- /, / Lxﬁr
NORDUGRID

NORDUGRID-TECH-25
20,/7/2009

ADVANCED USER INTERFACES

ArcGui and the Lunarc Application Portal

Jonas Lindemann*

*jonas.lindemann@lunarc.lu.se






Contents

1 Preface

2 ArcGui standalone user interface

2.1 Job submission . . . . . . .. L e e e e e
2.2 Job control . . . ..
Application Portal Integration

3.1 Lunarc Application Portal . . . . . . . . . . . L
3.2 User authentication . . . . . . . . . . . . e e
3.3 libarcclient integration . . . . . . . . ... e
3.4 Job definitions . . . . .. L e e e
3.5 Job management and submission . . . . . ... Lo Lo
Middleware integration module

4.1 Creating an ArcClient instance . . . . . . . . . . . . . . . . e e
4.2 Creating a managed job description . . . . . . . . ... oo
4.3 Jobsubmission . . . . ... e e e e e
4.4 Job status query . . . ... e
4.5 Jobcontrol . . . ... e e

10

11
11
11
12
12
14



CONTENTS



Chapter 1

Preface

The libarcclient [I] library provides a lot of methods for implementing client functionality in graphical user
interfaces as well as Web based interfaces. The library provides bindings for C++, Java and Python. This
documents focuses on the Python binding and its use in implementing advanced graphical user interfaces.

Python is a dynamic scripting language which is easy to learn while providing advanced features for im-
plementing larger applications. This documents describes the implementation of a standalone graphical
user interface for ARC based on wxPython ;| ArcGui , and the integration of libarcclient into the Lunarc
Application Portal.

This document describes how the libarcclient library is used



CHAPTER 1. PREFACE



Chapter 2

ArcGuil standalone user interface

The ArcGui application is a standalone graphical user interface for simple job submission and job control.
The user interface uses the wxPython graphical user interface library, which is a Python binding for the
wxWidgets library. The benefits of using wxPython is that the finished application can be run on all
available platforms, such as Linux, Mac OS X and Microsoft Windows. In addition to being platform
independent, wxPython also adapts the appearance of the user interface to the target platform, so that
when the application is run on Windows it will look like a native Windows application.

The design of the ArcGui user interface is based on a tabbed window design. Currently there are tabs for
a Generic Job, Active Jobs. The design of the application is flexible, so that it can be easily extended
with additional functionality.

The ArcGui application attempts to implement a fully non-blocking user interface, no operation will lock
the user interface. This is especially important when dealing with Grid operations, that can take a while to
process.

2.1 Job submission

The current implementation of ArcGui only supports a generic job defined entirely by a job description,
however the architecture of the application will allow easy extension of functionality. In the generic job tab
a job description can be entered either as a XRSL or JSDL file and submitted directly. All parameters are
controlled from the job description. Figure 2.1 shows the generic job tab in the user interface.

In the simple job tab a simple shell script based job can be submitted. Input and output files can be selected
by using the buttons on the right side. Figure 2.2 show the simple script job tab.

To enable a non-blocking user interface the actual job submission process is encapsulated in a special worker
thread SubmitJobThread. This thread is spawned when the Submit button is pressed. To communicate
status updates in the user interface the thread sends events to the main thread. Each thread defines an
event that is sent when it has finished; in addition to this, each thread also sends the UpdateProgressEvent
during the execution to send progress information messages to the main thread.

The onSubmit() method creates a ManagedJobDescription based on the input in the user interface controls.
It then passes the job description class to an instance of a SubmitJobThread instance. The complete event
method is shown in the following code.

def onSubmit(self, event): # wxGlade: ArcWindow.<event_handler>

Event handler: Submit a job.

# Create job description

job = ManagedJobDescription() ;



CHAPTER 2. ARCGUI STANDALONE USER INTERFACE

Active Jobs

Generic job ‘ Simple Job

Job script &(executable="/binfecho")
(arguments="hello")
(stdout="stdout txt")
(stdin="stdin .txt")
(gmiog="gmlog")
(cpuTime="8")

[ mer | [_som | [ Qs ][ ] g5

I

Figure 2.1: Generic job tab

Generic job ‘ Simple Job | Active Jobs I
Job name [S\mple job l
Job script
Wallime 5 |
Input files Add
Output files Add

I Submit ] [ [ save l [ ¥ Open l [ @'glear l

I

Figure 2.2: Simple script job tab



2.1. JOB SUBMISSION 9

job.JobName = str(self.jobNameText.GetValue())

job.TotalWallTime = arc.Period(str(self.jobWallTimeText.GetValue()),arc.PeriodMinutes)
job.Executable = "/bin/sh"

job.addArgument ("run.sh")

job.addInputFile("run.sh")

job.0Output = "stdout.txt"

job.Error = "stderr.txt"

job.TotalWallTime = arc.Period("5",arc.PeriodMinutes)

job.Print (True)

# Create run-script

jobScriptFile = open("run.sh", "w"
jobScriptFile.write(self. jobScriptText.GetValue())
jobScriptFile.close()

# Start job submission thread

worker = SubmitJobThread(self, self.__arcClient, job)
worker.start ()
self.__progressTimer.Start (100)

The job submission thread takes an instance of the ArcClient instance and a job description instance. To
enable sending of status events the updateProgress property of the ArcClient class is assigned a class method
of the thread, doProgress, which sends an event to the main thread to update status information. Then
run() method then does brokering and submission and finally sends an event to indicate that processing has
finished.

class SubmitJobThread(threading.Thread) :

Worker thread for submitting a job.
nnn
def __init__(self, parent, arcClient, job):
threading.Thread.__init__(self)
self.__parent = parent
self.__arcClient = arcClient
self.__job = job
self.__arcClient.updateProgress = self.doProgress

def run(self):
self.__arcClient.debuglevel = arc.WARNING

self.__arcClient.findTargets()
self.__arcClient.filterTargets(self.__job)
success = self.__arcClient.submit(self.__job)

evt = SubmitJobDoneEvent (EVT_KILL_JOBS_DONE_TYPE, -1, success)
wx.PostEvent (self.__parent, evt)

def doProgress(self, message):
evt = UpdateProgressEvent (EVT_PROGRESS_UPDATE_TYPE, -1, message)
wx.PostEvent (self.__parent, evt)



10 CHAPTER 2. ARCGUI STANDALONE USER INTERFACE

2.2 Job control

Active jobs are presented in the Active Jobs tab in an interactive table. Available actions are shown as
buttons in the top of the tab. To invoke an action, jobs are selected by clicking in the left column. Multiple
jobs can be selected by using modifier keys.

When an action is invoked, the selected jobs in the table are collected in a JobController and the action is
invoked on the job controller instance.

Jobs in the table can be grouped by selecting the columns in topmost row. Figure 2.3 shows then job control
table.

Generic Job | Simple Job | Active Jobs |

Iﬁaﬁefresh]l Retrieve H @Qe\ete H Clean ]

JobID |Name| state |ExitCode
1 |gsiftp:/farc-ce.smokerings.nsc liu.se:2811/jobs/2481512440686822103287101 FAILED 1
2 gsiftp:/fjeannedarc.hpc2n.umu.se:2811/jobs/91012440679821178093260 INLRMS: Q -1

Figure 2.3: Job control tab



Chapter 3

Application Portal Integration

The Lunarc Application Portal is an ongoing development to provide a framework for developing portals for
Grid resources. Existing versions of the portal also used ARC for job submission, job monitoring and job
control. However, these versions mostly used command line tools and some classes from the arclib library.
The aim of this project is to implement all the job handling routines using the newly developed libarcclient
instead of using the error prone parsing of command line output.

3.1 Lunarc Application Portal

The Lunarc Application Portal is a lightweight application portal for accessing Grid resources. The portal
is implemented using WebWare for Python which is a Python based application server. The WebWare for
Python handles takes care of servlets, session handling and concurrency.

The Lunarc Application portal adds a framework for implementing application specific portals using a
plugin based approach. Developers of application plugins provide two classes a Job class (CustomJob ) and
a user interface class (CustomJobPage ). Job submission, control and monitoring is handled by the portal
framework.

The portal implementation uses a file based structure to implement user configuration and storage of user
files instead of a database backend. This leads to a portal that is relatively easy to setup and maintain. The
file structure is described in table:

3.2 User authentication

In the current version of the portal a user logs to the portal over SSL with his browser certificate. A login
prompt is shown and the user logs in with a user name and a password. In the main user interface the
user can upload a proxy certificate from the Session/Upload proxy... menu. To validate the portal the
arc.Credential class is used from the libarcclient library.

cred = arc.Credential(proxyLocation, "", "", "")

period = cred.GetEndTime()-arc.Time()

Directory Description example
User directories Storage of user configuration and job definitions | /var/spool/lap
Log files Log files for portal and WebWare for Python /var/log/lap
Application instance | WebWare application instance /opt/lap

Table 3.1: File structure of the Lunarc Application portal

11



12 CHAPTER 3. APPLICATION PORTAL INTEGRATION

if period <= arc.Period():

[...]
self .writeln("Proxy has expired.")
[...]
else:
[...]
self .writeln("Proxy is remaining = " + (period.tolongstring()), "Information")
[...]

Authentication information is stored in an arc.UserConfig instance in the Grid.Clients.ArcClient instance.

3.3 libarcclient integration

To make it easier and more maintainable to integrate the Lunarc Application portal with libarcclient a
special client class, Grid.Clients.ArcClient , was implemented this class handles all interaction with the
libarcclient library as well as maintains job lists and user configuration information.

An ArcClient intance is created upon user session creation and destroyed when the session is destroyed.
WebWare has a special session store which stores session speicfic information during the sesssion lifetime.
The session store is implemeted as a python dictionary and can be accessed by the methods setValue
getValue , delValue and hasValue . The session store is persistent during the session lifetime, that is if
the portal service is shutdown, the session store is serialised to disk before shutdown and loaded again when
the service is started again. The ArcClient instance is stored in the session store, but not serialised when
the service is shutdown. The following code shows how an ArcClient instance is created if needed when a
servlet is awakened.

def awake(self, trans):
ApplicationSecurePage.awake(self, trans)

# Instantiate a arc client instance if needed.

if not self.session().hasValue("arc_client"):
user = Lap.Session.User(self.session().value(’authenticated_user’))
userDir = user.getDir();
proxyFilename = os.path.join(userDir, "proxy.pem")
jobListFilename = os.path.join(userDir, "jobs.xml")
userConfigurationFilename = os.path.join(userDir, "client.xml")
self.session() .setValue("arc_client",
ArcClient (proxyFilename,
jobListFilename, userConfigurationFilename)

The ArcClient is described in detail in chapter 4.

3.4 Job definitions

The Lunarc Application Portal is based on a job definition concept. A job definition can best be described
as a template for how a job for a specific application is submitted to a Grid resource. It contains a template
for a run script and maintains the list of files needed to run the job. It is also responsible for creatin the job
description for the Grid.

The main functionality of a job template is implemented in the Lap.Job.LapBaseTask class. This class is
used by the portal to maintain input and output files for the job, parameter sweep functionality and job
description creation.



3.4. JOB DEFINITIONS 13

A job definition can have a sweep size set, which defines the number of jobs that will be submitted with
different parameters. A special task directory is setup for each parameter in the set and results are retrieved
and stored the same directory. To use the parameter sweep functionality the user supplies input files with
special keywords, which are then replaced by the portal with special values wich can be used to calculate
the exact sweep parameters. The following code shows how an input file for NumPy is modified with sweep
parameters:

#!/bin/env python
from numpy import *

sweepSize = %(sweepSize)d
jobName = "%(name)s"
id = %(id)d

matrix = array([id, id])

When a application plugin is developed a special class CustomTask is derived from Lap.Job.LapBaseTask
, which is the base from which job definitions are instantiated. There are two important methods that must
be implemented by a derived job definition class, doCreateRunScript and doCreateJobDescription . The
first is responsible for creating the script which is executed on the Grid resources and the second class is
used to create a libarcclient arc.JobDescription instance which is then used by the portal framework when
the job is submitted. The following code shows an example of a job description class, CustomTask

class CustomTask(Lap.Job.LapBaseTask) :
def __init__(self):

Lap.Job.LapBaseTask.__init__(self)

self.description = "NumPy"
self.taskEditPage = "CustomJobPage"

# Task specific attributes
self.__mainFile = ""
self .packages = []
self.extraFiles =

(]

def doCreateRunScript(self, taskName, taskId):

Abstract routine responsible for returning a

run-script for the job.
nnn

return runScriptTemplate % (self.__mainFile)

def doCreateJobDescription(self, taskName, taskId, taskDir):

nnn

Abstract routines responsible for returning a jobdescription for
the job.

# Create a managed job description

job = ManagedJobDescription() ;



14 CHAPTER 3. APPLICATION PORTAL INTEGRATION

job.JobName = str(taskName)

job.TotalWallTime = arc.Period(str(self.cpuTime),arc.PeriodMinutes)
job.Executable = "/bin/sh"

job.addArgument ("run.sh")

# Make sure we store the full paths of input files

for inputFile in self.inputFiles.keys():
url = self.inputFiles[inputFile]
if url == "":
fullPath = os.path.join(taskDir, inputFile)
job.addInputFile(fullPath)
else:
job.addInputFile(inputFile, url)

job.Output = "stdout.txt"
job.Error = "stderr.txt"

return job

3.5 Job management and submission

An important part of the Lunarc Application Portal is the job management page (ManageJobPage ). From
this page the user manages the created job definitions. Job definitions can be deleted, edited and submitted.
The user interface is centered around a dynamic table control, which make it easy to sort job definition as
well as select multiple definitions.

The job management page is also responsible for initiating job submission. In this initial version job sub-
mission is done in a non-threaded way using and ArcClient instance and blocks page rendering until the job
has been submitted. Information on the submitted job is stored in the, job.xml | file which is stored in the
user directory. The libarcclient library maintains this file when it submits jobs. Part of the submit method
of the job management page is shown in the following example:

def submitJob(self):
"""Submit selected job(s) to the grid (actiom)."""

[...]

for jobName in jobNameList:
jobDir = os.path.join(userDir, "job_%s" % jobName)
# Read the job task
taskFile = file(os.path.join(jobDir,"job.task"), "r")
task = pickle.load(taskFile)
taskFile.close()
jobList = task.getJobList()

# Do brokering

self.__arcClient.debuglevel = arc.DEBUG
self.__arcClient.findTargets ()



3.5. JOB MANAGEMENT AND SUBMISSION 15

for job in jobList:

job.Print(True)
self.__arcClient.filterTargets(job)
submitted = self.__arcClient.submit(job)
if submitted:

print "Job submitted succesfully."
else:

print "Job submission failed."

In the final version of the portal the submission procedure will be threaded and the libarcclient parts will
be executed by a special submission thread. This will make submission of large parameter jobs much more
efficient as well as preventing a blocking Web page. Job submission status will be reported and stored in the

task parameter directories. To prevent threading issues status for the submission threads will be reported
in separate files.



16

CHAPTER 3. APPLICATION PORTAL INTEGRATION



Chapter 4

Middleware integration module

To hide the complexity and make the integration of the libarcclient library easier a special Python integration
module, Grid.Clients ; was implemented. The module contains the ArcClient class which implements the
neccesary commands for integrating with ARC as well as more advanced features such as bulk job handling.

4.1 Creating an ArcClient instance

The ArcClient class communicates most of its configuration by a property based interface. That is directly
assigning class variables as variables. This can seem like a bad programming practice, but instead of providing
get and set methods for each property, Python provides a way of defining properties which behave as variables
externally, but internally call get and set methods. The following example shows how this can be implemented
in a Python class:

class ArcClient(object):
def __init__(self):

self.__debuglevel = arc.DEBUG

def setDebuglevel(self, level):

self.__debuglevel = level
arc.Logger_getRootLogger () .setThreshold(self.__debuglevel)

def getDebuglevel (self):
return self.__debuglevel

debuglevel = property(getDebuglevel, setDebuglevel)

In the previous example the debuglevel property is implemented through the getDebuglLevel and set-
DebuglLevel . The user of the instance can then assign the debuglLevel property as a normal member
variable.

arcClient.debuglevel = arc.WARNING

The property interface provide classes with a more direct and intuitive way of interacting with objects.

17



18 CHAPTER 4. MIDDLEWARE INTEGRATION MODULE

The ArcClient class is instantiated by calling its constructor. The constructor does not have any parameters.
Most configuration options are defined by properties. In the following example an ArcClient instance is
created and locations for proxy, job list file, download directory and user configuration is set by assigning
class properties.

arcClient = ArcClient()

uid = os.getuid()
gid = os.getgid()

arcClient.proxyFilename = "/tmp/x509up_u’%d" % uid
arcClient.jobListFilename = os.path.abspath("./jobs.xml")
arcClient.userConfigFilename = os.path.abspath("./client.xml")
arcClient.downloadDir = os.path.abspath(".")

4.2 Creating a managed job description

The new libarcclient library contains a special class, JobDescription , which implements a Grid job descrip-
tion. The class is implemented as generic job description and can be used to generate job descriptions for
both ARC 0.6.x resources as well as future ARC 1.x based resources. The Python binding for this class
is quite expressive and requires a lot of extra steps to create a simple description. To simplify the job
creation process a special ManagedJobDescription class has been implemented. This class is derived from
arc.JobDescription and extends this class with methods for adding input and output files as well as adding
runtime environment definitions. To illustrate the expressiveness of the libarcclient JobDescription class
the implementation of the addInputFile() method is shown in the following code excerpt:

def addInputFile(self, name, url="", keepData = True, isExecutable = False,
downloadToCache = False, threads = -1):

Add an input file, name, to the job description.
inputFile = arc.FileType()
inputFile.Name = os.path.basename (name)
inputFile.KeepData = False
inputFile.IsExecutable = False
inputFile.DownloadToCache = False
inputFileSource = arc.SourceType()
if url=="":
fullPath = os.path.abspath(name)
urlRepr = "file://"+fullPath
inputFileSource.URI = arc.URL(urlRepr)
else:
inputFileSource.URI = arc.URL(url)
inputFileSource.Threads threads
inputFile.Source.append(inputFileSource)
self .File.append(inputFile)

By using the ManagedJobDecription class a job description can be described by the following lines of code:

job = Grid.Clients.ManagedJobDescription()
job.Executable = "/bin/sh"



4.3. JOB SUBMISSION 19

job.addArgument ("run.sh")

job.addInputFile("run.sh")

job.Output = "stdout.txt"

job.Error = "stderr.txt"
job.addOutputFile("result.txt")

job.TotalWallTime = arc.Period("5",arc.PeriodMinutes)

4.3 Job submission

To handle job submission in a efficient way the ArcClient separates target selection, brokering and submission
into separate methods, findTargets , filterTargets and submit . This makes it possible to reuse the selected
targets and eliminate the need to query the information system for each job submission. To find suitable
targets the findTargets() method uses the libarcclient TargetGenerator class. The found targets are then
stored in the self.targets member varible, so that it can be reused when targets are filtered. The following
code shows the ArcClient |pythonfindTargets() implementation.

def findTargets(self):

Find possible targets by querying information system.

nnn

self.targets = None

self.__targetGenerator.GetTargets(0, 1);

self .targets = self.__targetGenerator.ModifyFoundTargets ()

The findTargets() method only queries the information system for all possible targets. To select a target
for submission, job brokering or filtering must be done. This is implemented in filterTargets() method in
the ArcClient class. This method selects a broker and uses this broker to select suitable submission targets.
The implementation of this class is shown in the following code:

def filterTargets(self, job):

Return a filtered list of suitable targets based on the
RandomBroker component.

nnn

chosenBroker = self.loadBroker()
chosenBroker.PreFilterTargets(self.targets, job)

target = chosenBroker.GetBestTarget ()
while not target==None:
target = chosenBroker.GetBestTarget ()
if target!=None:

self.filteredTargets.append (target)

return self.filteredTargets

A typical job submission with ArcClient is shown in the following code:

# Brokering



20 CHAPTER 4. MIDDLEWARE INTEGRATION MODULE

arcClient.findTargets()
arcClient.filterTargets()

# Submission (reusing target information)

for job in jobs:
if arcClient.submit(job):
print "Job submission succeeded."
else:
print "Job submission failed."

4.4 Job status query

The JobController class has methods for querying job status for the jobs it manages. However, to make it
more managable in Python the ArcClient class converts the mapped C++ Joblnformation instances to a
dictionary keyed on the job id. The following code shows this conversion in the updateStatus() method.

def updateStatus(self):
[...]

for controller in jobControllers:
controller.GetJobInformation()
jobStore = controller.GetJobs()
for job in jobStore:
jobId = job.JobID.str()
if self.jobDict.has_key(jobId):
try:
self.jobDict[jobId] ["State"] = job.State
self. jobDict[jobId] ["Name"] = job.Name
self. jobDict[jobId] ["Type"] = job.Type
self. jobDict[jobId] ["JobDescription"] = job.JobDescription
[...]

When the updateStatus() method hase been called job information can be retrieved by querying the Python
dictionary.

for jobId in arcClient.jobDict.keys():
if arcClient.jobDict[jobId] .has_key("Name")
print arcClient.jobDirc["Name"], arcClient["State"]

A special method, sortKeysBy() , has been added to return a list of keys sorted by a specific field in the job
information structure.

4.5 Job control

The ArcClient module implements the methods get() , kill() and clean() for controlling active Grid jobs.
All methods are implemented using the JobController class for invoking operations on lists of jobs. When
any of these operations are invoked the job list is reloaded. Job status information must also be reloaded
after these operations.



4.5. JOB CONTROL 21

Downloading of jobs will be done to the directory specified by the downloadDir property of the ArcClient
class.

The following code shows an example of how these methods can be used to control active Grid jobs.

arcClient.submit (job)
arcClient.updateStatus ()

[...]
arcClient.get (arcClient. jobDict.keys())
[...]

arcClient.kill(["gsiftp://...", "gsiftp://..."])
arcClient.clean(["gsiftp://..."])



22

CHAPTER 4. MIDDLEWARE INTEGRATION MODULE



Bibliography

[1] libarcclient — A Client Library for ARC, M. Ellert, B. Mohn, I. Marton, G. Réczei, NORDUGRID-
TECH-20, http://www.nordugrid.org/documents/client_technical.pdf

23


http://www.nordugrid.org/documents/client_technical.pdf

	Preface
	ArcGui standalone user interface
	Job submission
	Job control

	Application Portal Integration
	Lunarc Application Portal
	User authentication
	libarcclient integration
	Job definitions
	Job management and submission

	Middleware integration module
	Creating an ArcClient instance
	Creating a managed job description
	Job submission
	Job status query
	Job control


