the URL will be replaced with replacement. This
option is useful when for example a Grid storage system is accessible as a local file system on the
A-REX host. replacement can be either a URL or a local path starting from ’/’. It is advisable to
end template with ’/’.

106 CHAPTER 6. TECHNICAL REFERENCE

linkurl=template replacement [node path] – mostly identical to copyurl but file will not be
copied. Instead a soft-link will be created. replacement specifies the way to access the file from the
frontend, and is used to check permissions. The node path specifies how the file can be accessed
from computing nodes, and will be used for soft-link creation. If node path is missing, local path
will be used instead. Neither node path nor replacement should be URLs.

NOTE: URLs which fit into copyurl or linkurl are treated as more easily accessible than other URLs. That
means if A-REX has to choose between several URLs from which should it download input file, these will
be tried first.

6.1.12.7 Commands related to usage reporting

jobreport=URL ... number – specifies that A-REX has to report information about jobs being
processed (started, finished) to a remote service running at the given URL. Multiple entries and
multiple URLs are allowed. number specifies how long (in days) old records have to be kept if failed
to be reported. The last specified value becomes effective.

jobreport period=number – specifies the frequency of message publishing. This value is in seconds.
Default value is 3600 seconds.

jobreport logfile=path – specifies the path of JURA’s log messages location.

jobreport vo filters=VO URL[, VO URL]... – it is a filter option where can be set which
VO will be send to the given SGAS URL. When add new URL here (that no exist in the list of
jobreport) need to add this URL into the jobreport element. It is possible to have multiple entries,
by seperating entries with a comma BUT only just one jobreport vo filters is allowed.

jobreport publisher=filename – specifies the name of the executable which will be run by the
A-REX periodically to publish job reports if a jobreport URL is specified. The executable will be
searched in the nordugrid libexec directory. The default name is jura.

jobreport credentials=key file [cert file [ca dir]] – specifies the credentials for ac-
cessing the accounting service.

jobreport options=options – specifies additional options for the usage reporter (e.g. JURA). See
4.4.7, Accounting with JURA.

6.1.12.8 Other general commands in the [grid-manager] section

wakeupperiod=time – specifies how often the A-REX checks for job state changes (like new arrived
job, job finished in LRMS, etc.). time is a minimal time period specified in seconds. Default is 3
minutes. The A-REX may also be woken up by external processes such as LRMS scripts before
this time period expires.

authplugin=state options plugin – specifies plugin (external executable) to be run every time
job is about to switch to state. The following states are allowed: ACCEPTED, PREPARING,
SUBMIT, FINISHING, FINISHED and DELETED. If exit code is not 0 job is canceled by default.
Options consists of name=value pairs separated by commas. The following names are supported:
timeout – specifies how long in seconds execution of the plugin allowed to last (mandatory, “time-
out=” can be skipped for backward compatibility).
onsuccess, onfailure and ontimeout – defines action taken in each case (onsuccess happens if exit
code is 0). Possible actions are:
pass – continue execution,
log – write information about result into log file and continue execution,
fail – write information about result into log file and cancel job. Default actions are fail for onfailure
and ontimeout, pass for onsuccess.

localcred=timeout plugin – specifies plugin (external executable or function in shared library)
to be run every time job has to do something on behalf of local user. Execution of plugin may
not last longer than timeout seconds. If plugin looks like function@path then function int func-
tion(char*,char*,char*,...) from shared library path is called (timeout is not functional in that
case). If exit code is not 0 current operation will fail. This functionality was introduced for acquir-
ing Kerberos tickets for local filesystem access and is currently deprecated.

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 107

norootpower=yes|no – if set to yes all processes involved in job management will use local identity
of a user to which Grid identity is mapped in order to access file system at path specified in
session command (see below). Sometimes this may involve running temporary external process
under specified account.

joblog=path – specifies where to store log file containing information about started and finished jobs.
This file contains one line per every started and evety finished job. Default is not to write such file.

mail=e-mail address – specifies an email address from which notification mails are sent.

helper=username command [argument [argument [...]]] – associates an external pro-
gram with A-REX. This program will be kept running under account of the user specified by
username. Currently only ’.’ is supported as username, corresponding to the user running A-REX.
command is an executable and arguments are passed as arguments to it. This executable is started
under the specified local account and re-started every time it exits.

delegationdb=name – specifies which database backend format to use for storing infromation about
delegated credentials. Currently supported values are bdb (Berkeley DB) and sqlite (SQLite).
The default value is bdb for historical reasons. But due to severe instabilities experienced it is
strongly suggested to use sqlite. If You are not configuring A-REX installation from scratch You
may want to convert existing database before changing its format.
For that purpose the gm-delegations-converter utility is provided.

6.1.12.9 Global commands specific to communication with the underlying LRMS

gnu time=path – path to time utility.

tmpdir=path – path to directory for temporary files.

runtimedir=path – path to directory which contains runtimenvironment scripts.

shared filesystem=yes|no – if computing nodes have an access to session directory through a
shared file system like NFS. Note that the default “yes” assumes that the paths to the session
directories are the same on both frontend and nodes. If these paths are not the same, then one
should set the scratchdir option.
If set to “no”, this means that the computing node does not share a filesystem with the frontend.
In this case the content of the SD is moved to a computing node using means provided by the
LRMS. Results are moved back after the job’s execution in a similar way. Sets the environment
variable RUNTIME_NODE_SEES_FRONTEND.
(See Section 6.12, Environment variables set for the job submission scripts).

nodename=command – command to obtain hostname of computing node.

scratchdir=path – path on computing node where to move session directory before execution.
Default is not to move session directory before execution.

shared scratch=path – path on frontend where scratchdir can be found. Only needed if scratchdir
is used.

6.1.12.10 Substitutions in the command arguments

In command arguments (paths, executables, ...) the following substitutions can be used:

%R – session root – see command sessiondir

%C – control dir – see command controldir

%U – username of mapped local user

%u – userid – numerical user id of mapped local user

%g – groupid – numerical group id of mapped local user

%H – home dir – home of username as specified in /etc/passwd

108 CHAPTER 6. TECHNICAL REFERENCE

%Q – default queue – see command lrms

%L – lrms name – see command lrms

%W – installation path – ${ARC LOCATION}

%F – path to configuration file of this instance

%I – job ID (for plugins only, substituted in runtime)

%S – job state (for authplugin plugins only, substituted in runtime)

%O – reason (for localcred plugins only, substituted in runtime). Possible reasons are:

new – new job, new credentials

renew – old job, new credentials

write – write/delete file, create/delete directory

read – read file, directory, etc.

extern – call external program

6.1.13 Commands in the [data-staging] section

The design of the data staging framework (DTR) is described in Section 4.4.4, Configuring Data Staging.

maxdelivery=number – maximum number of files in delivery, i.e. the maximum number of physical
transfer slots.

maxprocessor=number – maximum number of files in each processing state. These states are for
example checking the cache or resolving replicas in index services.

maxemergency=number – maximum emergency slots for delivery and processor. If the maximum slots
as defined above are already used, a new transfer share can still proceed by using an emergency
slot. These slots therefore stop shares from being blocked by others in busy situations.

maxprepared=number – maximum number of files prepared for transfer. For protocols such as SRM
files are pinned for transfer. This parameter determines the maximum number of files that are
pinned. It should normally be set a few times larger than maxdelivery so that new pinned transfers
are ready to start when others finish, but not so high as to pass the limits of the storage systems.
This number is applied per-transfer share and only for applicable protocols.

sharetype=type – sharing mechanism for data transfer. This is the scheme used to assign transfers
to different shares. Possible values are:

• dn - each job is assigned to a share based on the DN of the user sumbitting the job.

• voms:vo - if the user’s proxy is a VOMS [23] proxy the job is assigned to a share based on the VO
specified in the proxy. If the proxy is not a VOMS proxy a default share is used.

• voms:role - if the user’s proxy is a VOMS proxy the job is assigned to a share based on the role specified
in the first attribute found in the proxy. If the proxy is not a VOMS proxy a default share is used.

• voms:group - if the user’s proxy is a VOMS proxy the job is assigned to a share based on the group
specified in the first attribute found in the proxy. If the proxy is not a VOMS proxy a default share is
used.

definedshare=share priority – a transfer share with a specific priority, different from the de-
fault. This is used to give more or less transfer slots to certain shares. priority should be a
number between 1 and 100 (higher number is higher priority). The default priority for a share is
50.

deliveryservice=url – remote delivery service for executing transfers. More details are available
in the NorduGrid wiki.∗

∗http://wiki.nordugrid.org/index.php/Data_Staging/Multi-host

http://wiki.nordugrid.org/index.php/Data_Staging/Multi-host

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 109

localdelivery=yes|no – in case remote delivery services are configured using the previous option,
this option specifies whether or not delivery should also be done locally on the A-REX host. Default
is no.

remotesizelimit=number – file size in bytes under which data transfer will always use local delivery
rather than a remote delivery service. This can optimise performance when many small files are
being transferred, where communication overhead with remote services can become a bottleneck.

usehostcert=yes|no – specifies whether to use the A-REX host certificate when contacting remote
delivery services. This can be done for added security but only with host certificates which can be
used as client certificates. Default is no.

dtrlog=path – file in which to periodically dump data staging information. This data can be used
to monitor the system. Defaults to controldir/dtrstate.log.

central logfile=path – file in which all data staging messages from every job will be logged (in
addition to their job.id.errors files). If this option is not present or the path is empty the log file is
not created. Note this file is not automatically controlled by logrotate.

6.1.14 Commands in the [acix/cacheserver] section

hostname=hostname – hostname on which the cache server listens. Default is all available interfaces.

port=number – port on which the cache server listens. Default is 5443.

logfile=path – log file location for the cache server. Default is /var/log/arc/acix-cache.log.

cachedump=yes|no – whether to make a dump of the cache contents in a file at
$TMP/ARC-ACIX/timestamp each time the cache server runs. Default is no.

6.1.15 Commands in the [acix/cacheindex] section

cacheserver=url – ACIX cache servers from which to pull information. May be specified multiple
times.

6.1.16 PBS specific commands

For each grid-enabled (or Grid visible) PBS queue a corresponding [queue/queuename] subsection must
be defined. queuename should be the PBS queue name.

lrms="pbs" – enables the PBS batch system back-end

pbs bin path=path – in the [common] section should be set to the path to the qstat,pbsnodes,qmgr
etc. PBS binaries.

pbs log path=path – in the [common] sections should be set to the path of the PBS server logfiles
which are used by A-REX to determine whether a PBS job is completed. If not specified, A-REX
will use the qstat command to find completed jobs.

lrmsconfig=text – in the [cluster] block can be used as an optional free text field to describe fur-
ther details about the PBS configuration (e.g. lrmsconfig="single job per processor").
This information is then exposed through information interfaces.

dedicated node string=text – in the [cluster] block specifies the string which is used in the
PBS node config to distinguish the Grid nodes from the rest. Suppose only a subset of nodes are
available for Grid jobs, and these nodes have a common node property string, this case the
dedicated node string should be set to this value and only the nodes with the corresponding
PBS node property are counted as Grid enabled nodes. Setting the dedicated node string
to the value of the PBS node property of the grid-enabled nodes will influence how the totalcpus,
user freecpus is calculated. No need to set this attribute if the cluster is fully available for the Grid
and the PBS configuration does not use the node property method to assign certain nodes to
Grid queues.

110 CHAPTER 6. TECHNICAL REFERENCE

scheduling policy=FIFO|MAUI – in the [queue/queuename] subsection describes the schedul-
ing policy of the queue. PBS by default offers the FIFO scheduler, many sites run the MAUI. At
the moment FIFO & MAUI are supported values. If you have a MAUI scheduler you should specify
the "MAUI" value since it modifies the way the queue resources are calculated. By default the
"FIFO" scheduler type is assumed.

maui bin path=path – in the [queue/queuename] subsection sets the path of the MAUI com-
mands like showbf when "MAUI" is specified as scheduling policy value. This parameter can
be set in the [common] block as well.

queue node string=text – in the [queue/queuename] block can be used similar to the configu-
ration command dedicated node string. In PBS you can assign nodes to a queue (or a queue
to nodes) by using the node property PBS node configuration method and assigning the marked
nodes to the queue (setting the resources default.neednodes = queue node string for
that queue). This parameter should contain the node property string of the queue-assigned
nodes. Setting the queue node string changes how the queue-totalcpus, user freecpus are de-
termined for this queue.

6.1.17 Condor specific commands

lrms="condor" – in the [common] section enables the Condor batch system back-end.

condor bin path=path – in the [common] section specifies location of Condor executables. If not
set then ARC will try to guess it out of the system path.

condor rank=ClassAd float expression – in the [common] section, if defined, will cause the
Rank attribute to be set in each job description submitted to Condor. Use this option if you are
not happy with the way Condor picks out nodes when running jobs and want to define your own
ranking algorithm. condor rank should be set to a ClassAd float expression that you could use
in the Rank attribute in a Condor job description. For example:

condor_rank="(1-LoadAvg/2)*(1-LoadAvg/2)*Memory/1000*KFlops/1000000"

condor requirements=constraint string – in the [queue/queuename] section defines a
subpool of condor nodes. Condor does not support queues in the classical sense. It is possible,
however, to divide the Condor pool in several sub-pools. An ARC “queue” is then nothing more
than a subset of nodes from the Condor pool.

Which nodes go into which queue is defined using the condor requirements configuration option in
the corresponding [queue/queuename] section. Its value must be a well-formed constraint string that
is accepted by a condor status -constraint ’...’ command. Internally, this constraint string is
used to determine the list of nodes belonging to a queue. This string can get quite long, so, for readability
reasons it is allowed to split it up into pieces by using multiple condor requirements options. The full
constrains string will be reconstructed by concatenating all pieces.

Queues should be defined in such a way that their nodes all match the information available in ARC about
the queue. A good start is for the condor requirements attribute to contain restrictions on the following:
Opsys, Arch, Memory and Disk. If you wish to configure more than one queue, it’s good to have queues
defined in such a way that they do not overlap. In the following example disjoint memory ranges are used
to ensure this:

[queue/large]
condor_requirements="(Opsys == "linux" && (Arch == "intel" || Arch == "x86_64")"
condor_requirements=" && (Disk > 30000000 && Memory > 2000)"
[queue/small]
condor_requirements="(Opsys == "linux" && (Arch == "intel" || Arch == "x86_64")"
condor_requirements=" && (Disk > 30000000 && Memory <= 2000 && Memory > 1000)"

Note that nodememory attribute in arc.conf means the maximum memory available for jobs, while the
Memory attribute in Condor is the physical memory of the machine. To avoid swapping (and these are
probably not dedicated machines!), make sure that nodememory is smaller than the minimum physical

6.1. REFERENCE OF THE ARC.CONF CONFIGURATION COMMANDS 111

memory of the machines in that queue. If for example the smallest node in a queue has 1Gb memory, then
it would be sensible to use nodememory="850" for the maximum job size.

In case you want more precise control over which nodes are available for Grid jobs, using pre-defined ClassAds
attributes (like in the example above) might not be sufficient. Fortunately, it’s possible to mark nodes by
using some custom attribute, say NORDUGRID RESOURCE. This is accomplished by adding a parameter to
the node’s local Condor configuration file, and then adding that parameter to STARTD EXPRS:

NORDUGRID_RESOURCE = True
STARTD_EXPRS = NORDUGRID_RESOURCE, $(STARTD_EXPRS)

Now queues can be restricted to contain only “good” nodes. Just add to each [queue/queuename] section
in arc.conf:

condor_requirements=" && NORDUGRID_RESOURCE"

6.1.18 LoadLeveler specific commands

lrms="ll" – in the [common] section enables the LoadLeveler batch system.

ll bin path=path – in the [common] section must be set to the path of the LoadLeveler binaries.

ll consumable resources="yes" – in the [common] section must be set to yes if the cluster uses
consumable resources for scheduling.

ll parallel single jobs="yes" – in the [common] section can be set to yes. This indicates that
even jobs that request a single core should be treated as a parallel job.

6.1.19 Fork specific commands

lrms="fork" – in the [common] section enables the Fork back-end. The queue must be named
"fork" in the [queue/fork] subsection.

fork job limit=cpunumber – sets the number of running Grid jobs on the fork machine, allowing
a multi-core machine to use some or all of its cores for Grid jobs. The default value is 1.

6.1.20 LSF specific commands

lrms="lsf" – in the [common] section enables the LSF back-end

lsf bin path=path – in the [common] section must be set to the path of the LSF binaries

lsf profile path=path – must be set to the filename of the LSF profile that the back-end should
use.

Furthermore it is very important to specify the correct architecture for a given queue in arc.conf. Because
the architecture flag is rarely set in the xRSL file the LSF back-end will automatically set the architecture
to match the chosen queue. LSF’s standard behaviour is to assume the same architecture as the frontend.
This will fail for instance if the frontend is a 32 bit machine and all the cluster resources are 64 bit. If this
is not done the result will be jobs being rejected by LSF because LSF believes there are no useful resources
available.

6.1.21 SGE specific commands

lrms="sge" – in the [common] section enables the SGE batch system back-end.

sge root=path – in the [common] section must be set to SGE’s install root.

sge bin path=path – in the [common] section must be set to the path of the SGE binaries.

sge cell=cellname – in the [common] section can be set to the name of the SGE cell if it’s not
the default

112 CHAPTER 6. TECHNICAL REFERENCE

sge qmaster port=port – in the [common] section can be set to the qmaster port if the sge
command line clients require the SGE QMASTER PORT environment variable to be set

sge execd port=port – in the [common] section can be set to the execd port if the sge command
line clients require the SGE EXECD PORT environment variable to be set

sge jobopts=options – in the [queue/queuename] section can be used to add custom SGE
options to job scripts submitted to SGE. Consult SGE documentation for possible options.

6.1.22 SLURM specific commands

lrms="SLURM" – in the [common] section enables the SLURM batch system back-end.

slurm bin path=path – in the [common] section must be set to the path of the SLURM binaries.

slurm use sacct=[yes|no] – in the [common] section can be set to ”yes” to make the backend
use sacct instead of scontrol. This is a more reliable way of getting information, but only works if
the accounting database is turned on in SLURM. Default is ”no”.

slurm wakeupperiod=seconds – How long should infosys wait before querying SLURM for new
data.

6.1.23 BOINC specific commands

lrms="boinc" – in the [common] section enables the BOINC back-end.

boinc db host=hostname – in the [common] section specifies the database hostname

boinc db port=port – in the [common] section specifies the database port number

boinc db user=username – in the [common] section specifies the database username

boinc db pass=password – in the [common] section specifies the database password

boinc db name=database – in the [common] section specifies the database name

6.2 Handling of the input and output files

One of the most important tasks of the A-REX is to take care of processing of the input and output data
(files) of the job. Input files are gathered in the session directory (SD) or in the associated cache area. If
caching is enabled, then the A-REX checks the cache whether a requested input file is already present (with
proper authorization checks and timely invalidation of cached data), and links (or copies) it to the SD of the
job without re-downloading it. If file is present in the cache but not marked as authorized for specific grid
identity then connection to data server is performed for authorization check.

There are two ways to put a file into the SD:

• If a file is specified in the job description as an input file with a remote source location: the A-
REX contacts the remote location (using the user’s delegated credentials) and downloads the file into
the session directory or cache location using one of the supported protocols (GridFTP, FTP, HTTP,
HTTPS, and also communicating with Grid file catalogs is supported).

• If a file is specified in the job description as an input file without a remote source location: the A-REX
expects the client tool to upload the file to the session directory (SD) using the URL provided by
A-REX. The client tools should do this step automatically.

The A-REX does not provide any other reliable way to obtain input data.

After the job finishes, the files in the session directory are treated in three possible ways:

• If a file is specified in the job description as an output file with a remote target location: the A-REX
uploads the results to the remote storage (optionally register the file to a catalog), then it will remove

6.3. JOB STATES 113

ACCEPTED

PREPARING

SUBMITTING

INLRMS

FINISHING

FINISHED

CANCELING

Failure or cancel request

Failure or cancel request

Failure or cancel request

Failure processing

R
e
r
u
n

r
e
q
u
e
s
t

DELETED

PENDING

PENDING

PENDING

Figure 6.2: Job states

the file from the session directory. If the job execution fails, these files will not be uploaded (but they
will be kept for the user to download). Depending of used submission interface and corresponding job
description format it is possible to request more sophisticated conditions for files processing in case of
failure.

• If a file is specified in the job description as an output file without a target location: the A-REX will
keep the files, and the user can download them by accessing the session directory. The client tools
usually support downloading these files.

• If a file is not specified in the job description as an output file: the A-REX will remove the file from
the session directory after the job finished.

It is possible to specify in job description an option to keep a whole directory, but if a file is not specified
in the job description as an output file and it is not in a directory which is requested to be kept, it will be
removed when the job is finished.

6.3 Job states

Figure 6.2 shows the internal states a job goes through, also listed here:

• Accepted: the job has been submitted to the CE but hasn’t been processed yet.

• Preparing: the input data is being gathered.

• Submitting: the job is being submitted to the local resource management system (LRMS).

• Executing (InLRMS): the job is queued or being executed in the LRMS.

• Killing (Canceling): the job is being canceled.

• Finishing: the output data is being processed (even if there was a failure).

• Finished: the job is in this state either it finished successfully or there was an error during one of the
earlier steps.

• Deleted: after specified amount of days the job gets deleted and only minimal information is kept
about it.

114 CHAPTER 6. TECHNICAL REFERENCE

Limits can be configured on the CE for the number of jobs in some states. If the limit reached, new jobs
would stay in the preceding state (indicated by the Pending prefix). It is possible to re-run a job which is
in the Finished state because of a failure. In this case the job would go back to the state where the failure
happened.

These are internal states which are translated into more user-friendly external states when presented to the
users. These external states take into account additional information, not just the internal state, so one
internal state can correspond to multiple external states. In this list every row starts with the internal state
followed by a colon and then the possible external states:

• ACCEPTED: ACCEPTING, ACCEPTED

• PREPARING: ACCEPTED, PREPARING, PREPARED

• SUBMITTING: PREPARED, SUBMITTING

• INLRMS: INLRMS, EXECUTED

• FINISHING: EXECUTED, FINISHING

• FINISHED: FINISHED, FAILED, KILLED

• CANCELING: KILLING

• DELETED: DELETED

6.4 Cache

6.4.1 Structure of the cache directory

Cached files are stored in sub-directories under the data directory in each main cache directory. Filenames
are constructed from an SHA-1 hash of the URL of the file and split into subdirectories based on the two
initial characters of the hash. In the extremely unlikely event of a collision between two URLs having the
same SHA-1 hash, caching will not be used for the second file.

When multiple caches are used, a new cache file goes to a randomly selected cache, where each cache is
weighted according to the size of the file system on which it is located. For example: if there are two caches
of 1TB and 9TB then on average 10% of input files will go to the first cache and 90% will go to the second
cache.

Some associated metadata including the corresponding URL and an expiry time, if available, are stored in
a file with the same name as the cache file, with a .meta suffix.

For example, with a cache directory /cache, the file

srm://srm.nordugrid.org/grid/atlas/file1
is mapped to

/cache/data/37/b19accc950c37876a61d2de6e238d38c9e94c0

and the file /cache/data/37/b19accc950c37876a61d2de6e238d38c9e94c0.meta contains the original URL and
an expiry time if one is available.

At the start of a file download, the cache file is locked, so that it cannot be deleted and so that another
download process cannot write the same file simultaneously. This is done by creating a file with the same
name as the cache filename but with a .lock suffix. This file contains the process ID of the process and
the hostname of the host holding the lock. If this file is present, another process cannot do anything with
the cache file and must wait until the cache file is unlocked (i.e. the .lock file no longer exists). The lock
is continually updated during the transfer, and is considered stale if 15 minutes have passed since the last
update. These stale locks, caused for example by a download process exiting abnormally, will therefore
automatically be cleaned up. Also, if the process corresponding to the process ID stored inside the lock is
no longer running on the host specified in the lock, it is safe to assume that the lock file can be deleted. If a
file is requested which already exists in the cache (and is not locked), the cache file is not locked, but checks
are done at the end of cache processing to ensure the file was not modified during the processing.

6.4. CACHE 115

6.4.2 How the cache works

If a job requests an input file which can be cached or is allowed to be cached, it is stored in the selected
cache directory, then a hard link is created in a per-job directory, under the joblinks subdirectory of the main
cache directory. Then depending on the configuration, either the hard-link is copied or soft-linked to the
SD. The former option is advised if the cache is on a file system which will suffer poor performance from a
large number of jobs reading files on it, or the file system containing the cache is not accessible from worker
nodes. The latter option is the default option. Files marked as executable in the job will be stored in the
cache without executable permissions, but they will be copied to the SD and the appropriate permissions
applied to the copy.

The per-job directory is only readable by the local user running the job, and the cache directory is readable
only by the A-REX user. This means that the local user cannot access any other users’ cache files. It also
means that cache files can be removed without needing to know whether they are in use by a currently
running job. However, as deleting a file which has hard links does not free space on the disk, cache files
are not deleted until all per-job hard links are deleted. IMPORTANT: If a cache is mounted from an
NFS server and the A-REX is run by the root user, the server must have the no root squash option set
for the A-REX host in the /etc/exports file, otherwise the A-REX will not be able to create the required
directories. Note that when running A-REX under a non-privileged user account, all cache files will be owned
and accessible by the same user, and therefore modifiable by running jobs. This is potentially dangerous
and so caching should be used with caution in this case.

If the file system containing the cache is full and it is impossible to free any space, the download fails and
is retried without using caching.

Before giving access to a file already in the cache, the A-REX contacts the initial file source to check if the
user has read permission on the file. In order to prevent repeated checks on source files, this authentication
information is cached for a limited time. On passing the check for a cached file, the user’s DN is stored in
the .meta file, with an expiry time equivalent to the lifetime remaining for the user’s proxy certificate. This
means that the permission check is not performed for this user for this file until this time is up (usually
several hours). File creation and validity times from the original source are also checked to make sure the
cached file is fresh enough. If the modification time of the source is later than that of the cached file, the
file will be downloaded again. The file will also be downloaded again if the modification date of the source
is not available, as it is assumed the cache file is out of date. These checks are not performed if the DN is
cached and is still valid.

The A-REX checks the cache periodically if it is configured to do automatic cleaning. If the used space on
the file system containing the cache exceeds the high water-mark given in the configuration file it tries to
remove the least-recently accessed files to reduce size to the low water-mark.

6.4.3 Remote caches

If a site has multiple A-REXs running, an A-REX can be configured to have its own caches and have read-
only access to caches under the control of other A-REXs (remote caches). An efficient way to reduce network
traffic within a site is to configure A-REXs to be under control of caches on their local disks and have caches
on other hosts as remote caches. If an A-REX wishes to cache a file and it is not available on the local cache,
it searches for the file in remote caches. If the file is found in a remote cache, the actions the A-REX takes
depends on the policy for the remote cache. The file may be replicated to the local cache to decrease the
load on the remote file system caused by many jobs accessing the file. However, this will decrease the total
number of cache files that can be stored. The other policy is to use the file in the remote cache, creating a
per-job directory for the hard link in the remote cache and bypassing the local cache completely. The usual
permission and validity checks are performed for the remote file. Note that no creation or deletion of remote
cache data is done - cache cleaning is only performed on local caches.

6.4.4 Cache cleaning

The cache is cleaned automatically periodically (every 5 minutes) by the A-REX to keep the size of each
cache within the configured limits. Files are removed from the cache if the total size of the cache is greater
than the configured limit. Files which are not locked are removed in order of access time, starting with the

116 CHAPTER 6. TECHNICAL REFERENCE

earliest, until the size is lower than the configured lower limit. If the lower limit cannot be reached (because
too many files are locked, or other files outside the cache are taking up space on the file system), the cleaning
will stop before the lower limit is reached.

Since the limits on cache size are given as a percentage of space used on the filesystem on which the cache is
located, it is recommended that each cache has its own dedicated file system. If the cache shares space with
other data on a file system, the option cacheshared="yes" should be set in arc.conf so that the cache
limits are applied on the size of the cache rather than the file system.

With large caches mounted over NFS and an A-REX heavily loaded with data transfer processes, cache
cleaning can become slow, leading to caches filling up beyond their configured limits. For performance
reasons it may be advantageous to disable cache cleaning by the A-REX, and run the cache-clean tool
independently on the machine hosting the file system. Please refer to Section 5.3, Administration tools.

Caches can be added to and removed from the configuration as required without affecting any cached data,
but after changing the configuration file, the A-REX should be restarted. If a cache is to be removed and
all data erased, it is recommended that the cache be put in a draining state until all currently running jobs
possibly accessing files in this cache have finished. In this state the cache will not be used by any new jobs,
but the hard links in the joblinks directory will be cleaned up as each job finishes. Once this directory is
empty it is safe to delete the entire cache

6.4.5 Exposing the Cache and the ARC Cache Index

It is possible to allow restricted remote access to cached data and this is described in Section 4.4.3.2,
Exposing the Cache.

The ARC Cache Index (ACIX) provides a way to discover locations of cached files and is described in
Section 4.4.3.3, The ARC Cache Index (ACIX).

6.5 Batch system back-ends implementation details

The batch system back-ends are what tie the ARC Grid middleware (through the ARC Resource-coupled
EXecution service, A-REX to the underlying cluster management system or LRMS. The back-ends consist
of set of a shell and Perl scripts whose role are twofold:

1. to allow A-REX, to control jobs in the LRMS including job submit, status querying and cancel oper-
ations.

2. to collect information about jobs, users, the batch system and the cluster itself for the Information
System.

The job control part of the LRMS interface is handled by the A-REX. It takes care of preparing a native
batch system submission script, managing the actual submission of the batch system job, cancellation of job
on request and scanning for completed batch jobs. Besides the LRMS job control interface it is also A-REX
which provides e.g. the data staging and communication with the Grid client, provides RTE environments,
arranges file staging (to the node via LRMS capability), dealing with stdout/stderr, etc. The job control
batch system interface of A-REX requires three programs. These programs can be implemented any way
the designer sees it fits, but all the existing back-end interfaces use shell scripting for portability and ease
of tailoring to a specific site. A-REX will call the following programs: cancel-LRMS-job, submit-LRMS-job,
and scan-LRMS-job where LRMS is replaced with the short hand name for the LRMS; e.g. cancel-pbs-job.
The scripts are described one by one in the following subsections.

6.5.1 Submit-LRMS-job

The submit program is the most involved. It is called by A-REX once a new job arrives and needs to be
submitted to the LRMS. It is given the GRAMi file as argument on execution. The GRAMi file is a file in
the job control directory containing the job description in a flat list of key-value pairs. This file is created
by A-REX and is based on the JSDL job description. Submit-LRMS-job then has to set up the session

6.5. BATCH SYSTEM BACK-ENDS IMPLEMENTATION DETAILS 117

directories, run-time environment and anything else needed. Then it submits the job to the local LRMS.
This is normally done by generating a native job script for the LRMS and then running the local submit
command, but it can also be done through an API if the LRMS supports it.

6.5.2 Cancel-LRMS-job

If a Grid user cancels his job, the message will reach the grid-manager. The manager will then call the cancel-
LRMS-job for the suitable back-end. The cancel script is called with the GRAMi file containing information
about the job such as the job id in the LRMS. Cancel-LRMS-job must then use that information to find the
job and remove it from the queue or actually cancel it if it is running in the LRMS.

6.5.3 Scan-LRMS-job

The scan-LRMS-job is run periodically. Its job is to scan the LRMS for jobs that have finished. Once
it has found a finished job it will write the exit-code of that job to the file job.{gridid}.lrms done in the
ARC job status directory†. Then it will call the gm-kick program to notify A-REX about the finished job.
Subsequently, A-REX starts finalizing the job.

Generally, two approaches are taken to find jobs which are finished in LRMS. One is to directly ask the
LRMS. Since all started Grid jobs have its own status file‡ found in the job status directory, this can be
done by checking if the status is ”INLRMS” in this file. If so, a call to the LRMS is made asking for the
status of the job (or jobs if several jobs have status ”INLRMS”). If it is finished, it is marked as such in the
job status directory, and the gm-kick program is activated. For most LRMSs the information about finished
jobs are only available for a short period of time after the job finished. Therefore appropriate steps have
to be taken if the job has the status ”INLRMS” in the job status directory, but is no longer present in the
LRMS. The normal approach is to analyze the job’s status output in the session directory.

The second approach is to parse the LRMSs log files. This method has some drawbacks like e.g.: A-REX
has to be allowed read access to the logs. The back-end will then have to remember where in the log it was
last time it ran. This information will have to be stored in a file somewhere on the front-end.

6.5.4 PBS

The job control batch interface makes use of the qsub command to submit native PBS job scripts to the
batch system. The following options are used:

-l nodes, cput, walltime, pvmem, pmem,

-W stagein, stageout

-e, -j eo

-q

-A

-N

For job cancellation the qdel command is used. To find completed jobs, i.e. to scan for finished jobs the
qstat command or the PBS server log file is used.

The information system interface utilizes the qstat -f -Q queuename and qstat -f queuename
commands to obtain detailed job and queue information. qmgr -c "list server" is used to determine
PBS flavour and version. The pbsnodes command is used to calculate total/used/free cpus within the
cluster. In case of a MAUI scheduler the showbf command is used to determine user freecpu values. All
these external PBS commands are interfaced via parsing the commands’ output.

†normally /var/spool/nordugrid/jobstatus/, but can be set via the controldir variable of arc.conf
‡job.{gridid}.status

118 CHAPTER 6. TECHNICAL REFERENCE

6.5.5 Condor

The job control part of the interface uses the condor submit command to submit jobs. Some of the options
used in the job’s ClassAd are:

Requirements – is used to select the nodes that may run the job. This is how ARC queues are implemented
for Condor.

Periodic remove – is used to enforce cputime and walltime limits.

Log – the job’s condor log file is parsed by the information scripts to find out whether the job was suspended.

The information system component uses the following Condor commands:

condor status -long – for collecting information about nodes

condor status -format "%s\n" Machine -constraint ’...’ – for listing nodes that make up
an ARC queue.

condor q -long -global – for monitoring running jobs.

condor history -l jobid – for collecting information about finished jobs. Further cues are taken from
the job’s condor log file and the body of the email sent by Condor when a job completes.

6.5.6 LoadLeveler

The LoadLeveler back-end uses LoadLeveler’s command line interface(CLI) commands to submit and cancel
jobs. All information in the information system is similarly parsed from the output of CLI commands. It
does not parse any log files, nor does it use the binary APIs. The reason that the back-end is completely
based on the CLI is that the log files are normally kept on another machine than the front end and that the
binary API for LL changes quite often. Often with each new version of LL.

6.5.7 Fork

The Fork back-end implements an interface to the “fork” UNIX command which is not a batch system.
Therefore the back-end should rather be seen as an interface to the operating system itself. Most of the
“batch system values” are determined from the operating system (e.g. cpu load) or manually set in the
configuration file.

6.5.8 LSF

The LSF implementation of the back-end are based solely on parsing and running LSF’s command line
interface commands. No log files or other methods are used. To get the correct output o any output at all
the back-end needs to have an appropriate LSF profile. The path to this profile must be set in arc.conf. It
will then be executed by the back-end before running any of LSF’s CLI commands.

6.5.9 SGE

The SGE back-end’s commands are similar to the PBS commands. These commands are used in the code:

Submit job:

• qsub -S /bin/sh (specifies the interpreting shell for the job)

Get jobs status:

If the job state is not suspended, running or pending then its state is failed.

• qstat -u ’*’ -s rs (show the running and suspended jobs status)

• qstat -u ’*’ -s p (show the pending jobs status)

6.6. JURA: THE JOB USAGE REPORTER FOR ARC 119

• qstat -j job id (long job information)

• qacct -j job id (finished job report)

Job terminating:

• qdel job id (delete Sun Grid Engine job from the queue)

Queue commands:

• qconf -spl (show a list of all currently defined parallel environments)

• qconf -sql (show a list of all queues)

• qconf -sep (show a list of all licensed processors/slots)

• qstat -g c (display cluster queue summary)

• qconf -sconf global (show global configuration)

• qconf -sq queue name (show the given queue configuration)

Other:

• qstat -help (show Sun Grid Engine’s version and type)

6.5.10 BOINC

The BOINC backend uses the BOINC project’s command line tools to submit and cancel jobs and queries
the BOINC database to check for finished jobs and to retrieve information on available resources. Both the
mysql command line and mysql perl interface are used to query the database.

Submit job:

bin/create_work -appname $BOINC_APP -wu_name $wu -wu_template $WU_TEMPLATE \
-result_template $RESULT_TEMPLATE --rsc_memory_bound $memreq --rsc_fpops_est \
$maxcputime $(basename $JobInput) $RTE_FILE $(basename $LRMS_JOB_SCRIPT)

This is called from the BOINC project’s main directory. $BOINC APP, $WU TEMPLATE, $RESULT TEMPLATE
and $RTE FILE are set in the RTE that must be used by all jobs (see 4.4.2.8, BOINC). The other variables
are set dynamically from the job description.

Get jobs status:

mysql (connection options) -e "select name from workunit where \
assimilate_state=2 and name=\"$joboption_jobid\"")

Job terminating

bin/cancel_jobs --name $joboption_gridid

120 CHAPTER 6. TECHNICAL REFERENCE

A-REX log entry OGF-UR CAR ARC-UR

nodename, ngjobid
(hyphen-separated, with
custom prefix)

RecordIdentity:* RecordIdentity*

nodename Host

globalid GlobalJobId: GlobalJobId globaljobid

localid LocalJobId: LocalJobId* localid

[MISSING] ProcessId: processid

usersn GlobalUserName: GlobalUserName globaluserid

localuser LocalUserId: LocalUserId* localuserid

jobname JobName: JobName jobname

[MISSING] Charge: Charge charge

status (no conversion yet!) Status:* Status* status

usedwalltime (sec) WallDuration:
(ISO)

WallDuration*
(ISO)

usedwalltime

usedcputime (sec) CpuDuration:
(ISO)

CpuDuration*
(ISO) all

usedcputime

usedusercputime (sec) user user

usedkernelcputime (sec) kernel kernel

submissiontime StartTime: (UTC) StartTime* (UTC) submissiontime

endtime EndTime: (UTC) EndTime* (UTC) endtime

nodename Host: Host nodename

clienthost (port number re-
moved)

SubmitHost: submithost

headnode MachineName: MachineName*,
SubmitHost, Site*

lrms Infrastructure*
(desc.)

queue Queue: Queue* queue (lrms)

projectname ProjectName: GroupAttribute projectname,
usercert

usercert VO Group usercert

exitcode ExitStatus

[MISSING] ServiceLevel: ServiceLevel*

[MISSING] Network: network

[MISSING] Disk: useddisk

usedmemory Memory: vir-
tual,average

Memory: Share,
average

usedmemory

usedmaxresident Memory: physi-
cal,max

Memory: Physical,
max

usedaverageresident Memory: physi-
cal,average

Memory: Physical,
average

[MISSING] Swap: Swap usedswap

nodecount NodeCount: NodeCount nodecount

[MISSING] Processors: Processors processors

[MISSING] TimeDuration:

[MISSING] TimeInstant: TimeInstant

[MISSING] Extension:

[MISSING] Middleware

inputfile, outputfile FileTransfers:

Figure 6.3: Mapping of usage record properties, mandatory properties are flagged with an asterisk (*)

6.6. JURA: THE JOB USAGE REPORTER FOR ARC 121

Figure 6.4: The usage reporting mechanism

6.6 JURA: The Job Usage Reporter for ARC

6.6.1 Overview

JURA is a stand-alone binary application which is periodically run by the A-REX (see Figure 6.4). There
is no designated configuration file for JURA, nor is the configuration file of A-REX read directly by the
application. Instead, options related to reporting are included within the job log files generated by the A-
REX or supplied via command line argument. The primary purpose of these job log files is to hold metadata
about jobs starting, running and stopping. This is the main input of JURA.

The application is run periodically. First, it processes the job log files, and based on the target accounting
service specified in them, JURA creates usage records in a format appropriate for the target accounting
service. Then these records are sent to one or more accounting services, referred to as reporting destinations
in this document. Several reporting destinations are supported, these can be configured by the system
administrator in the A-REX configuration file, and in addition, the user submitting the job can specify
destinations in the job description.

About configuration of JURA, see 4.4.7, Accounting with JURA.

6.6.2 Job log files

The A-REX puts the following extra information into the job log files:

• key path – Path to the private key file used when submitting records.

• certificate path – Path to the certificate file used when submitting records.

• ca certificates dir – Directory holding the certificates of trusted CAs.

• accounting options – Additional configuration options for JURA.

The A-REX generates at least two job log files for each job and for each reporting destination: one at the
time of job submission, another one after the job finishes, and possibly others at each start and stop event.

The job log files generated by A-REX reside under the directory <control_dir>/logs. The name of the
job log files consist of the ID of the job and a random string to avoid collision of multiple job log files for
the same job: <jobid>.<random>.

The job log file consists of “name=value” lines, where “value” is either a job-related resource usage data
or a configuration parameter.

If interactive mode is not activated by the “-u” option, after successful submission to a reporting destination,
the job log file is deleted, thus preventing multiple insertion of usage records. If submission fails, the log files

122 CHAPTER 6. TECHNICAL REFERENCE

are kept, so another attempt is made upon a subsequent run of JURA. This mechanism will be repeated until
the expiration time passes at which point the next execution of JURA removes the file without processing.

6.6.3 Archiving

The archiving functionality allows to store generated usage records in a specified directory on the disk. If en-
abled, the generated usage records are written to files named “usagerecord[CAR].<jobid>.<random>”.
If a job log file is processed repeatedly – for example because of temporary connection failures to the remote
accounting service – and a respective usage record archive file already exists, then the usage record is not
generated again. Instead, the contents of the archive file are used without change (the creation time stamp
is also retained).

6.6.4 Reporting to LUTS

In case of non-interactive invocation of JURA by A-REX, the generated URs are submitted to the accounting
services specified by the reporting destination configuration parameters and if present, to the destinations
specified in the job description as well. Under interactive mode of operation, they are submitted to the
services given via the “-u” command line option. Reporting URs to several destinations is possible.

LUTS has a simple custom web service interface loosely based on WS-ResourceProperties[37]. JURA uses the
insertion method of this interface to report URs. The corresponding job log files are deleted after receiving
a non-fault response from the service.

To increase communication efficiency JURA can send URs in batches provided that the server side supports
this feature. LUTS accepts a batch of URs in a single request. The batch is an XML element called
UsageRecords, containing elements representing URs.

The process of handling batches is the following: JURA does not send all usage records immediately after
generation, but instead collects them in a batch until reaching the maximal number of records or until
running out of job log files. The maximal number of URs in a batch can be set as a configuration parameter
of JURA (“jobreport options”, see Section 6.1.12.7).

6.6.5 Reporting to APEL

Reporting mechanism is almost same as the LUTS but here are the different things:

• generated messages are XML based CAR records

• number of entries per messages is 1000

• message sending frequency is only ones per day (APEL suggestion)

• required the use ssl:true archiving option by communication of the production server

• Before first time try to publish entries to the production server use the following bash command in the
<control directry>/logs directory: sed -i ’s/use ssl:false/use ssl:true/g’ *

• APEL publisher[39] transfer the generated records

• APEL publisher[39] use different message path location for every destination where to put the generated
messages that will be transfer.

– path format: /var/spool/arc/ssm/<destination host name>/outgoing/00000000/

– generated file name format in this location: <YYYYMMDDhhmmss>

6.7. THE XML AND THE INI CONFIGURATION FORMATS 123

6.6.6 Re-reporting records

JURA able to re-report records to accounting server only from archived records. This functionality can
be use only from CLI with -r <RANGE> option but in this case the <control dir> parameter must be a
<archived dir> which is an input for a re-report function. This range can be specified in YYYY.MM.DD-
YYYY.MM.DD format. Month and day are optional.
for example:

• 2014

• 2014.9-2015.5

• 2014.9.12-2015.5.2

If you give only years months will be current month and day will be 1th by start and 31 by end date. If you
give only years and months day will be 1th by start and 31 by end date. Starting point is 0:00 by start day
and 23:59 by end date.
Some example how to use this functionality from CLI:

• jura -u <accounting server URL> [-t <topic>] -r 2014 <archived dir>

• jura -u <accounting server URL> [-t <topic>] -r 2014.9-2015.5 <archived dir>

• jura -u <accounting server URL> [-t <topic>] -r 2014.9.3-2015.5 <archived dir>

• jura -u <accounting server URL> [-t <topic>] -r 2014.9-2015.5.19 <archived dir>

• jura -u <accounting server URL> [-t <topic>] -r 2014.9.12-2015.5.2 <archived dir>

6.6.7 Security

The JURA executable runs with the same user privileges as the A-REX. The owner of a job log file is the
local user mapped for the submitter entity of the corresponding job. Since these files contain confidential
data, A-REX restricts access to them allowing only read access for the job owner, thus when JURA is
executed by A-REX it is allowed to read and delete job log files.

All usage records are submitted using the X.509 credentials specified by the value of the jobreport_credentials
value of the A-REX configuration file. No proxies are used.

6.6.8 Mapping of job log entries to usage record properties

See 6.3, Mapping of usage record properties, mandatory properties are flagged with an asterisk (*).

6.7 The XML and the INI configuration formats

This section clarifies the roles of the different configuration file formats used in ARC.

The main service of the ARC Computing Element is the A-REX, which runs in a service container called
the HED. The HED is part of the ARC middlware, it contains a daemon and several loadable modules. The
configuration of the HED can be done with an XML configuration file, which describes how to connect the
several internal components to eachother.

Administrators of the ARC CE usually only uses the arc.conf configuration file. The HED service con-
tainer does not understand the format of the arc.conf file, that’s why the init script of the A-REX has to
parse the arc.conf and generate a configuration file which is suitable for the HED service container.

The low-level configuration format of the HED service container is an XML-based format, which allows for
very fine-grained configuration of all the internal components and other services than the A-REX.

124 CHAPTER 6. TECHNICAL REFERENCE

There is a higher-level configuration possibility, which has the INI format, and which is transformed into
the XML configuration when the HED service container is started. Putting configuration options of the INI
config enables and sets sections of an XML configuration profile.

Although the original arc.conf also has an INI-like format, it should not be confused with the high-level
INI configuration of the HED service container.

To summarize the three configuration formats:

arc.conf parsed by the A-REX init script and the A-REX itself. The init script generates an XML config-
uration from it to configure the HED service container

XML is the low-level configuration format of the HED service container

INI is the high-level configuration format of the HED service container (and it has nothing to do with the
arc.conf)

For details on the XML and INI configuration, please see [24].

6.8 The internals of the service container of ARC (the HED)

This section describes the internal components of the ARC service container.

The main service of the ARC Computing Element is the A-REX, which runs in a service container called
the HED. The HED is part of the ARC middlware, it contains a daemon and several loadable modules. The
configuration of the HED can be done with an XML configuration file, which describes how to connect the
several internal components to eachother. Here follows a short description of these internal components.

6.8.1 The MCCs

The HED service container has zero or more message chains. A message chain can contain Message Chain
Components (MCCs), Plexers and Services. These components are passing messages to eachother, which
messages can have various extra attributes which also can be read and set by these components.

An MCC gets a message from a previous MCC, does something with it, passes it to the next MCC (or Plexer
or Service), then “waits” for the response of this next MCC, then it does something with the response and
passes it back to the previous MCC. (In case of the server-side TCP MCC, it is listening on a network port,
and gets the message from there, not from another MCC, and the response will be sent back to the network,
not to another MCC—the client-side TCP MCC is not listening but opening a connection to a host and port
and sending the message into it.)

The Plexer checks the path of the destination of the message, and based on the matching of regular expres-
sions it sends the message to one of the configured Services (or other MCCs or Plexers). The path checked
by the Plexer comes from a message attribute called “ENDPOINT”. The Plexer treats this as a URL, and
uses the “path” part of it. This message attribute is set by the MCCs before the Plexer, usually by the
HTTP MCC, which puts the URL of the HTTP request there. (But it is possible that a SOAP request
contains a WS-Addressing information with an endpoint in it, then this will be set as “ENDPOINT” by the
SOAP MCC.)

A Service processes the message and produces a result which it will pass back to the previous element
(Plexer, MCC). If we only have one web service in a chain which lives at the root HTTP path (e.g.
https://hostname:port), then we don’t need a Plexer. If we want to run a Service without any interface,
then we don’t need MCCs, we can have a chain with a single Service inside.

The XML configuration of the HED has “Chain” XML elements which contains the MCCs (in XML elements
called “Component”) and Plexers (“Plexer”) and Services (“Service”).

The MCCs:

TCP handles the external network communication (IPv4 and IPv6)

6.8. THE INTERNALS OF THE SERVICE CONTAINER OF ARC (THE HED) 125

TLS handles the TLS/SSL connection, it is usually directly after the TCP MCC, it extracts information
from the message like the Subject Name (DN) of the client

HTTP handles HTTP communication, should be directly after the TLS MCC (or can be directly after
the TCP MCC, if we want HTTP without TLS security). The HTTP MCC can route the message
to different components depending on the HTTP method (POST, GET, PUT, HEAD). Usually the
POST method goes through the SOAP MCC, while the others skip the SOAP handling.

SOAP handles the SOAP communication. To use it, the HTTP MCC should directly route the POST
message to the SOAP MCC.

If there is a Plexer, a useful configuration could be the following: the HTTP MCC sends the POST messages
through the SOAP MCC to the Plexer, and sends the GET, PUT and HEAD messages directly to the Plexer.
Then there are several Services sitting after the Plexer, and the Plexer would route the message to a selected
service based on the configured regular expressions. The Plexer can handle messages from the HTTP MCC
and from the SOAP MCC as well (actually, from the TCP MCC also, but that’s currently not useful at all,
because there is no endpoint path in that case). This enables services like the A-REX to handle both SOAP
messages and non-SOAP requests (e.g. uploading input files through HTTP).

6.8.2 The SecHandlers

All MCCs and Services can have zero or more Security Handlers (SecHandlers) in one or more queues.
Usually an MCC (or a Service) has two queues, one for the incoming message, and the other for the outgoing
response. When the message comes into an MCC, the first SecHandler in the incoming queue gets it, and
checks it. If it says “denied” then the message will be discarded and an error message will be sent back as
a respone. If it says “ok” then the next SecHandler in the queue gets it, etc.

The SecHandlers adds security attributes to the message, which can be used later by other SecHandlers or
Services (e.g. the A-REX can use them to figure out which user to map to).

In the XML configuration of the HED each MCC or Service element can have zero or more SecHandler
elements, which specifies the name of the SecHandler (based on this name, the binary plugin will be loaded)
and the name of the queue (called “event”: incoming or outgoing).

ARC has the following SecHandlers:

• ArgusPEPClient (arguspepclient.map)

• ArgusPDPClient (arguspdpclient.map)

• IdentityMap (identity.map)

• DelegationCollector (delegation.collector)

• ArcAuthZ (arc.authz)

• DelegationSH (delegation.handler)

• LegacyMap (arclegacy.map)

• LegacySecHandler (arclegacy.handler)

• SAML2SSO AssertionConsumerSH (saml2ssoassertionconsumer.handler)

• SAMLTokenSH (samltoken.handler)

• UsernameTokenSH (usernametoken.handler)

Each of them has an associated PluginDescriptor object, which are used the create the .apd files (Arc
Plugin Description) which can be found next the the loadable modules (libraries on linux) in the installed
location (e.g. /usr/local/lib/arc). The .apd files are generated by the arcplugin utility, and they
are used by the HED when it tries to find the plugin based on its name. (If there are no .apd files, then all
the modules have to be loaded in order to find the plugins, which takes more time.)

126 CHAPTER 6. TECHNICAL REFERENCE

The names of the SecHandlers sometimes contains .map or .handler or .authz as a suffix. This is just
a naming convention, they are all Security Handlers.

The most important SecHandlers:

IdentityMap

This security handler tries to map the Grid user (the DN which comes from the TLS MCC) to a local
user. If it finds a local user, it puts the username into a security attribute which can be used later by other
components. (This SecHandler never denies the message going forward, the worst thing can happen is that
it doesn’t find a local user, so the security attribute will be empty.)

It has three ways to do the mapping:

LocalName always maps to the specified local user regardless of the DN

LocalList uses the familiar grid-map file format to find the local name

LocalSimplePool maps to a pool of local user in a way that only one DN should be mapped to one local
user (and a directory will contain the current mappings)

This SecHandler uses plugins called PDPs, see later.

ArcAuthZ

This is the main ARC security handler, which uses a couple of plugins (PDPs) to decide if a connection
should go through or should be stopped and denied. (This does not do any Grid user – local user mapping.)
So when a message arrives to the ArcAuthZ SecHandler, it will run the configured PDPs, and if any of them
says “denied” then the message will be denied. If all the PDPs say “ok”, then the message can go forward
(this behaviour can be changed by configuration). About the PDPs, see later.

LegacyMap

This SecHandler does user mapping, it uses the arc.conf and does the mapping according to the unixgroup,
unixvo and unixmap configuration parameters.

LegacySecHandler

This SecHandler does not map to local user or deny messages, only collects information which will be used
later by the LegacyMap SecHandler (and by the Legacy PDP, see next section). It uses the arc.conf, and
figures out which VOs and Groups the user belongs to.

ArgusPEPClient and ArgusPDPClient

These modules communicate to Argus PEP and PDP servers to obtain authorization and optional user
mapping decision.

6.8.3 The PDPs

Some of the SecHandlers use another layer of plugins, which are called Policy Decision Points (PDPs).
(Currently only the IdentityMap and the ArcAuthZ SecHandlers use PDPs.) These SecHandlers have a
queue of PDPs and they run them one by one, doing different things based on the results. The IdentityMap
plugin has a given mapping policy (user, list, pool) for each PDP, and at the first PDP which returns “ok”,
it will stop running further PDPs and use the mapping policy configured for the given PDP. The ArcAuthZ
runs all the PDPs, and only accepts the message if all of them returns “ok”. (Although it can be configured
differently, e.g. to accept the message if at least one PDP says “ok”, or only accept a message if a PDPs
says “deny”, etc.)

6.9. HOW THE A-REX INIT SCRIPT CONFIGURES THE HED 127

The current PDPs:

• LegacyPDP (arclegacy.pdp)

• SimpleListPDP (simplelist.pdp)

• ArcPDP (arc.pdp)

• XACMLPDP (xacml.pdp)

• PDPServiceInvoker (pdpservice.invoker)

• DelegationPDP (delegation.pdp)

• AllowPDP (allow.pdp)

• DenyPDP (deny.pdp)

The most important ones:

LegacyPDP

This one check the previously set (by the LegacySecHandler) Group and VO attributes, and it also checks
the arc.conf, and figures out if the given user is allowed or not.

SimpleListPDP

This one checks a given file with a list of DNs (can be a grid-map file), and only accepts messages from DNs
listed in the file.

ArcPDP

This one parses policy file written in a general purpose policy language (developed by KnowARC) and makes
a decision based on it.

AllowPDP

This one always allows.

DenyPDP

This one always denies.

6.9 How the a-rex init script configures the HED

The a-rex init script extracts information from the arc.conf, and creates an XML configuration for the
HED. The A-REX service (living inside the HED) itself uses the arc.conf to configure itself, but there is a
higher layer of configuration options which has to be set in the HED directly (e.g. authentication of the TLS
communication), this configuration parameters has to be extracted from the arc.conf before the A-REX
can even be started, and a proper XML configuration has to be assembled to configure the HED itself.

The a-rex init script first decides if the A-REX would have a web service interface or not. If the web
service is disabled, then the XML configuration of the HED would look like this:

128 CHAPTER 6. TECHNICAL REFERENCE

<?xml version="1.0"?>
<ArcConfig
xmlns="http://www.nordugrid.org/schemas/ArcConfig/2007"
xmlns:arex="http://www.nordugrid.org/schemas/a-rex/Config">
<Server>

<PidFile>$PID_FILE</PidFile>
<Logger>

<File>$LOGFILE</File>
<Level>$LOGLEVEL</Level>
<Backups>$LOGNUM</Backups>
<Maxsize>$LOGSIZE</Maxsize>
<Reopen>$LOGREOPEN</Reopen>

</Logger>
</Server>
<ModuleManager>

<Path>$ARC_LOCATION/@pkglibsubdir@/</Path>
</ModuleManager>
<Plugins><Name>arex</Name></Plugins>
<Chain>

<Service name="a-rex" id="a-rex">
<arex:gmconfig>$ARC_CONFIG</arex:gmconfig>

</Service>
</Chain>
</ArcConfig>

The variables (names starting with a dollar sign) are substituted with values from the arc.conf. Here the
message chain contains only a single A-REX service, which has one single config parameter: “gmconfig”,
which points to the location of the arc.conf. In this case the A-REX does not have any HTTP or SOAP
interfaces, no SecHandlers, no PDPs, because everything is done by the GridFTP Server, which has a
separate init script, it is a separate process, and it has all the authentication and authorization mechanisms
built-in.

When the web service interface is enabled, then the job submission through the web service interface would
go through through the following components:

• a TCP MCC listening on the given port:

<Component name="tcp.service" id="tcp">
<next id="tls"/>
<tcp:Listen><tcp:Port>$arex_port</tcp:Port></tcp:Listen>

</Component>

• a TLS MCC using the key and certificate and CA paths from the arc.conf, trusting all the VOMS
servers, having a specific VOMSProcessing (relaxed, standard, strict, noerrors), having an IdentityMap
SecHandler which uses the given gridmapfile to map the Grid users and maps to “nobody” in case of
error, then having a LegacySecHandler which uses the arc.conf to match the client to groups and VOs
configured there:

<Component name="tls.service" id="tls">
<next id="http"/>
<KeyPath>$X509_USER_KEY</KeyPath>
<CertificatePath>$X509_USER_CERT</CertificatePath>
<CACertificatesDir>$X509_CERT_DIR</CACertificatesDir>
<VOMSCertTrustDNChain>

<VOMSCertTrustRegex>.*</VOMSCertTrustRegex>
</VOMSCertTrustDNChain>
<VOMSProcessing>$VOMS_PROCESSING</VOMSProcessing>
<!-- Do initial identity mappping by gridmap file -->

6.9. HOW THE A-REX INIT SCRIPT CONFIGURES THE HED 129

<SecHandler name="identity.map" id="map" event="incoming">
<PDP name="allow.pdp"><LocalList>$GRIDMAP</LocalList></PDP>
<PDP name="allow.pdp"><LocalName>nobody</LocalName></PDP>

</SecHandler>
<!-- Match client to legacy authorization groups -->
<SecHandler name="arclegacy.handler" event="incoming">

<ConfigFile>$ARC_CONFIG</ConfigFile>
</SecHandler>

</Component>

• one HTTP MCC, one SOAP MCCs, and the Plexer, with POST messages going through SOAP to
the Plexer, GET/PUT/HEAD messages going directly to the Plexer, which checks if the path is the
configured arex_path, if yes, it sends the message to the A-REX, otherwise fails:

<Component name="http.service" id="http">
<next id="soap">POST</next>
<next id="plexer">GET</next>
<next id="plexer">PUT</next>
<next id="plexer">HEAD</next>

</Component>
<Component name="soap.service" id="soap">

<next id="plexer"/>
</Component>
<Plexer name="plexer.service" id="plexer">

<next id="a-rex">ˆ/$arex_path</next>
</Plexer>

• then the A-REX itself, with ArcAuthZ SecHandler containing a single LegacyPDP which will decide
based on the [gridftpd/jobs] section of arc.conf if this message can go through or should be
denied, then a LegacyMap SecHandler which uses the [gridftpd] section of arc.conf to figure out
which local user should the Grid user be mapped to, then the full URL of the A-REX is given to the
service (which in theory could be figured out from the incoming messages, but it is safer to be set
explicitly), then the location of the arc.conf is given to the service (otherwise it wouldn’t know),
then some extra limits are set:

<Service name="a-rex" id="a-rex">
<!-- Do authorization in same way as jobs plugin of gridftpd does -->
<!-- Beware of hardcoded block name -->
<SecHandler name="arc.authz" event="incoming">

<PDP name="arclegacy.pdp">
<ConfigBlock>

<ConfigFile>$ARC_CONFIG</ConfigFile>
<BlockName>gridftpd/jobs</BlockName>

</ConfigBlock>
</PDP>

</SecHandler>
<!-- Perform client mapping according to rules of gridftpd -->
<SecHandler name="arclegacy.map" event="incoming">

<ConfigBlock>
<ConfigFile>$ARC_CONFIG</ConfigFile>
<BlockName>gridftpd</BlockName>

</ConfigBlock>
</SecHandler>
<arex:endpoint>$arex_mount_point</arex:endpoint>
<arex:gmconfig>$ARC_CONFIG</arex:gmconfig>
<arex:InfosysInterfaceMaxClients>

$MAX_INFOSYS_REQUESTS
</arex:InfosysInterfaceMaxClients>

130 CHAPTER 6. TECHNICAL REFERENCE

<arex:JobControlInterfaceMaxClients>
$MAX_JOB_CONTROL_REQUESTS

</arex:JobControlInterfaceMaxClients>
<arex:DataTransferInterfaceMaxClients>

$MAX_DATA_TRANSFER_REQUESTS
</arex:DataTransferInterfaceMaxClients>

</Service>

In summary, A-REX is usually started with the a-rex init script, which parses the arc.conf and creates
an XML configuration, then starts the HED. This configuration uses the IdentityMap SecHandler to do an
initial user mapping based on the configured grid-map file, if it fails, it maps to “nobody”, then it uses the
LegacySecHandler to match the user to Groups and VOs configured in arc.conf, then it uses the ArcAuthZ
SecHandler with a LegacyPDP inside to allow or deny connections based on the authorization configured in
the [gridftpd/jobs] section of the arc.conf (and the previously collected Group and VO information),
then the LegacyMap SecHandler tries to map the Grid user to a local user based on the [gridftpd] section
of arc.conf (and the previously collected Group and VO information).

6.10 Structure of the grid-mapfile

The following is not needed to setup a production environment but is described here as a reference.

A grid-mapfile is a simple text file. Each line is a record of the form

<grid identity certificate DN> <unix local account>

For each user that will connect to the CE, a Distinguished Name or DN contained in each user’s certificate
will be needed. Many Grid users can map to the same unix account.

A sample grid-mapfile is shown below:

"/DC=eu/DC=KnowARC/O=Lund University/CN=demo1" griduser1
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo2" griduser1
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo3" griduser2
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo4" griduser2
"/DC=eu/DC=KnowARC/O=Lund University/CN=demo5" griduser2

Please refer to the certificate mini How-to to strip out the subject from Grid identity certificates.

6.11 Internal files of the A-REX

A-REX stores information about jobs in files in the control directory. Information is stored in files to make it
easier to recover in case of failure, but for faster processing job state is also held in memory while A-REX is
running. All files belonging to the same job have names starting with job.ID., where ID is the job identifier.

The files in the control directory and their formats are described below:

• job.ID.status – current state of the job. This is a plain text file containing a single word representing
the internal name of current state of the job. Possible values and corresponding external job states
are:

– ACCEPTED

– PREPARING

– SUBMIT

– INLRMS

– FINISHING

http://www.nordugrid.org/documents/certificate_howto.html

6.11. INTERNAL FILES OF THE A-REX 131

– FINISHED

– CANCELING

– DELETED

See Section 6.3 for a description of the various states. Additionally each value can be prepended the
prefix “PENDING:” (like PENDING:ACCEPTED, see Section 6.3). This is used to show that a job
is ready to be moved to the next state but it has to stay in it’s current state only because otherwise
some limits set in the configuration would be exceeded.

This file is not stored directly in the control directory but in the following sub-directories:

– accepting - for jobs in ACCEPTED state

– finished - for jobs in FINISHED and DELETED states

– processing - for other states

– restarting - temporary location for jobs being restarted on user request or after restart of A-REX

• job.ID.description – contains the description of the job (JD).

• job.ID.local – information about the job used by the A-REX. It consists of lines of format “name =
value”. Not all of them are always available. The following names are defined:

– globalid – job identifier as seen by user tools. Depending on used interface it is either BES
ActivityIdentifier XML tree, GUID of EMI ES or GridFTP URL.

– headnode – URL of service interface used to submit this job.

– interface – name of interface used for jobs submission - org.nordugrid.xbes, org.ogf.glue.emies.activitycreation
or org.nordugrid.gridftpjob.

– lrms – name of the LRMS backend to be used for local submission

– queue – name of the queue to run the job at

– localid – job id in LRMS (appears only after the job reached state InLRMS)

– args – main executable name followed by a list of command-line arguments

– argscode – code which main executable returns in case of success

– pre – executable name followed by a list of command-line arguments for executable to run before
main executable. There maybe few of them

– precode – code which pre-executable returns in case of success

– post – executable name followed by a list of command-line arguments for executable to run after
main executable. There maybe few of them

– postcode – code which post-executable returns in case of success

– subject – user certificate’s subject, also known as the distinguished name (DN)

– starttime – GMT time when the job was accepted represented in the Generalized Time format of
LDAP

– lifetime – time period to preserve the SD after the job has finished in seconds

– notify – email addresses and flags to send mail to about the job specified status changes

– processtime – GMT time when to start processing the job in Generalized Time format

– exectime – GMT time when to start job execution in Generalized Time format

– clientname – name (as provided by the user interface) and IP address:port of the submitting client
machine

– clientsoftware – version of software used to submit the job

– rerun – number of retries left to rerun the job

– priority – data staging priority (1 - 100)

– downloads – number of files to download into the SD before execution

– uploads – number of files to upload from the SD after execution

132 CHAPTER 6. TECHNICAL REFERENCE

– jobname – name of the job as supplied by the user

– projectname – name of the project as supplied by the user. There may be few of them

– jobreport – URL of a user requested accounting service. The A-REX will also send job records to
this service in addition to the default accounting service configured in the configuration. There
may be few of them

– cleanuptime – GMT time when the job should be removed from the cluster and it’s SD deleted
in Generalized Time format

– expiretime – GMT time when the credentials delegated to the job expire in Generalized Time
format

– gmlog – directory name which holds files containing information about the job when accessed
through GridFTP interface

– sessiondir – the job’s SD

– failedstate – state in which job failed (available only if it is possible to restart the job)

– failedcause – contains internal for jobs failed because of processing error and client if client
requested job cancellation.

– credentialserver – URL of MyProxy server to use for renewing credentials.

– freestagein – yes if client is allowed to stage-in any file

– activityid – Job-id of previous job in case the job has been resubmitted or migrated. This value
can appear multiple times if a job has been resubmitted or migrate more than once.

– migrateactivityid –

– forcemigration – This boolean is only used for migration of jobs. It determines whether the job
should persist if the termination of the previous job fails.

– transfershare – name of share used in Preparing and Finishing states.

This file is filled partially during job submission and fully when the job moves from the Accepted to
the Preparing state.

• job.ID.input – list of input files. Each line contains 3 values separated by a space. First value contains
name of the file relative to the SD. Second value is a URL or a file description. Example:

input.dat gsiftp://grid.domain.org/dir/input 12378.dat

A URL represents a location from which a file can be downloaded. Each URL can contain additional
options.

A file description refers to a file uploaded from the UI and consists of [size][.checksum] where

size - size of the file in bytes.

checksum - checksum of the file identical to the one produced by cksum (1).

These values are used to verify the transfer of the uploaded file. Both size and checksum can be left
out. A special kind of file description *.* is used to specify files which are not required to exist.

The third optional value is path to delegated credentials to be used for communication with remote
server.

This file is used by the data staging subsystem of the A-REX. Files with URL will be downloaded to
the SD or cache and files with ’file description’ will simply be checked to exist. Each time a new valid
file appears in the SD it is removed from the list and job.ID.input is updated.

• job.ID.input status – contains list of files uploaded by client to the SD.

• job.ID.output – list of output files. Each line contains 1, 2 or 3 values separated by a space. First value
is the name of the file relative to the SD. The second value, if present, is a URL. Supported URLs are
the same as those supported by job.ID.input. Optional 3rd value is path to delegated credentials to
be used while accessing remote server.

This file is used by the data staging subsystem of the A-REX. Files with URL will be uploaded to
SE and remaining files will be left in the SD. Each time a file is uploaded it is removed from the list
and job.ID.output is updated. Files not mentioned as output files are removed from the SD at the
beginning of the Finishing state.

6.12. ENVIRONMENT VARIABLES SET FOR THE JOB SUBMISSION SCRIPTS 133

• job.ID.output status – list of output files successfully pushed to remote locations.

• job.ID.failed – the existence of this file marks the failure of the job. It can also contain one or more
lines of text describing the reason of failure. Failure includes the return code different from zero of the
job itself.

• job.ID.errors – this file contains the output produced by external utilities like data staging, script for
job submission to LRMS, etc on their stderr handle. Those are not necessarily errors, but can be just
useful information about actions taken during the job processing. In case of problem include content
of that file while asking for help.

• job.ID.diag – information about resources used during execution of job and other information suitable
for diagnostics and statistics. It’s format is similar to that of job.ID.local. The following names are at
least defined:

– nodename – name of computing node which was used to execute job,

– runtimeenvironments – used runtime environments separated by ’;’,

– exitcode – numerical exit code of job,

– frontend distribution – name and version of operating system distribution on frontend computer,

– frontend system – name of operating on frontend computer,

– frontend subject – subject (DN) of certificate representing frontend computer,

– frontend ca – subject (DN) of issuer of certificate representing frontend computer,

and other information provided by GNU time utility. Note that some implementations of time insert
unrequested information in their output. Hence some lines can have broken format.

• job.ID.proxy – delegated X509 credentials or chain of public certificates.

• job.ID.proxy.tmp – temporary X509 credentials with different UNIX ownership used by processes run
with effective user id different from job owner’s id.

• job.ID.statistics – statistics on input and output data transfer

• delegations – sub-directory containing collection of delegated credentials.

• logs – sub-directory with information prepared for reporting plugins.

There are other files with names like job.ID.* which are created and used by different parts of the A-REX.
Their presence in the control directory can not be guaranteed and can change depending on changes in the
A-REX code.

6.12 Environment variables set for the job submission scripts

The A-REX comes with support for several LRMS. Features explained below are for PBS/Torque backend,
but for the other backends the behaviour is similar. This support is provided through submit-pbs-job, cancel-
pbs-job, scan-pbs-job scripts. submit-pbs-job creates job’s script and submits it to PBS. Created job’s script
is responsible for moving data between frontend machine and cluster node (if required) and execution of
actual job. Alternatively it can download input files and upload output if “localtransfer=no” is specified in
the configuration file.

Behavior of submission script is mostly controlled using environment variables. Most of them can be specified
on frontend in A-REX’s environment and overwritten on cluster’s node through PBS configuration. Some
of them may be set in configuration file too.

PBS BIN PATH – path to PBS executables. Like /usr/local/bin for example. Corresponds to pbs bin path
configuration command.

PBS LOG PATH – path to PBS server logs. Corresponds to pbs log path configuration command.

TMP DIR – path to directory to store temporary files. Default value is /tmp. Corresponds to tmpdir
configuration command.

134 CHAPTER 6. TECHNICAL REFERENCE

RUNTIME CONFIG DIR – path where runtime setup scripts can be found. Corresponds to runtimedir
configuration command.

GNU TIME – path to GNU time utility. It is important to provide path to utility compatible with GNU
time. If such utility is not available, modify submit-pbs-job to either reset this variable or change usage of
available utility. Corresponds to gnu time configuration command.

NODENAME – command to obtain name of cluster’s node. Default is /bin/hostname -f. Corresponds to
nodename configuration command.

RUNTIME LOCAL SCRATCH DIR – if defined should contain path to the directory on computing
node, which can be used to store job’s files during execution. scratchdir configuration command.

RUNTIME FRONTEND SEES NODE – if defined should contain path corresponding to
RUNTIME LOCAL SCRATCH DIR as seen on frontend machine. Corresponds to shared scratch config-
uration command.

RUNTIME NODE SEES FRONTEND – if set to “no” means computing node does not share file
system with frontend. In that case content of the SD is moved to computing node by using means provided
by the LRMS. Results are moved back after job’s execution in a same way. Corresponds to shared filesystem
configuration command.

For the last options, see Section 6.13, Using a scratch area

6.13 Using a scratch area

Figures 6.5, 6.6 and 6.7 present some possible combinations for RUNTIME LOCAL SCRATCH DIR and
RUNTIME FRONTEND SEES NODE and explain how data movement is performed. Figures a) correspond
to the situation right after all input files are gathered in the session directory and actions taken right after
the job script starts. Figures b) show how it looks while the job is running and actions which are taken right
after it has finished. Figures c) show the final situation, when job files are ready to be uploaded to external
storage elements or be downloaded by the user.

Frontend Cluster node

Session directory Session directory

Figure 6.5: Both RUNTIME LOCAL SCRATCH DIR and RUNTIME FRONTEND SEES NODE unde-
fined. Job is executed in a session directory placed on the frontend.

6.14 Web Service Interface

The A-REX Web Service Interface provides means to submit a description of a computational job to a
computing resource, to stage-in additional data, to monitor and control processing of jobs, and obtain
data produced during the execution of a job. The WS Interface is built and deployed inside the Hosting
Environment Daemon (HED) infrastructure [27].

6.14.1 Basic Execution Service Interface

The job submission and control interface is based on a document produced by the OGF OGSA Basic
Execution Services (BES) Working Group [31].

6.14. WEB SERVICE INTERFACE 135

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session directory Session directory
imported from
frontend

Job files

Scratch directory
Copy of session dir.

stdout+stderr stdout+stderr

COPY before execution

SOFT-LINKS

MOVE after execution

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

a)

b)

c)

Figure 6.6: RUNTIME LOCAL SCRATCH DIR is set to a value representing the scratch directory on the
computing node, RUNTIME FRONTEND SEES NODE is undefined.

a) After the job script starts all input files are moved to the “scratch directory” on the computing node.

b) The job runs in a separate directory in “scratch directory”. Only files representing the job’s stdout
and stderr are placed in the original “session directory” and soft-linked in “scratch”. After execution
all files from “scratch” are moved back to the original “session directory”.

c) All output files are in “session directory” and are ready to be uploaded/downloaded.

136 CHAPTER 6. TECHNICAL REFERENCE

Job files

Frontend Cluster node

Session directory Session directory

Scratch directory

Job files

Frontend Cluster node

Session link

Job files

Scratch directory
Session directory

COPY before execution

MOVE after execution

a)

b)

Scratch directory

Job files

Session directory

Scratch directory

Frontend Cluster node

Scratch directory
c)

Scratch directory

SOFT-LINK

Session directory

Session link

Job files

Session directory

Figure 6.7: RUNTIME LOCAL SCRATCH DIR and RUNTIME FRONTEND SEES NODE are set to
values representing the scratch directory on the computing node and a way to access that scratch directory
from the frontend respectively.

a) After the job script starts, all input files are moved to “scratch directory” on the computing node. The
original “session directory” is removed and replaced with a soft-link to a copy of the session directory
in “scratch” as seen on the frontend.

b) The job runs in a separate directory in “scratch directory”. All files are also available on the frontend
through a soft-link. After execution, the soft-link is replaced with the directory and all files from
“scratch” are moved back to the original “session directory”

c) All output files are in “session directory” and are ready to be uploaded/downloaded.

6.14. WEB SERVICE INTERFACE 137

The exchange of SOAP messages is performed via HTTP(S). The BES interface is represented by two port-
types – BES-Management and BES-Factory. The former is made to control the A-REX service itself and thus
defines operations to start and stop the functionality of the BES service. The A-REX does not implement
remote control of service functionality. Hence the BES-Management port-type is not functional. The BES-
Factory port-type provides operations to submit new jobs (to create an activity in terms of BES) and to
monitor its state. It also has an ability to provide information about the service. A-REX fully implements
the functionality of this port-type.

For job descriptions A-REX accepts the Job Submission Description Language (JSDL) [26] documents as de-
fined by the OGF Job Submission Description Language Working Group. Supported elements and extensions
are described below.

6.14.2 Extensions to OGSA BES interface

A-REX introduces two new operations in addition to those provided by BES. It does that by defining its
own port-type with new operations ChangeActivityStatus and MigrateActivity.

The ChangeActivityStatus operation provides a way to request simple transfers between states of jobs and
corresponding actions.

• ChangeActivityStatus

– Input

∗ ActivityStatusType OldStatus: Description of the state the job is supposed to be in during
execution of this request. If the current state of the job is different from the one having been
given, the operation is aborted and a fault is returned. This parameter is optional.

∗ ActivityStatusType NewStatus: Description of the state the job is to be put into.

– Output

∗ ActivityStatusType NewStatus: Description of the current state of the job.

– Fault(s)

∗ NotAuthorizedFault : Indicates that the client is not allowed to do this operation.

∗ InvalidActivityIdentifierFault : There is no such job/activity.

∗ CantApplyOperationToCurrentStateFault : The requested transition is not possible.

On result of this command, the job should be put into the requested state. If such a procedure cannot
be performed immediately then the corresponding sequence is initiated and fault OperationWillBeAp-
pliedEventuallyFault will be returned.

Since BES allows implementations to extend their initial activity states with additional sub-states,
A-REX defines a set of sub-states of activity processing in addition to those defined by the BES, as
listed in Table 6.1. Their meaning is described in Section 6.3.

The MigrateActivity operation generates a request to migrate a grid job from another A-REX, i.e. the
operation will get input files and possibly job description from the cluster currently holding the job
and create the job as a new activity at the present cluster. Currently only migration of queuing jobs
is supported.

• MigrateActivity

– Input

∗ wsa:EndpointReferenceType ActivityIdentifier : This element should contain the wsa:EndpointReference
of the job to be migrated.

∗ ActivityDocument : JSDL document of the job to be migrated. This element is optional.

∗ Boolean ForceMigration: Boolean that determines whether the job will persist on the new
cluster if the termination of the previous job fails.

– Output

∗ wsa:EndpointReferenceType ActivityIdentifier : This element should contain the wsa:EndpointReference
of the new activity.

138 CHAPTER 6. TECHNICAL REFERENCE

∗ ActivityDocument : Contains the JSDL document of the new activity.

– Fault(s)

∗ NotAuthorizedFault : Indicates that the client is not allowed to do this operation.

∗ NotAcceptingNewActivitiesFault : A fault that indicates that A-REX currently is not accepting
new activities.

∗ UnsupportedFeatureFault : This fault indicates that an sub-element in the JDSL document is
not supported or the ActivityDocument has not been recognised as JSDL.

∗ InvalidRequestMessageFault : This fault indicates that an element in the request is either
missing or has an invalid format. Typically this would mean that the job-id cannot be
located in the ActivityIdentifier of the old job.

The ActiviterIdentifier specifies the URL of the job which will be migrated. In case the ActivityDocument
is filled this document will be used to create a new activity otherwise an attempt will be made to retrieve
the job description through the BES operation GetActivityDocument.

Once the input files have been downloaded from the other cluster, a request will be send to terminate the old
job. If this request fails the new activity at the present cluster will be terminate unless the ForceMigration
is true. This is to prevent the job from being executed at two different places at the same time.

6.14.3 Delegation Interface

The A-REX also supports the Delegation Interface.This is a common purpose interface to be used by ARC
services which accepts delegated credentials from clients. The Delegation Interface implements two oper-
ations: initialization of credentials delegation (DelegateCredentialsInit) and update/renewal of credentials
(UpdateCredentials).

• DelegateCredentialsInit operation – this operation performs the first half of the credentials delegation
sequence.

– Input

∗ None. On this request the service generates a pair of public and private keys. The public key
is then sent to the client in response.

– Output(s)

∗ TokenRequestType TokenRequest : Contains the public key generated by the service as a Value
element. It also provides an identifier in the Id element which should be used to refer to the
corresponding private key.

– Fault(s)

∗ UnsupportedFault : Indicates that the service does not support this operation despite sup-
porting the port-type.

∗ ProcessingFault : Internal problems during generation of the token.

• UpdateCredentials operation – this operation makes it possible to update the content of delegated
credentials (like in the case of credentials being renewed) unrelated to other operations of the service.

– Input

∗ DelegatedTokenType DelegatedToken: Contains an X509 proxy certificate based on the public
key from the DelegateCredentialsInit signed by the user’s proxy certificate. Also includes the
Id element which identifies the private key stored at the service side associated with these
credentials. The reference element refers to the object to which these credentials should be
applied in a way specific to the service. The same element must also be used for delegating
credentials as part of other operations on service.

– Output(s)

∗ None.

– Fault(s)

6.14. WEB SERVICE INTERFACE 139

Table 6.1: Job states definitions and mappings

Applicable
BES state

ARC BES
sub-state

EMI ES state
ARIS
state

A-REX
internal state

Description

Pending Accepting ACCEPTED ACCEPTED

Job is in the process of being sub-
mitted. This state is not recognised
by the A-REX yet. Accepted is first
reported state

Accepted ACCEPTED ACCEPTED Job was submitted

Preparing PREPROCESSING PREPARING Stage-in process is going on

Prepared PREPROCESSING
PREPARING
+ PENDING

Stage-in process has finished

Submitting
PROCESSING-
ACCEPTING

SUBMIT
Communication with local batch
system is in process

Running Queued
PROCESSING-

RUNNING
INLRMS

Job entered local batch system but
is not runnning now. This state is
not recognised by the A-REX yet.
Executing is reported instead

Executing
PROCESSING-

RUNNING
INLRMS

Job is being executed in local batch
system

Executed
PROCESSING-

RUNNING

INLRMS,
INLRMS +
PENDING

Job execution in local batch system
has finished. The A-REX dos not
detect job states inside local batch
system yet. As result this state is
reported only if job is Pending.

Killing PROCESSING CANCELING
Communication with local batch
system to terminate execution is in
process

Finishing POSTPROCESSING FINISHING Stage-out process is going on

Cancelled Killed TERMINAL FINISHED

Job was stopped by explicit user re-
quest. The A-REX currently does
not remember this request. Failed
is reported instead.

Failed Failed TERMINAL FINISHED
There was a failure during execu-
tion

Finished Finished TERMINAL FINISHED Job finished successfully

Finished Deleted TERMINAL DELETED
Job finished and was left in A-REX
too long

All Pending PENDING

Job is prevented from going to the
next state due to some internal lim-
its; this sub-state appears in paral-
lel with other sub-states

All Held

Job processing is suspended on
client request; this sub-state ap-
pears in parallel with other sub-
states. This state is reserved for
future and is not implemented yet.

140 CHAPTER 6. TECHNICAL REFERENCE

∗ UnsupportedFault : Indicates that service does not support this operation despite supporting
the port-type.

∗ ProcessingFault : Internal problems during generation of the token.

Additionally, A-REX Web Service Interface allows delegation to be performed as part of the CreateActivity
operation of the BES-Factory port-type. For this it accepts the element DelegatedCredentials inside the
CreateActivity element. The Id element of DelegatedCredentials must contain an identifier obtained in
response to the previous DelegateCredentialsInit operation. For more information about delegations and
delegation interface refer to [37].

6.14.4 Local Information Description Interface

The A-REX implements the Local Information Description Interface (LIDI) interface common for all ARC
services. This interface is based on OASIS Web Services Resource Properties specification [37]. Information
about resources and maintained activities/jobs are represented in a WS-Resource Properties informational
XML document. The document type is defined in the A-REX WSDL as a ResourceInformationDocument-
Type. It contains the following elements/resources:

nordugrid – description of computing resource that uses NorudGrid LDAP schema [34] converted to
XML document.

Domains – description of a computation resource that uses Glue2 schema.

All information can be accessed either through requests on particular resources or through XPath queries
using WS-Resource Properties operations.

6.14.5 Supported JSDL elements

A-REX supports the following elements from the JSDL version 1.0 specification [26] including POSIX Ap-
plications extension and JSDL HPC Profile Application Extension [32]:

JobName – name of the job as assigned by the user.

Executable (POSIX,HPC) – name of the executable file.

Argument (POSIX,HPC) – arguments the executable will be launched with.

DataStaging

Filename – name of the data file on the executing node.

Source – source where the file will be taken from before execution.

Target – destination the file will be delivered to after execution.

Input (POSIX,HPC) – file to be used as standard input for the executable.

Output (POSIX,HPC) – file to be used as standard output for the executable.

Error (POSIX,HPC) – file to be used as standard error for the executable.

MemoryLimit (POSIX) – amount of physical memory needed for execution.

TotalPhysicalMemory – same as MemoryLimit.

IndividualPhysicalMemory – same as MemoryLimit.

CPUTimeLimit (POSIX) – maximal amount of CPU time needed for execution.

TotalCPUTime – same as CPUTimeLimit.

IndividualCPUTime – same as CPUTimeLimit.

WallTimeLimit (POSIX) – amount of clock time needed for execution.

TotalCPUCount – number of CPUs needed for execution.

IndividualCPUCount – same as TotalCPUCount.

6.14. WEB SERVICE INTERFACE 141

6.14.6 ARC-specific JSDL Extensions

A-REX accepts JSDL documents having the following additional elements

IsExecutable – marks file to become executable after being delivered to the computing resource.

RunTimeEnvironment – specifies the name of the Runtime Environment needed for job execution.

Middleware – request for specific middleware on the computing resource frontend.

RemoteLogging – destination for the usage record report of the executed job.

LogDir – name for the virtual directory available through job interface and containing various debug
information about job execution.

AccessControl – ACL expression which describes the identities of those clients who are allowed to
perform operations on this job.

Notify – Email destination for notification of job state changes.

SessionLifeTime – duration for the directory containing job-related files to exist after the job finished
executing.

JoinOutputs – specifies if standard output and standard error channels must be merged.

Rerun – defines how many times a job is allowed to rerun in case of failure.

CredentialServer – URL of MyProxy service which may be used for renewing the expired delegated
job credentials.

CandidateTarget – specifies host name and queue of a computing resource.

OldJobID – specifies the previous job-ids in case the job has been resubmitted or migrated.

6.14.7 Supported ADL elements

A-REX supports the following elements from the EMI ADL version 2.0 specification [33]:

ActivityIdentification

Name – name of the activity.

Description – description of the activity.

Type – type of activity.

Annotation – human readable comments, tags for grouping activities, etc.

Application

Executable – main executable of the job.

Input – input filename relative to the job’s session directory.

Output – output filename relative to the job’s session directory.

Error – Error filename relative to the job’s session directory.

Environment – Name/Value pairs of strings describing system environment variables to
define for the job.

PreExecutable – command to be executed prior to main executable.

PostExecutable – command to be executed after main executable.

RemoteLogging – destination for the usage record report of the executed job.

ExpirationTime – date and time for when the service should cancel the job.

WipeTime – duration for the directory containing job-related files to exist after

Notification – request in custom format for notifications on activity state change.

142 CHAPTER 6. TECHNICAL REFERENCE

Resources

OperatingSystem – operating system required for the job.

Platform – platform architecture required for the job.

Coprocessor – type of co-processing unit that should be available.

NodeAccess – the required connectivity of the execution node (inbound, outbound or both).

IndividualPhysicalMemory – amount of physical memory required to be available in bytes.

IndividualVirtualMemory – amount of virtual memory required to be available in bytes.

DiskSpaceRequirement – total required disk space of the job in bytes.

RemoteSessionAccess – if remote session access is needed.

SlotRequirement – requested count of slots and its distribution for multi-slot jobs.

QueueName – defines the name of the preferred queue.

IndividualCPUTime – specifies the number of CPU seconds requested for each slot of the
job.

TotalCPUTime – specifies the total number of CPU seconds requested for the job.

WallTime – wall clock time requested for the job, from the start of the first process until
the completion of the last process.

RuntimeEnvironment – specifies the name, version and optional parameters of the Runtime
Environment needed for job execution.

ParallelEnvironment – specifies the execution environment for parallel jobs.

Datastaging

ClientDataPush – push data to the service under control of the client.

InputFile – file that should be transferred to the computing element (stage-in) and later
made available in session directory.

OutputFile – file that should be transferred from the computing element (stage-out).

6.14.8 ARC-specific ADL Extensions

A-REX accepts ADL documents having the following additional elements:

ActivityOldID – under ActivityIdentification, specifies the previous job-ids in case the job has been
resubmitted or migrated.

LoggingDirectory – under Application, name for the virtual directory available through job interface
and containing various debug information about job execution.

Rerun – under Application, defines how many times a job is allowed to rerun in case of failure.

6.15 GridFTP Interface (jobplugin)

6.15.1 Virtual tree

The GFS with jobplugin plugin configured presents virtual file tree under its mount point through GridFTP
protocol. A user connecting with a gridftp client will see virtual directories representing the jobs belonging
to him/her. Directory names are job identifiers, each representing one job. These directories are directly
connected to session directories of jobs and contain the files and subdirectories that are visible on the
frontend. Client can access content of the session directory through these directories in virtual file tree.

If a job’s xRSL description has gmlog attribute specified, then the job’s directory also contains a virtual
subdirectory of that name holding files with information about the job as created by the A-REX. Those
are same files described in the section 6.11 with job.ID. part removed from their names. The ’proxy’ file is

6.15. GRIDFTP INTERFACE (JOBPLUGIN) 143

notaccessible due to security reasons. The ’status’ file is not accessible too. The ’errors’ file is especially
useful for troubleshooting because it contains the stderr output of the various modules run by the A-REX
during various job processing stages (data staging, job’s submission to LRMS).

Also directly under the jobplugin’s mount point there is another virtual directory named ’new’ – used to
accept new job descriptions – and another directory named ’info’. The latter has subdirectories named after
job ids, each of which contains files with information about a job. These are the same files that can be
accessed in the subdirectory specified through gmlog as described above.

6.15.2 Submission

Each file containing xRSL job description – name of file is not relevant – put into the ’new’ directory by a
gridftp client is treated as a new job’s description. GFS’s jobplugin parses the job description and returns
to the client a positive response if there were no errors in the request.

The new job gets an identifier and a directory with the corresponding name appears under mount point. If
the job’s description contains input files which should be transferred from the client’s machine, the client
must upload them to that directory under specified names.

Please note that there is no predefined format or embedded information for assigned job identifiers. Those
are opaques strings of characters suitable for being used for directory names in FTP protocol. One should
not make any assumptions on how job identifier looks like also because it may change between different
versions of jobplugin.

The job identifier reserved by GFS for a new job must be somehow communicated back to the client. Within
the bounds of the FTP protocol, this is achieved in the following way. Prior to uploading the xRSL, the
client issues a CWD command to change the current directory to ’new’. The jobplugin reserves new job
identifier and responds with a redirect to the new session directory named after the reserved identifier. The
client now knows the job’s id, and proceeds with uploading the xRLS to the current directory or to the
’new’. If job description is accepted

6.15.3 Actions

Various actions to affect processing of an existing job are requested by uploading special xRSL files into
directory ’new’. Such anxRSL must contain only 2 parameters - action for action to be performed, and jobid
to identify the job to be affected. All other parameters are ignored.

The currently supported actions are:

• cancel to cancel a job

• clean to remove a job from computing resource

• renew to renew credentials delegated to a job

• restart to restart a job after failure at some phases

Alternatively, it is also possible to perform some of these actions by using the shortcut FTP operations
described below.

6.15.3.1 Cancel

A job is canceled by performing a DELE (delete file) operation on the virtual directory representing the sessin
directory of the job. It can take some time (a few minutes) before the job is actually canceled. Nevertheless,
the client gets a response immediately.

6.15.3.2 Clean

A job’s content is cleaned by performing a RMD (remove directory) operation on the virtaul directory
representing the job. If the job is in FINISHED state it will be cleaned immediately. Otherwise it will be
cleaned after it reaches state FINISHED.

144 CHAPTER 6. TECHNICAL REFERENCE

6.15.3.3 Renew

If a client requests CWD to a job’s session directory, credentials passed during authentication are compared
to the currently assigned credentials of the job. If the validity time of the new credentials is longer, the job’s
current credentials are replaced with the new ones.

6.15.4 Configuration Examples

The examples presented below contain full configuration examples for the GridFTP server configured with
the jobplugin. For clarity other sections such as those configuring A-REX and the information system are
not shown.

6.15.4.1 Simple Example

In the following minimal example we use a single static mapfile which contains all possible user mappings
for this site.

[common]
hostname="myhost.org"
lrms="fork"
gridmap="/etc/grid-security/grid-mapfile"

[gridftpd]
debug="3"
encryption="no"
allowunknown="no"
maxconnections="200"

[gridftpd/jobs]
path="/jobs"
plugin="jobplugin.so"

6.15.4.2 Detailed Example

Here we configure a simple PBS based cluster according to the following use case. John is member of the
VO ”smscg” where he belongs to the subgroup ”atlas” of root group ”smscg” and has been assigned the
roles ”production” and ”test”. Please note, that name of root group always matches name of VO. That is
part of VOMS design. If groups and roles are decoupled, John can request proxies that can include one (or
several) of the following different group-role combinations (termed ”Fully Qualified Names” (FQAN)):

• /smscg (notice it’s the same as /smscg/Role=NULL)

• /smscg/Role=production

• /smscg/Role=test

• /smscg/atlas

• /smscg/atlas/Role=production

• /smscg/atlas/Role=test

A-REX serves as front-end to a batch-system that provides a ”low prio queue” and a ”high prio queue”.
Assignment to the different queues is done via local user identites. More precisely, the local users ”sm-
scg001, smscg002, smscg003” will be assigned to the low prio queue, whereas users ”smscgP001, smscgP002,
smscgP003” to the high prio queue (the configuration of the batch-system to support this is out of scope of
this example).

Users sending jobs to A-REX should be assigned to one of the queues depending on the credentials they
present in their proxy certificate. The assignment shall look as follows:

6.15. GRIDFTP INTERFACE (JOBPLUGIN) 145

• /smscg , /smscg/Role=test , /smscg/Role=production =¿ shall map to one of the smscg00[1-3] local
identities (thus low prio queue)

• /smscg/atlas , /smscg/atlas/Role=test , /smscg/atlas/Role=production =¿ shall map to one of the
smscgP00[1-3] local identities (thus high prio queue)

The following usage pattern is considered. User John first wants to run a monitoring job on the high prio queue.
He performs a voms-proxy-init and specifies his ”/smscg/atlas/Role=test” FQAN to be used. When he sub-
mits his monitoring-job, John will be mapped to one of the smscgP001, smscgP002, smscgP003 accounts.
John’s job will thus run on the high prio queue.

After submitting the monitoring job, John submits regular jobs with his FQAN ”/smscg”. These jobs will
run on the low prio queue. Later John switches back to the FQAN ”/smscg/atlas/Role=test” to fetch the
result of his monitoring job.

The discrimination to what queue John is to be mapped is done with VO information only and not on the
basis of the DN of John’s certificate. Hence the choice to what queue to be mapped is under control of John
(we silently presumed John knows the mappings at the source).

Notes:

• a DN based grid-mapfile is generated on the front-end with a default mapping entry for John. The
grid-mapfile is only used by the information system (GIIS) to make the grid resource look eligible for
jobs submitted by John.

• the DN based grid-mapfile per se does not permit John to access the grid resource under different local
identities (e.g. once as smscg001 and later as smscgP001), since the first matching DN defines the local
identity John is to be mapped to. This is not a flaw since NorduGrid has support for lcmaps, which
allows a ’re-mapping’ of a user.

• the mapping of the FQAN to the local user identity (e.g. ”/smscg” to local user ”smscg001”) shall
be done with lcmaps (in detail the lcmaps framework + lcmaps voms plugins). Direct VOMS based
mapping is also possible.

If user John creates a proxy certificate with the ”grid-proxy-init” command instead of ”voms-proxy-init”,
hence the proxy certificate will not contain any VO information and submits a job to A-REX (the match-
making will still work, since it’s done with John’s DN) he shall not be authorized.

Example configuration:

[common]
pbs_bin_path="/usr/bin"
pbs_log_path="/var/spool/pbs/server_logs"
hostname="myhost.org"
lrms="pbs"

[vo]
We will use this configuration block for a few purposes.
1. To generate grid-mapfile needed for information system.
For that purpose nordugridmap utility will have to be
run periodically.
2. To provide coarse-grained information to authorization
rules used to define authorization groups. If needed of
course.
id="smscg_vo"
vo="smscg_vo"

Here we define path to file to which nordugridmap will write DNs of
users matching rules below. Because we are going to use it as
grid-mapfile for other purposes it is going to reside at default
location.

146 CHAPTER 6. TECHNICAL REFERENCE

file="/etc/grid-security/grid-mapfile"

Now we tell nordugridmap to pull information from
VOMRS/VOMSS/or_whatever_it_is_called_now service and to ask for
users belonging to smscg VO.
source="vomss://voms.smscg.org:8443/voms/smscg"

Now we specify default mapping to local *NIX id. It is possible to
completely redefine mapping in [gridftpd] block. But this one will
be used by information system to compute and present resources
available to user. Let’s use one of lowest priority account defined
in use-case.
mapped_unixid="smscg001"

[group]
In this authorization group we are going to check if user presents
any proof that he belongs to ’smscg’ VO. We can use that information
later to explicitly limit access to resources. If such access
control is not needed this group can be removed.
name="smscg_auth"

Here we can use internal support of ARC for VOMS attributes
voms="smscg * * *"
If we want to limit access to resources also by other VOMS
attributes then other voms rules similar to those defined
below in [gridftpd] section may be used.

Or we can ask some external executable to analyze delegated
credentials of user. In this example executable vomatch
is called with first argument containing path to delegated
proxy certificate and second - required VO name.
plugin="10 /opt/external/bin/vomatch %P smscg"

Or - probably preferred way in this use case - we can use
LCAS to analyze delegated proxy.
First element after ’=’ sign is path to LCAS library whatever
it is called in current implementation. Second is LCAS installation
path - it will be used to set environment variable LCAS_DIR.
And third element is path to LCAS database file - it will be passed
to environment variable LCAS_DB_FILE.
Function ’lcas_get_fabric_authorization’ of specified LCAS library
will be called with following 3 arguments
1. char* pointer to string containing DN of user
2. gss_cred_id_t variable pointing at delegated credentials of user
3. char* pointer to empty string
Returned 0 int value is treated as positive response
lcas="/opt/glite/lib/liblcas.so /opt/glite /opt/glite/share/lcas.db"

As coarse grained solution it is also possible to check if user
belongs to one of defined VOs as specified in _previously_ defined
[vo] group. Here we refer to VO group smscg_vo defined above.
#vo="smscg_vo"

[gridftpd]
debug="2"
logfile="/var/log/arc/gridftpd.log"

6.15. GRIDFTP INTERFACE (JOBPLUGIN) 147

logsize="10000000 2"
pidfile="/var/run/gridftpd.pid"
port="2811"
pluginpath="/usr/local/lib/arc"
encryption="no"

By specifying ’no’ here we limit users allowed to establish
connection to this server to those specified in grid-mapfile. This
may be not necessary if additional authorization is applied as done
below. But this provides additional layer of protection so let it
be.
allowunknown="no"

maxconnections="200"

Here we start fine-grained user mapping. Let’s first define few VOMS
mappings using embedded functionality of ARC. These lines should
map Grid users to high-priority and low-priority *NIX users smscg001
and smscgP001. Mind order - those with more attributes defined come
first. I do not know if missing attribute is passed by VOMS as
empty string or as string containing NULL keyword. Here I assume
empty string. If it is NULL then "" has to be replaced with NULL.
#unixmap="smscgP001 voms smscg /smscg/atlas test *
#unixmap="smscgP001 voms smscg /smscg/atlas production *
#unixmap="smscgP001 voms smscg /smscg/atlas "" *
These 3 lines are not needed if grid-mapfile defines default mapping
to smscg001 user. But we can have them for consistence and if mapping
to nobody is defined below for safety reasons.
#unixmap="smscg001 voms smscg /smscg test *
#unixmap="smscg001 voms smscg /smscg production *
#unixmap="smscg001 voms smscg /smscg "" *

Instead of using multiple unixmap commands above we may define
2 authorization groups using [group] blocks. Let’s say their
names are smscg_low and smscg_high. Then ’group’ matching rule
may be used.
#unixmap="smscgP001 group smscg_high"
#unixmap="smscg001 group smscg_low"

Or if we want to use all 6 local accounts and let mapping choose
randomly within 2 group accounts ’simplepool’ may be used. In
example below ’unixgroup’ ensures proper choice of group and
’simplepool’ makes a choise from accounts in pool. Last argument
specifies directory containing file named ’pool’. That file contains
list of local user accounts. Also this directory will be used for
writing information about current mappings.
#unixgroup="smscg_high simplepool /var/nordugrid/smscg_high"
#unixgroup="smscg_low simplepool /var/nordugrid/smscg_low"

And mapping preferred in this use case - through LCMAPS. First
element after ’=’ sign is path to LCMAPS library whatever it is
called in current implementation. Second is LCMAPS installation path
- it will be used to set environment variable LCMAPS_DIR. And third
element is path to LCMAPS database file - it will be passed to
environment variable LCMAPS_DB_FILE. Those 3 arguments are followed
list of policy names.
Function ’lcmaps_run_and_return_username’ of specified LCMAPS library
will be called with following arguments

148 CHAPTER 6. TECHNICAL REFERENCE

1. char* pointer to string containing DN of user
2. gss_cred_id_t variable pointing at delegated credentials of user
3. char* pointer to empty string
4. char** pointer for chosen username.
5. int variable containing number of policies
6. char** list of policy names
Expected 0 int value returned and argument 4 set. Value returned in
4th argument is used as username of local account.
unixmap="* lcmaps /opt/glite/lib/liblcmaps.so /opt/glite \

/opt/glite/share/lcmaps.db policy1 policy2"

Here we can specify mapping to some harmless local user account for
safety reasons. If that account is not allowed to submit jobs to
LRMS then this will also work as authorization effectively cutting
off users without proper VOMS attributes.
unixmap="nobody:nobody all"

[gridftpd/jobs]
This block defines job submission service
path="/jobs"
plugin="jobplugin.so"

Line below specifies that this plugin/service is only available to
users belonging to authorization group. If such behavior is not
required then this line must be commented.
groupcfg="smscg_auth"

[queue/low_prio_queue]
name="low_prio_queue"
homogeneity="True"
scheduling_policy="FIFO"
comment="This queue is low priority"
nodecpu="adotf"
nodememory="512"
architecture="adotf"
opsys="Mandrake 8.0"
opsys="Linux-2.4.19"
benchmark="SPECINT2000 222"
benchmark="SPECFP2000 333"
cachetime="30"
timelimit="30"
sizelimit="5000"

[queue/high_prio_queue]
name="high_prio_queue"
homogeneity="True"
scheduling_policy="FIFO"
comment="This queue is high priority"
nodecpu="adotf"
nodememory="512"
architecture="adotf"
opsys="Mandrake 8.0"
opsys="Linux-2.4.19"
benchmark="SPECINT2000 222"
benchmark="SPECFP2000 333"

6.16. REST INTERFACE 149

6.16 REST Interface

The A-REX also comes with HTTP(S) REST interface which provides same functionality as Web Service
and GridFTP interfaces do. The REST Interface is deployed along with Web Service Interface inside the
Hosting Environment Daemon (HED) infrastructure [27].

6.16.1 Access Endpoints

The REST Interface uses different HTTP endpoints to distinguish between various objects it represents.
The base endpoint protocol://hostname:port/path is service deployment URL. Here protocol is one of http
or https (typically HTTPS is used). The hostname is name resoved to IP address where HED is started.
And port any number (typically 443 for HTTPS protocol). The path is service deployment path specified in
the configuration file. So if one started A-REX on local computer using suggested values from configuration
template it should be accessible at https://localhost/arex. Hereafter we refer to base endpoint as {base}.
The information endpoint is made by appending /*info to the base – {base}/*info.

The job session endpoint has /{jobid} at end – {base}/{jobid}. Here {jobid} is alphanumeric string repre-
senting job’s identifier within A-REX service. The job information endpoint looks like {base}/*logs/{jobid}.
And the new job endpoint is {base}/*new.

And finally delegation endpoint is of {base}/*deleg format. It is also possible to refer to specific delegated
credentials through {base}/*deleg/{delegid}, Here {delegid} is an identifier of particular delegation instance.

6.16.2 Error Reporting

In case of error server returns corresponding HTTP error code (usually 500) and HTTP Reason Phrasecon-
tains textual description of the problem encountered.

6.16.3 Retrieving Service Information

By applying HTTP GET request to the information endpoint the server returns XML document conforming
to Glue 2 standard with information about service itself. For example:

GET https://localhost:443/arex/*info HTTP/1.1
Connection: close

HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: 10000
Connection:close

<InfoRoot>
<Domains xmlns="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="https://raw.github.com/OGF-GLUE/XSD/master/schema/GLUE2.xsd">

<AdminDomain BaseType="Domain" CreationTime="2017-09-12T19:01:35Z" Validity="10800">
<ID>urn:ad:UNDEFINEDVALUE</ID>
<Name>UNDEFINEDVALUE</Name>
<Distributed>undefined</Distributed>
<Services>

<ComputingService BaseType="Service" CreationTime="2017-09-12T19:01:35Z" Validity="10800">
<ID>urn:ogf:ComputingService:localhost:arex</ID>
<Name>MINIMAL Computing Element</Name>
<Capability>data.access.sessiondir.file</Capability>
<Capability>data.access.stageindir.https</Capability>
<Capability>data.transfer.cepull.gridftp</Capability>
<Capability>executionmanagement.jobexecution</Capability>

150 CHAPTER 6. TECHNICAL REFERENCE

<Capability>information.discovery.job</Capability>
<Capability>security.delegation</Capability>
<Capability>information.query.xpath1</Capability>
<Capability>executionmanagement.jobdescription</Capability>
<Capability>information.discovery.resource</Capability>
<Capability>data.access.stageoutdir.https</Capability>
<Capability>executionmanagement.jobmanagement</Capability>
<Capability>data.transfer.cepush.ftp</Capability>
<Capability>data.transfer.cepull.ftp</Capability>
<Capability>data.access.stageindir.gridftp</Capability>
<Capability>data.transfer.cepull.http</Capability>
<Capability>data.transfer.cepush.gridftp</Capability>
<Capability>data.access.stageoutdir.file</Capability>
<Capability>data.access.stageindir.file</Capability>
<Capability>executionmanagement.jobcreation</Capability>
<Capability>data.transfer.cepull.httpg</Capability>
<Capability>information.lookup.job</Capability>
<Capability>data.transfer.cepull.srm</Capability>
<Capability>data.access.sessiondir.gridftp</Capability>
<Capability>data.transfer.cepush.srm</Capability>
<Capability>data.transfer.cepull.https</Capability>
<Capability>data.transfer.cepush.httpg</Capability>
<Capability>data.transfer.cepush.http</Capability>
<Capability>data.access.stageoutdir.gridftp</Capability>
<Capability>executionmanagement.jobmanager</Capability>
<Capability>data.transfer.cepush.https</Capability>
<Capability>data.access.sessiondir.https</Capability>
<Type>org.nordugrid.arex</Type>
<QualityLevel>production</QualityLevel>
<Complexity>endpoint=11,share=2,resource=1</Complexity>
<TotalJobs>0</TotalJobs>
<RunningJobs>0</RunningJobs>
<WaitingJobs>0</WaitingJobs>

...

The GET request sent to base endpoint returns HTML with list containg jobs owned by requesting client.
For example:

GET https://localhost:443/arex HTTP/1.1
Connection: close

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 2345
Connection:close

<HTML>
<HEAD>
<TITLE>ARex: Jobs list</TITLE>
</HEAD>
<BODY>

<I>job</I> NKbKDm9ijBrnOSAtDmABFKDmABFKDmABFKDmzdNKDmDBFKDmVnlgyn logs
<I>job</I> 2u3LDm7ijBrnOSAtDmABFKDmABFKDmABFKDmzdNKDmCBFKDmcD1YFm logs

SERVICE DESCRIPTION</BODY>

6.16. REST INTERFACE 151

Each entry in the list is made of two ¡A¿ elements each with HREF attribute corresponding to job’s session
and information endpoints respectively.

6.16.4 Job Submission

The submission of new job is performed by uploading job description document into new job endpoint using
HTTP PUT method. The server ignores Content-Type and tries to parse job description using all available
parsers. Currently supported job descripton formats are xRSL, BES ASDL and EMI ES ADL. Please note
that job description beng passed to service must be of ”server kind” as described in sections explaining
supported job descriptions.

On success server returns positive HTTP response (status code 200) followed by Reason Phrase containing
assigned job internal identfier. For example:

PUT https://localhost:443/arex/*new HTTP/1.1
Content-Length: 60
Connection: close

&(executable="/usr/bin/sleep")(arguments="10")(jobname=test)

HTTP/1.1 200 NKbKDm9ijBrnOSAtDmABFKDmABFKDmABFKDmzdNKDmDBFKDmVnlgyn
Connection: close

6.16.5 Accessing Job Session Directory

The REST interface provides access to job’s session directory during data stage-in, stage-out and optionally
during job execution through job session endpoint. The files are accessed by adding relative file’s path to
endpoint path. The supported HTTP methods are GET, HEAD and PUT. The directories are accessible
through GET and HEAD methods and are represented by HTML document with list of contained elements
– files and sub-directories. Each with HREF attribute providing corresponding URL. The session directory
itself is also represented by HTML document.

This part of the interface must be used for staging in files specified as user stageable in the job description
document. For example:

PUT https://localhost:443/arex/NKbKDm9ijBrnOSAtDmABFKDmABFKDmABFKDmzdNKDmDBFKDmVnlgyn/my_subdir/user_input_file HTTP/1.1
Content-Length: 82
Connection: close

Here comes content of the user stageable file user_input_file in subdir my_subdir.

HTTP/1.1 200 OK
Connection: close

6.16.6 Accessing Information About Job

For accessing detailed information about particular job the job infomation endpoint is used. The information
is presented as set of virtual files accessble through HTTP GET method and by adding names of those files
to job information endpoint. The endpoint itself returns HTML document with list of available files. The

152 CHAPTER 6. TECHNICAL REFERENCE

files are identical to those provided by GridFTP interface and also described in the section 6.11 with job.ID.
part removed from their names.

For example obtaining Glue 2 XML document representing current state of the job can look like:

GET https://localhost:443/arex/*logs/NKbKDm9ijBrnOSAtDmABFKDmABFKDmABFKDmzdNKDmDBFKDmVnlgyn/xml HTTP/1.1
Connection: close

HTTP/1.1 200 OK
Content-Length: 543
Connection: close

<ComputingActivity xmlns="http://schemas.ogf.org/glue/2009/03/spec_2.0_r1" BaseType="Activity" CreationTime="2017-09-12T18:36:47Z" Validity="10800">
<ID>urn:caid:localhost:org.nordugrid.arcrest:NKbKDm9ijBrnOSAtDmABFKDmABFKDmABFKDmzdNKDmDBFKDmVnlgyn</ID>
<Name>test</Name>
<OtherInfo>SubmittedVia=org.nordugrid.arcrest</OtherInfo>
<Type>single</Type>
<IDFromEndpoint>urn:idfe:NKbKDm9ijBrnOSAtDmABFKDmABFKDmABFKDmzdNKDmDBFKDmVnlgyn</IDFromEndpoint>
<JobDescription>emies:adl</JobDescription>
<State>nordugrid:DELETED::FINISHING</State>
<State>emies:terminal</State>
<State>emiesattr:expired</State>
<RestartState>nordugrid:FINISHING</RestartState>
<RestartState>bes:Running</RestartState>
<RestartState>emies:postprocessing</RestartState>
<RestartState>emiesattr:client-stageout-possible</RestartState>
<RestartState>emiesattr:server-stageout</RestartState>
<ExitCode>0</ExitCode>
<Error>Error reading user generated output file list</Error>
<Owner>/O=Grid/O=NorduGrid/OU=uio.no/CN=Aleksandr Konstantinov</Owner>
<LocalOwner>user</LocalOwner>
<RequestedTotalCPUTime>3600</RequestedTotalCPUTime>
<RequestedSlots>4</RequestedSlots>
<StdIn>/dev/null</StdIn>
<StdOut>out.txt</StdOut>
<StdErr>/dev/null</StdErr>
<ExecutionNode>my.host.org</ExecutionNode>
<Queue>fork</Queue>
<UsedTotalWallTime>40</UsedTotalWallTime>
<UsedTotalCPUTime>0</UsedTotalCPUTime>
<UsedMainMemory>0</UsedMainMemory>
<SubmissionTime>2017-09-11T19:39:07Z</SubmissionTime>
<WorkingAreaEraseTime>2017-09-12T18:13:25Z</WorkingAreaEraseTime>
<ProxyExpirationTime>2017-09-12T06:45:20Z</ProxyExpirationTime>
<SubmissionHost>127.0.0.1</SubmissionHost>
<Associations>

<ComputingShareID>urn:ogf:ComputingShare:localhost:fork</ComputingShareID>
</Associations>

</ComputingActivity>

6.16.7 Controlling Execution Of Job

The virtual file named status available through the job infomation endpoint not only provides raw state
string of the job. Additionally it accepts HTTP PUT method and allows for requesting job state changes
through storing desired job state name. For example request to cancel job execution can be done in following
way:

6.16. REST INTERFACE 153

PUT https://localhost:443/arex/*logs/NKbKDm9ijBrnOSAtDmABFKDmABFKDmABFKDmzdNKDmDBFKDmVnlgyn/status HTTP/1.1
Content-Length: 8
Connection: close

FINISHED

HTTP/1.1 200 Done
Connection: close

The acceptable state names (case insentitive) are FINISHED for canceling job, DELETED for cleaning job,
PREPARING, SUBMIT, INLRMS and FINISHING for resuming job.

6.16.8 Delegation Interface

The A-REX credential delegation functionality is provided through delegation endpoint. The typical delega-
tion procedure starts from applying GET method to delegation endpoint. This makes server return X.509
Certificate Request PEM encoded. The corresponding private key is recorded by server under newly gener-
ated delegation identifier. The assigned identifier is returned to the client in HTTP Reason Phrase. Then
client signs request and returns generated X.509 Certificate through PUT method at delegation endpoint of
specific delegation. The example of such exchange follows:

GET https://localhost:443/arex/*deleg HTTP/1.1
Connection: close

HTTP/1.1 200 4a67fd23
Content-Type: application/x-pem-file
Content-Length: 531
Connection: close

-----BEGIN CERTIFICATE REQUEST-----
MIICijCCAXICAQAwRTELMAkGA1UEBhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUx
...
BlVUUwSVsFnR5o4isNgB1OH6hQ4hiOuO1QbMqdX/
-----END CERTIFICATE REQUEST-----

PUT https://localhost:443/arex/*deleg/4a67fd23 HTTP/1.1
Content-Type: application/x-pem-file
Content-Length: 753
Connection: close

-----BEGIN CERTIFICATE-----
MIICZjCCAc+gAwIBAgIBYjANBgkqhkiG9w0BAQ0FADBVMQ0wCwYDVQQKDARHcmlk
...
kO/k83iu/Y1j6+JmrZyycfGygC0DuY4JWcFlo7P1ebJQI+Lo2/kGwg3j
-----END CERTIFICATE-----

HTTP/1.1 200 OK
Connection: close

154 CHAPTER 6. TECHNICAL REFERENCE

Additionally it is possible to perform delegation renewal (without regeneration of private key) by starting
delegation procedure directly at delegation endpoint of specific delegation.

Acknowledgements

This work was supported in parts by: the Nordunet 2 program, the Nordic DataGrid Facility, the EU
KnowARC project (Contract nr. 032691), the EU EMI project (Grant agreement nr. 261611) and the
Swedish Research council via the eSSENCE strategic research program.

155

156 CHAPTER 6. TECHNICAL REFERENCE

Bibliography

[1] Argus Authorization Service. URL https://twiki.cern.ch/twiki/bin/view/EGEE/
AuthorizationFramework.

[2] ATLAS Dashboard. Web site. URL http://dashboard.cern.ch/atlas/.

[3] EMI Products list: VOMS-Admin. URL http://www.eu-emi.eu/products/-/asset_
publisher/z2MT/content/voms-admin.

[4] gLite, Lightweight Middleware for Grid Computing. Web site. URL http://glite.web.cern.ch/
glite/.

[5] ”LDAP Linux HOWTO, Chapter 5. Database Creation and Maintenance”, The Linux Documentation
Project. Web site. URL http://tldp.org/HOWTO/LDAP-HOWTO/utilities.html.

[6] The NorduGrid Collaboration. Web site. URL http://www.nordugrid.org.

[7] Network Time Protocol Version 4: Protocol and Algorithms Specification (RFC 5905). URL http:
//tools.ietf.org/html/rfc5905.

[8] OpenPBS. Web site. URL http://www.openpbs.org.

[9] Site Access Control. Web site. URL http://www.nikhef.nl/grid/lcaslcmaps/.

[10] SGAS project. Web site. URL http://www.sgas.se.

[11] Sun Grid Engine. Web site. URL http://gridengine.sunsource.net.

[12] Torque. Web site. URL http://www.supercluster.org/projects/torque.

[13] Usage Record Format Recommendation. URL http://www.ogf.org/documents/GFD.98.pdf.

[14] Public-Key Infrastructure (X.509) (PKI), Proxy Certificate Profile. URL http://rfc.net/
rfc3820.html.

[15] GLUE Schema Version 1.2. December 2005.

[16] GLUE Schema Version 1.3. January 2007.

[17] European Middleware Initiative (EMI). Web site, 2010. URL http://www.eu-emi.eu.

[18] LCAS EMI-1 Documentation, April 28 2011. URL http://www.nikhef.nl/grid/ndpf/files/
EMI_1_SAC_documentation/lcas-Task.pdf.

[19] LCMAPS EMI-1 Documentation, April 28 2011. URL http://www.nikhef.nl/grid/ndpf/
files/EMI_1_SAC_documentation/lcmaps-Task.pdf.

[20] Definition of the compute accounting record, Nov 8 2012. URL https://twiki.cern.ch/twiki/
pub/EMI/ComputeAccounting/CAR-EMI-tech-doc-1.2.doc.

[21] PHP VOMS-Admin, 2012. URL http://grid.org.ua/development/pva.

[22] D. Cameron A. Konstantinov. The NorduGrid GridFTP Server: Description And Administrator’s Man-
ual. The NorduGrid Collaboration. URL http://www.nordugrid.org/documents/gridftpd.
pdf. NORDUGRID-TECH-26.

157

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
http://dashboard.cern.ch/atlas/
http://www.eu-emi.eu/products/-/asset_publisher/z2MT/content/voms-admin
http://www.eu-emi.eu/products/-/asset_publisher/z2MT/content/voms-admin
http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/
http://tldp.org/HOWTO/LDAP-HOWTO/utilities.html
http://www.nordugrid.org
http://tools.ietf.org/html/rfc5905
http://tools.ietf.org/html/rfc5905
http://www.openpbs.org
http://www.nikhef.nl/grid/lcaslcmaps/
http://www.sgas.se
http://gridengine.sunsource.net
http://www.supercluster.org/projects/torque
http://www.ogf.org/documents/GFD.98.pdf
http://rfc.net/rfc3820.html
http://rfc.net/rfc3820.html
http://www.eu-emi.eu
http://www.nikhef.nl/grid/ndpf/files/EMI_1_SAC_documentation/lcas-Task.pdf
http://www.nikhef.nl/grid/ndpf/files/EMI_1_SAC_documentation/lcas-Task.pdf
http://www.nikhef.nl/grid/ndpf/files/EMI_1_SAC_documentation/lcmaps-Task.pdf
http://www.nikhef.nl/grid/ndpf/files/EMI_1_SAC_documentation/lcmaps-Task.pdf
https://twiki.cern.ch/twiki/pub/EMI/ComputeAccounting/CAR-EMI-tech-doc-1.2.doc
https://twiki.cern.ch/twiki/pub/EMI/ComputeAccounting/CAR-EMI-tech-doc-1.2.doc
http://grid.org.ua/development/pva
http://www.nordugrid.org/documents/gridftpd.pdf
http://www.nordugrid.org/documents/gridftpd.pdf

158 BIBLIOGRAPHY

[23] R. Alfieri et al. From gridmap-file to VOMS: managing authorization in a Grid environment. Future
Gener. Comput. Syst., 21(4):549–558, 2005. ISSN 0167-739X.

[24] M. Skou Andersen. WS-ARC service configuration manual. The NorduGrid Collaboration. URL http:
//www.nordugrid.org/documents/configuration_manual.pdf. NORDUGRID-MANUAL-
18.

[25] S. Andreozzi et al. GLUE Specification v2.0. GFD-R-P.147, March 2009. URL http:/www.ogf.
org/documents/GFD.147.pdf.

[26] A. Anjomshoaa et al. Job Submission Description Language (JSDL) Specification, Version 1.0 (first
errata update). GFD-R.136, July 2008. URL http://www.gridforum.org/documents/GFD.
136.pdf.

[27] D. Cameron et al. The Hosting Environment of the Advanced Resource Connector middleware. URL
http://www.nordugrid.org/documents/ARCHED_article.pdf. NORDUGRID-TECH-19.

[28] David Groep. Site Access Control Architecture. January 26 2005. URL https://edms.cern.ch/
document/523948. EU Deliverable.

[29] M. Ellert. ARC User Interface. The NorduGrid Collaboration. URL http://www.nordugrid.org/
documents/ui.pdf. NORDUGRID-MANUAL-1.

[30] M. Ellert, M. Grønager, A. Konstantinov, et al. Advanced Resource Connector middleware for
lightweight computational Grids. Future Gener. Comput. Syst., 23(1):219–240, 2007. ISSN 0167-739X.
doi: 10.1016/j.future.2006.05.008.

[31] I. Foster et al. OGSA™ Basic Execution Service Version 1.0. GFD-R-P.108, August 2007. URL
http://www.ogf.org/documents/GFD.108.pdf.

[32] M. Humphrey et al. JSDL HPC Profile Application Extension, Version 1.0. GFD-R.111, August 2007.
URL http://www.gridforum.org/documents/GFD.111.pdf.

[33] A. Konstantinov et al. European Middleware Initiative Execution Service Version 2.0. GFD-I.210,
March 2013. URL http://www.ogf.org/documents/GFD.210.pdf.

[34] B. Kónya. The NorduGrid/ARC Information System. The NorduGrid Collaboration. URL http:
//www.nordugrid.org/documents/arc_infosys.pdf. NORDUGRID-TECH-4.

[35] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In Proc. of the 8th
International Conference of Distributed Computing Systems, pp. 104–111, 1998.

[36] O. Smirnova M. Ellert, D. Johansson. ARIS and EGIIS. The NorduGrid Collaboration. URL http:
//www.nordugrid.org/documents/aris-egiis.pdf. NORDUGRID-MANUAL-21.

[37] OASIS. OASIS Web Services ResourceProperties specification. April 2006. URL http://docs.
oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf.

[38] F. Pacini and A. Maraschini. Job Description Language attributes specification, 2007. URL https:
//edms.cern.ch/document/590869/1. EGEE-JRA1-TEC-590869-JDL-Attributes-v0-8.

[39] Will Rogers. APEL publisher. Secure Stomp Messenger (SSM). URL https://wiki.egi.eu/wiki/
APEL/SSM.

[40] O. Smirnova. Extended Resource Specification Language. The NorduGrid Collaboration. URL http:
//www.nordugrid.org/documents/xrsl.pdf. NORDUGRID-MANUAL-4.

[41] M. Smith and T. A. Howes. LDAP : Programming Directory-Enabled Applications with Lightweigt
Directory Access Protocol. Macmillan, 1997.

[42] ARC User Interface. The NorduGrid Collaboration. URL http://www.nordugrid.org/
documents/ui.pdf. NORDUGRID-MANUAL-13.

http://www.nordugrid.org/documents/configuration_manual.pdf
http://www.nordugrid.org/documents/configuration_manual.pdf
http:/www.ogf.org/documents/GFD.147.pdf
http:/www.ogf.org/documents/GFD.147.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.gridforum.org/documents/GFD.136.pdf
http://www.nordugrid.org/documents/ARCHED_article.pdf
https://edms.cern.ch/document/523948
https://edms.cern.ch/document/523948
http://www.nordugrid.org/documents/ui.pdf
http://www.nordugrid.org/documents/ui.pdf
http://www.ogf.org/documents/GFD.108.pdf
http://www.gridforum.org/documents/GFD.111.pdf
http://www.ogf.org/documents/GFD.210.pdf
http://www.nordugrid.org/documents/arc_infosys.pdf
http://www.nordugrid.org/documents/arc_infosys.pdf
http://www.nordugrid.org/documents/aris-egiis.pdf
http://www.nordugrid.org/documents/aris-egiis.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-os.pdf
https://edms.cern.ch/document/590869/1
https://edms.cern.ch/document/590869/1
https://wiki.egi.eu/wiki/APEL/SSM
https://wiki.egi.eu/wiki/APEL/SSM
http://www.nordugrid.org/documents/xrsl.pdf
http://www.nordugrid.org/documents/xrsl.pdf
http://www.nordugrid.org/documents/ui.pdf
http://www.nordugrid.org/documents/ui.pdf

	Overview
	The grid
	The ARC services
	The functionality of the ARC Computing Element
	The A-REX, the execution service
	The pre-web service interfaces
	The web service interfaces

	Security on the Grid
	Handling jobs
	A sample job processing flow

	Application software in ARC: The RunTime Environments
	The local information
	Overview of ARC LDAP Infosys schemas

	LRMS, Queues and execution targets

	Requirements
	Software Requirements
	Hardware Requirements
	Certificates

	Installation
	Installation for commom GNU/Linux Distributions
	Setting up the repositories
	Performing the installation

	Installation for other systems and distributions
	Installation of certificates
	Installing host certificates
	Installing custom CA certificates
	Authentication Policy
	Revocation lists
	Authorization policy

	Configuration
	Preparing the system
	Users and groups
	Disk, partitioning, directories
	Permissions
	Networking
	Security considerations

	Configuration file formats
	Structure of the arc.conf configuration file
	Description of configuration items

	Setting up a basic CE
	Creating the arc.conf file
	The [common] section
	The [grid-manager] section: setting up the A-REX and the arched
	The [gridftpd] section: the job submission interface
	The [infosys] section: the local information system
	The [cluster] section: information about the host machine
	The [queue/fork] section: configuring the fork queue

	A basic CE is configured. What's next?

	Production CE setup
	Access control: users, groups, VOs
	[vo] configuration commands
	Automatic update of the mappings
	[group] configuration commands

	Connecting to the LRMS
	PBS
	Condor
	LoadLeveler
	Fork
	LSF
	SGE
	SLURM
	BOINC

	Enabling the cache
	The Cache Service
	Exposing the Cache
	The ARC Cache Index (ACIX)

	Configuring Data Staging
	Registering to an ARC EGIIS
	ARC CE to gLite Site and Top BDII integration
	Accounting with JURA
	Monitoring the ARC CE: Nagios probes

	Enhancing CE capabilities
	Enabling or disabling LDAP schemas
	Applying changes

	Runtime Environments
	Enabling the Web Services interface
	Virtual Organization Membership Service (VOMS)
	Configuring trusted VOMS AC issuers
	Configuring VOMS AC signing servers to contact
	Configuring ARC to use VOMS extensions

	Dynamic vs static mapping
	Static mapping
	Dynamic mapping

	Using Argus authorization service
	Using LCAS/LCMAPS
	Enabling LCAS/LCMAPS
	LCAS/LCMAPS policy configuration
	Example LCAS configuration
	Example LCMAPS configuration

	Enabling the Arex ganglia implementation

	Operations
	Starting and stopping CE services
	Overview
	Validating CE setup
	Starting the CE
	Stopping the CE
	Verifying the status of a service

	Testing a configuration
	Testing the information system
	Check NorduGrid Schema publishing
	Check Glue 1.x Schema publishing
	Check LDAP GLUE2 Schema publishing
	Check WS/XML GLUE2 Schema publishing
	Further testing hints

	Testing whether the certificates are valid
	Testing the job submission interface
	Testing the LRMS

	Administration tools
	Log files
	The format of the log files
	Log files rotation

	Modules of the A-REX
	Migration of an A-REX service to another host
	Planned Service Migration

	Common tasks
	How to ban a single user based on his/her subject name
	How to configure SELinux to use a port other than 2135 for the LDAP information system
	How to debug the ldap subsystem
	Missing information in LDAP or WSRF
	How to publish VO information

	Technical Reference
	Reference of the arc.conf configuration commands
	Generic commands in the [common] section
	Commands in the [vo] section
	Commands in the [group] section
	Commands in the [gridftpd] section
	General commands
	Commands for fine-grained authorisation
	Commands to configure the jobplugin

	Commands in the [infosys] section
	Commands in the [infosys/admindomain] section
	Commands in the [infosys/glue12] section
	Commands in the [infosys/site/sitename] section
	Commands in the [cluster] section
	Commands in the [queue] subsections
	Commands in the [infosys/cluster/registration/registrationname] subsections
	Commands in the [grid-manager] section
	Commands affecting the A-REX process and logging
	Commands affecting the A-REX Web Service communication interface
	Commands setting control and session directories
	Commands to configure the cache
	Commands setting limits
	Commands related to file staging
	Commands related to usage reporting
	Other general commands in the [grid-manager] section
	Global commands specific to communication with the underlying LRMS
	Substitutions in the command arguments

	Commands in the [data-staging] section
	Commands in the [acix/cacheserver] section
	Commands in the [acix/cacheindex] section
	PBS specific commands
	Condor specific commands
	LoadLeveler specific commands
	Fork specific commands
	LSF specific commands
	SGE specific commands
	SLURM specific commands
	BOINC specific commands

	Handling of the input and output files
	Job states
	Cache
	Structure of the cache directory
	How the cache works
	Remote caches
	Cache cleaning
	Exposing the Cache and the ARC Cache Index

	Batch system back-ends implementation details
	Submit-LRMS-job
	Cancel-LRMS-job
	Scan-LRMS-job
	PBS
	Condor
	LoadLeveler
	Fork
	LSF
	SGE
	BOINC

	JURA: The Job Usage Reporter for ARC
	Overview
	Job log files
	Archiving
	Reporting to LUTS
	Reporting to APEL
	Re-reporting records
	Security
	Mapping of job log entries to usage record properties

	The XML and the INI configuration formats
	The internals of the service container of ARC (the HED)
	The MCCs
	The SecHandlers
	The PDPs

	How the a-rex init script configures the HED
	Structure of the grid-mapfile
	Internal files of the A-REX
	Environment variables set for the job submission scripts
	Using a scratch area
	Web Service Interface
	Basic Execution Service Interface
	Extensions to OGSA BES interface
	Delegation Interface
	Local Information Description Interface
	Supported JSDL elements
	ARC-specific JSDL Extensions
	Supported ADL elements
	ARC-specific ADL Extensions

	GridFTP Interface (jobplugin)
	Virtual tree
	Submission
	Actions
	Cancel
	Clean
	Renew

	Configuration Examples
	Simple Example
	Detailed Example

	REST Interface
	Access Endpoints
	Error Reporting
	Retrieving Service Information
	Job Submission
	Accessing Job Session Directory
	Accessing Information About Job
	Controlling Execution Of Job
	Delegation Interface

