DNS-embedded Service Endpoint Registry for
Distributed e-Infrastructures

Andrii Salnikov, Baldzs Kénya

1. Introduction

Distributed e-Infrastructure is a key component of modern science. In partic-
ular the Worldwide LHC Computing Grid (WLCG) [1] is a well-known example
of a large scale geographically distributed e-Infrastructure that combines to-
gether thousands of computing and storage services as a single interoparable
e-Science environment.

Nowadays, production scientific e-Infrastructures as WLCG, EGI [2] and
Open Science Grid (OSC) [3] rely on federated organizational and operational
model where resources are grouped either by geographically (country, region,
sites, so on) or administratively (collaboration, tier, research group, so on).
Within those units various service are hosted. Furthermore the e-Infrastructure
resources such as the computing and data storage services can be accessible
via their endpoints. Figure [1|illustrates the general grouping concepts within a
typical distributed e-Infrastructure.

In such environment the ability to be able to discover service endpoints is a
crucial functionality that enables infrastructure consumers to utilize the avail-
able resources as part of their distributed computing workflows. In the past
various service registries, catalogues, endpoint indices, directory services and
other similar solutions have been proposed, developed and deployed to serve as
an information source for the service endpoint discovery. Both the centralised
and the widely distributed approached have been tried. These catalogues have
been storing information about either or both the internal administrative group-
ing of the infrastructure and the services as well.

EGI stores the grouping of services to sites and their grouping to the Na-
tional Grid Infrastructures (NGI) in the Grid Operations Center Database
(GOCDB) []. WLCG groups resources based in Tier level, and provided ser-
vices are stored in the WLCG REsource, Balance and USage (REBUS) topology
database [5]. OSG in turn has own Information Management System (OIM) that
manages Unites States resources [3]. On the particular scientific collaboration
level information about available resources may be aggregated and stored in a
centralised database, e.g. for the ATLAS CERN experiment a dedicated Grid
Information System (AGIS) [6] had been developed.

The very first attempt to provide a service catalogue was the Globus Meta-
computing Directory Service (MDS) [7], an LDAP-based solution. The limita-

Preprint submitted to Elsevier November 27, 2019

e-Infrastructure

Collaboration/Country/Tier | Collaboration/Country/Tier |
Site/Organization Site/Organization

Service | Service | Organization Unit

Endpoint Endpoint Service | Service |

Endpoint Endpoint “

Endpoint Endpoint
Site/Organization
- Service

Service | Service |

Endpoint Endpoint

Endpoint Endpoint

Figure 1: Typical organizational structure of a distributed e-Infrastructure illustrating the
grouping relations of various Collaborations, Sites, Services and Service Endpoint.

tions and instabilities of the MDS implementation resulted in the development
and deployment of various LDAP-based solutions such as the WLCG BDII [§]
or the EGIIS service of NorduGrid ARC [9].

As of writing the BDII service is widely deployed and used as production
information backbone of WLCG despite many of its well know limitations. BDII
is a fully centralized system relying on LDAP. LDAP is being efficient on query
level, but from the other hand is not optimized for frequent writes. This results
in serous hardware load. There is also noticeable huge load on network caused
by regular fetching of centralized entire database.

There was previous attempts to overcome the issues of the centralized LDAP-
based BDII and introduce general purpose newly-developed service registries for
e-Infrastructures. The EMI Registry [10] service and P2P indexing systems [11]
[I2] represent such incomplete projects that got stuck at the roll-out deployment
phase.

All existing or attempted infrastructure topology databases and service reg-
istries used in WLCG so far had been developed as a standalone complex services
with an overloaded data model with unclear separation of static and dynamic
information. Furthermore, the deployment, operational and management as-
pects of such services are at least as important as the quality of the technical
implementation.

There is a well-established information lookup system widely used all over
the world: The Domain Name System (DNS), dated back to the ARPANET

times, is an integral part of today’s Internet and have been used for domain-
name specific information discovery for ages. DNS primarily had been used for
resolving network layer addresses of the hosts but it was designed as a general
multi-purpose distributed hierarchical database that holds information about
anything related to the target domain [13].

The ARC Hierarchical Endpoints Registry (ARCHERY) represent a novel
DNS-based service endpoint registry for e-Science infrastructures. ARCHERY
embeds the service endpoint information directly into the DNS database accord-
ing to a proposed minimalistic data model. The reference implementation of
the suggested method based on the ARC middleware [9] delivers the lightweight
middle layer between the e-Infrastructure services and the DNS infrastructure.

The rest of the paper is organized as follows: Section [2| provides a brief
overview of the benefits of relying on the DNS infrastructure and the possibility
of embedding free-form information into DNS records. The paper continues with
Section [3] introducing set of requirements for service endpoint registries. The
main part of the work is delivered in Sections describing the ARCHERY
data model, security aspects, dynamic information and software layer implemen-
tation. The article concludes with Sections introducing typical ARCHERY
deployment scenarios and deployment results.

2. DNS as an ultimate source of domain-specific information

Domain Name System (DNS) is a well-established integral part of today’s
Internet that used for information discovery. Dated back to the ARPANET
times it was originally developed to solve the problem of domain to network
layer address mapping but than continuously evolve to provide more types of
the information and features.

There is more than a hundred of different RFC documents that describe
various aspects of DNS data structures, operations, security, etc [14].

The design goals of the DNS architecture itself covers many points that
defines how information is stored and made accessible. For the approaches
proposed in this paper the following points are most relevant [13]:

e Database must be maintained in a distributed manner, with local caching
to improve performance to achieve both scalability and manageability.

e The source of information controls the trade-off between update speed and
cache validity, defining the accuracy.

e The worldwide distributed DNS infrastructure is not restricted to single
usage pattern and generally useful for many different applications.

In the DNS all data associated with a domain name (that identify a node)
is tagged with a type. Information in each node is stored inside the re-
source records (RR). Resource records are grouped in the Resource Records
Set (RRSet) that is referenced by the name (owner).

It is important to mention that the order of RRs itself is not preserved by
name servers or resolvers.

General format of RRs is defined in RFC 1034 [13]:

owner type class TTL RDATA ‘

The most common types used for the typical address resolution case are: A
for IPv4 address, AAAA for ITPv6 or MX for mail server name. Note that TTL can
be assigned for each particular RR, controlling the caching and update period
of the information.

2.1. Benefits of the DNS infrastructure

Current DNS infrastructure exhibits many capabilities that are particularly
well-suited for the use case of an e-Infrastructure service endpoint registry:

e Caching - DNS infrastructure implies network caching on many levels,
distinguishing between caching name services and origin of information
that defines the TTL value. Even dedicated software products (for example
Unbound [15]) exists to target efficient caching implementation. On the
client level, DNS responses are also cached by the operating system.

e Integrity - DNS keeps track of the information origins, maintaining the
so-called ” Authoritative information” that is organized into units called
zones. Each zone has serial number that define the revision of information
and allows to control which instance has the most accurate information.
When client gets response even from cached data, the response always in-
cludes ”authority” section that can be used to contact information source
directly if needed.

e Resiliency - It is generally required that each zone are served by at least
two different name servers. All name services are defined in the zone itself
and also in the parent zone following the hierarchy. Name services for the
same zone are configured to share the same data using the zone transfer
requests.

e Zone delegation - DNS designed to be distributed and each particular
zone can be hosted by independent name servers located anywhere in the
network. All zones form the common tree starting from the root zone that
hosted by well-known root servers [16].

e Aliases - The federation process allows to merge several independent
databases in the computer network into a federated one. The CNAME type
of records can be used to redirect particular DNS request to another DNS
name. RFC 6672 defines the DNAME type of records [I7] that can be used
to transparently map all names of particular DNS suffix to another part
of the tree.

e Dynamic updates - Current DNS infrastructure also defines the protocol
for ”Dynamic Updates in the Domain Name System” that first declared

in the RFC 2136 [I8] with further security-related modifications. It is
possible to add or delete RRs or RRSets from a specified zone with an
atomic UPDATE operation. Possibility to modify DNS dynamically opens
it for much more use-cases, starting with DHCP integration.

e Security - The Domain Name System Security Extensions (DNSSEC)
adds data origin authentication and data integrity to the DNS [19]. It al-
lows to build and verify the Authentication Chain using the cryptography
algorithms to stand against possible information spoofing. To authenti-
cate dynamic updates Secret Key Transaction Authentication for DNS
(TSIG) [20] can be used on transactions level.

2.2. Embedding free-form information into DNS records

Worldwide DNS infrastructure was designed to be scalable and open for
many types of information that can be identified by domain name. As declared
in the RFC 1034 [13]:

The costs of implementing such a facility dictate that it be gen-
erally useful, and not restricted to a single application. We should
be able to use names to retrieve host addresses, mailbox data, and
other as yet undetermined information.

Historically the first use-case of free-form information embedding into DNS
was Hesiod [21], the Athena name server, aimed to provide naming for services
and data objects in a distributed network environment. It was used to provide
/etc/passwd, /etc/group and other databases via the network by means of
DNS protocol. Even in 1980-s it took milliseconds to get a responses from
DNS-embedded database that held roughly 10k records of each type (3MB of
data) [21].

Hesiod introduced the TXT records type that is now one of the standard DNS
RRs defined in the RFC 1035 [22]. These records allows to store any arbitrary
ASCII string in the DNS database.

There is also an experimental RFC 1464 dated back to 1993 that suggests
do define the format of TXT RDATA fields as the “attribute name followed by
the value of the attribute” [23]. However despite this experimental RFC the
TXT records are in practice used in arbitrary format.

Some of the most common production TXT RR use-cases are:

e Defining Kerberos realm name in the DNS with TXT record using the
_kerberos RR owner [24]. Value of TXT RR is an exact Kerberos realm
name.

e Email security heavily relies on DNS. The TXT records that implement the
Sender Policy Framework (SFP) [25], Domain Key Identified Mail (DKIM)
or Domain-based Message Authentication, Reporting, and Conformance
(DMARC) [26] define the policies of e-mail acceptance and public keys for
signature verification (Fig. [2).

[user@host ~]1$ host -t TXT grid.org.ua
grid.org.ua descriptive text "v=spfl mx ip4:91.202.128.126 “all"

[user@host ~“]$ host -t TXT mx._domainkey.grid.org.ua
mx._domainkey.grid.org.ua descriptive text "v=DKIM1\; k=rsa\;
p=MIGEMAOGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDAYfGZLtaPtMcFSAnl1gApiG
JaB8vEP8vLN08j5ZAieoalnEiJO0b8Pe0zDPOXRUQ4wIpGNBIq8jYIwNY3gaOKOx
ROvxpKrluy56bJ3dVXwd1Bcz8DNt1L0y52M6101meU45BV78ho6eZMnhCs+BfMR
TYkws1o7kH+bKOskgkI9rgQIDAQAB"

Figure 2: Example of free form text embedded into DNS for an e-mail infrastructure (SPF
and DKIM records)

e Domain ownership verification often uses TXT RR. For example Google
GSuit verification process provides a token that should be published in
the TXT RR for the domain in question.

3. Requirements for service endpoint registries

Based on more than a decade operational experience and after following the
evolution of available and proposed service registry solutions below we present a
revisited set of requirements for e-Infrastructure service registries. Our use-case
in focus is the distributed e-Infrastructure serving the WLCG community.

Minimalistic data model. A service registry should store only minimalistic in-
formation necessary for endpoint discovery. Furthermore, the information main-
tained inside the registries should be structured according to a mapping captur-
ing the essential relation of the key e-Infrastructure concepts such as organiza-
tion, site, services, endpoints etc (Fig. . It is expected that the data objects of
the model represent mostly static or semi-static information. A service registry
is not intended to store fast changing or unrelated and unnecessarily verbose
data. The distributed nature of e-Infrastructures implies that “approaches that
attempt to collect a consistent copy of the entire database will become more
and more expensive and difficult, and hence should be avoided” [13].

The complex data model and related database update issues are some of the
known limitations of the Top-BDII registry |8 [10].

Registry fault tolerance. Eliminating the single point of failure in a distributed
infrastructure is a critical, therefore a registry service should offer fault tolerance
and redundancy while providing a single transparent access point.

Flexible services grouping via federations. To reflect the topology of the e-
Infrastructure resources, the registry should be flexible enough in terms of
grouping of services and administrative units. It should be able to describe
hierarchy, organization units, various federations, etc. (Fig.[1)).

Query and network load efficiency. Worldwide-scale e-Infrastructures will have
to deal with huge number of registry information consumers. The technical
implementation should take into account query efficiency, server-side load and
network usage during the registry operations. There is always a trade-off be-
tween up-to-date information availability and the load on the infrastructure.

Information integrity and security. Increasing number of attack vectors in cur-
rent network makes information content integrity and spoofing protection a
crucial part of any service. This applies to both authenticity and integrity of
information itself and securing the information updates inside the registry.

Simple deployment and operation. An important and often overlooked aspect
of service takeup is the cost of deployment, maintenance and operation. The
deployment aspect is especially critical for distributed systems where service
roll-out requires cooperation of many infrastructure actors.

Therefore building the registry service upon a trusted and well-known solu-
tions is preferred.

In the past we witnessed promising registry service developments that got
stuck in the deployment phase and never reached the production status [10].

Distributed operations, where different people are responsible for different
parts of the e-Infrastructure should also be supported.

Furthermore, a change in the topology of the e-Infrastructure should not
require a complete reconfiguration of the registry.

4. Embedding a service endpoint registry into the DNS infrastruc-
ture.

We propose to fulfill the re-visited e-Infrastructure registry requirements (see
section |3]) using the already established DNS infrastructure and embedding the
necessary service endpoint information.

In order to capture the relevant service information and e-Infrastructure
topology a minimalistic ARCHERY data model have been designed (section.

DNS as a well-proven and robust distributed information infrastructure offers
numerous benefits for building a registry for e-Infrastructures (see section .
Registry fault tolerance will be guaranteed by DNS services resiliency, still pro-
viding a single entry point. Built-in zone-delegation and DNS aliases allows to
carry out a distributed operational model of the registry. Information integrity
and caching in DNS offers query efficiency and consistency of the registry data.
The available built-in DNS security features can be transparently applied to the
registry data.

Simple deployment and operation is achieved by developing a light-weight
software layer (section [6]) on top of the NorduGrid ARC middleware [9).

4.1. ARCHERY data model

ARCHERY implies a minimalistic data model that is targeting mostly static
service information to address the distributed e-Infrastructure resource grouping
and service discovery needs (see Section [5| regarding non-static information).

To represent the distributed e-infrastructure concept (Fig. [1)) the ARCHERY
data model defines three type of objects: the Endpoint Object, the Service
Object and the Group Object (Fig. [3)).

Endpoint object is used to capture information about a network location that
can be used to access specific service functionality, including accessing infor-
mation within ARCHERY registry service itself. For the later special endpoint
types were defined (see below). The Endpoint object is described with the
following set of attributes:

e Endpoint URL - defines the network location by which the service func-
tionality is accessible;

e Endpoint Type - contains the value from the Endpoint type enumera-
tion defined by the infrastructure operators. In addition to ordinary ser-
vice endpoint types in the model we introduced two special ARCHERY
endpoint types archery.group and archery.service for accessing the
ARCHERY Group and Service objects within the registry.

e Endpoint State (optional) - Boolean value that indicates the endpoint
availability. In case of an ARCHERY service endpoint, if the endpoint
state is false (unavailable) it is still used to represent e-Infrastructure
topology, but should not be used during service endpoints discovery. Miss-
ing attribute is interpreted as true i.e. the endpoint is available.

Service object represents an e-Infrastructure service, like Computing Cluster,
Storage service or a User database, etc. The Service object is described with
the following set of attributes:

e Service ID - holds the service identifier as an arbitrary string. For ex-
ample the ID can be derived from the hostname;

e Service Type - contains the value from the Service type enumeration
defined by the e-Infrastructure operators;

e Service Endpoints - an array of Endpoint objects associated with the
Service.

Group object is used to organize other objects such as ARCHERY Service or
Group. The grouping was introduced to the data model so that infrastructure
topologies (i.e. hierarchies or federations) can be represented inside the reg-
istry in a flexible way. The Group object is described with the following set of
attributes:

e Group ID (optional) - holds the group identifier as an arbitrary string.

e Group Type (optional) - defines the grouping type based on organi-
zational structure; example values could be: Site, Country, Tier, Experi-
mentA, etc.

¢ ARCHERY Endpoints - an array of Endpoint objects of special defined
ARCHERY endpoint types (archery.group or archery.service). These
Endpoint objects describe the optional state and URL of the ARCHERY
objects inside the registry.

Group Object 1-=--> Endpoint Object ~~-1> Service Object oo -» Endpoint Object
Endpoint URL ===~ 5 Endpoint URL
Endpoint Type Service Type point Typ

ARCHERY Endpoints Service Endpoints i

Endpoint 1 #-------- F-1-- Endpoint 1 #------- R
Endpoint 2 Endpoint 2 ﬁ
-=-1-> Endpoint Object ;7777 > Endpoint Object
Endpoint N ¢--------] archery.group -3 Endpoint N #-----=--

: :---1» Endpoint Object [-» Service Object :----> Endpoint Object
I Group Object : archery.service

R N Endpoint Object ----t» Service Object 17~ Endpoint Object

Figure 3: ARCHERY objects, their attributes and relations in the proposed data model.
Please observe the way how ARCHERY Endpoint objects are used to describe groupings in
the topology.

Following the data model (Fig. the service endpoint discovery process
can start from the entry point Group Object and recursively contacting all
the ARCHERY Endpoints. The proposed object attributes allow taking into
account group, service and/or endpoint types as well as availability status during
the recursive discovery process to query only the subset of objects.

4.2. Rendering the data model with DNS data structures

What follows we propose a rendering rules for mapping the ARCHERY data
model into DNS structures.

4.2.1. ARCHERY objects within DNS

ARCHERY objects are rendered using TXT resource records. These TXT
RRs contain the space separated key=value pairs where keys correspond to the
data model object attributes. Boolean object attributes have values specified
as 0 or 1.

The Endpoint Object is rendered with a single TXT RR where Endpoint
Object attributes — Endpoint URL, Endpoint Type and optional Endpoint State
are represented by the u,t,s keys in this specific order within the space separated
key-value pairs.

The Service Object of the ARCHERY data model is rendered by a dedi-
cated RRSet identified by unique domain name that can be used to access this
object inside the registry. The service RRSet is composed of single service ob-
ject identity RR and one RR for every Endpoint objects associated with the
service. The service object identity RR has the format of o=service followed
by t=<Service Type> and id=<Service ID>. Figure [d] shows the rendering
format of the Service object as an RRSet containing the Endpoint RRs inside.

<DNS name> TXT "o=service t=<Service Type> id=<Service ID>"
<DNS name> TXT "u=<Endpoint URL> t=<Endpoint Type> [s={0[|1}]"
<DNS name> TXT 000

<DNS name> TXT "u=<Endpoint URL> t=<Endpoint Type> [s={0|1}]"

Figure 4: The DNS RRSet representing the ARCHERY Service Object including the asso-
ciated Endpoint Objects as well. The first line of the RRSet is the service object identity
RR.

The Group Object of the ARCHERY data model is rendered by a dedi-
cated RRSet identified by unique domain name that can be used to access this
object inside the registry. The Group RRSet is composed of single Group ob-
ject identity RR and one RR for every ARCHERY Endpoint objects pointing to
other Service or Group objects that are part of this specific Group. The Group
object identity RR has the format of o=group followed by optional t=<Group
Type> and optional id=<Group ID>. Figure. [5| shows the rendering format of
the Group object as an RRSet containing the ARCHERY Endpoint RRs.

<DNS name> TXT "o=group [t=<Group Type>] [id=<Group ID>]"

<DNS name> TXT "u=<DNS URL> t=archery.{groupl|service} [s={0[|1}]"
<DNS name> TXT

<DNS name> TXT "u=<DNS URL> t=archery.{group|service} [s={0[1}]"

Figure 5: The DNS RRSet representing ARCHERY Group Object including the associated
Endpoint Objects pointing to other Group or Service objects inside the registry. The first line
of the RRSet is the Group Object identity RR.

4.2.2. Embedding ARCHERY object relations as part of DNS
In the registry rendering the entry point Group Object is distinguished by
the predefined RRSet DNS name starting with the mandatory _archery. Any

10

other objects may have arbitrary RRSet name in any DNS zone. Exact RRSets
naming scheme does not affect service discovery process, but should be consis-
tent and transparent from the operational point of view.

The child-parent Endpoint Object to Service Object relation is implicitly
defined by means of grouping within the same RRSet (Fig. |4).

The ARCHERY Data model allows grouping of Service and Group Objects
into Group objects via the intermediate Endpoint objects. This grouping in the
DNS rendering is implemented by using dedicated ARCHERY Endpoint types
(Fig. |p) that are contained as RR text inside the Group object’s RRSet.

Both Group Object to Group Object and Group Object to Service Object
relations rest upon the unique DNS name of the RRSet of the pointed object.

4.2.8. Rendering example

As an example for the rendering rules, we present an ARCHERY registry,
embedded in the example.org DNS zone. The registry describes an " COLLAB-
ORATION_EXAMPLE* e-Infrastructure collaboration consisting of a site and
several services (Figure |§[)

The top level DNS RRSet in the DNS registry is the _archery.example.org
which is a Grouping object on the Collaboration layer.

This top-level registry entry groups another Group Object on the Site Layer
identified by EXAMPLE-SITE. archery.example.org RRSet and a Service Ob-
ject on the Service Layer identified by s01.EXTERNAL. archery.example.org
RRSet. The specific service can be seen as an example of a Collaboration-level
service (e.g. an outsourced external service).

_archery.example.org.

o=group t=collaboration id=COLLABORATION EXAMPLE
--1u=dns://EXAMPLE-SITE. archery.example.org. t=archery.group

u=dns://s01.EXTERNAL. archery.example.org. t=archery.service [----=====--q, .

“» EXAMPLE-SITE._archery.example.org.

o=group t=site id=EXAMPLE-SITE
--{u=dns://s01.EXAMPLE-SITE. archery.example.org t=archery.service

u=dns://s02.EXAMPLE-SITE. archery.example.org t=archery.service s=0 [---=-~]

> s01.EXAMPLE-SITE._ archery.example.org. E \ 4
: s01.EXTERNAL._ archery. ..

o=service t=service id=s0l.example.org

u=https://s0l.example.org/data t=storage s=0

v
u=ldaps://s01l.example.org/o=info t=info s02 .EXAMPLE-SITE._ archery. ..

u=https://s0l.example.org/compute t=compute

Figure 6: ARCHERY DNS RRSets rendering an example e-Infrastructure collaboration topol-
ogy.

Site Layer Group Object stored in the (EXAMPLE-SITE. archery RRSet)

11

represents the EXAMPLE-SITE that provides two services. The services are
referenced by the corresponding ARCHERY endpoints.

Furthermore notice that the second ARCHERY Endpoint pointing to the
service s02.EXAMPLE-SITE. archery marked as unavailable with the Endpoint
State (s=0) and therefore this service will not be queried during endpoint dis-
COVery process.

On the Services Layer there are three services of which the figure shows
details for the s01.EXAMPLE-SITE. archery RRSet. This particular service
offers three service endpoints of different types (e.g. t=compute). Also note
that the storage endpoint is unavailable.

Notice that RRSet naming scheme in this example implies the convenient
choice of a new subdomain for each further e-Infrastructure hierarchy layer.

4.8. Implications of DNS Records Size Limits

There is a limitation of DNS response size which affects the ARCHERY
implementation as well. For the UDP transport layer protocol the limit is 4096
bytes [27] (older limit is 512 bytes [28]) while for TCP protocol 65535 bytes are
allowed. Unless the transport protocol is defined explicitly DNS clients use UDP
transport for queries by default. However if the message does not fit into the
UDP limit, the DNS server sends truncated flag in the response and the clients
use TCP [29] transparently to the application. DNS updates and zone transfer
requests always use TCP transport. Therefore for ARCHERY operations the
65535 bytes TCP response size limit is the relevant limitation.

The TCP 65kb limit constraints the size of a single ARCHERY object, thus
the number of ARCHERY endpoints a single object can contain. In the pre-
sented e-Infrastructure deployments (see section |8) the typical size of the ren-
dered registry TXT RRs was approximately 100 Bytes. Exact value depends on
the object attribute values string representation length. This means that one
RRSet representing either a Service or a Group Object can include nearly 650
Service or ARCHERY Endpoint Objects in accordance to the TCP response
limit. Please note that the allowed 650 endpoints within an ARCHERY object
is an order of magnitude larger than the typical real-life deployment numbers
where sites or services usually have around a dozen endpoints. This means that
even the more restrictive UDP limit of approximate 40 endpoints can be easily
met thus offering better query latency.

To conclude it can be noted that according to the typical hierarchical e-
Infrastructure design (Fig. , that introduce grouping in accordance to oper-
ations model, the DNS response size limits provide enough headroom to store
all registry data. Nevertheless it is required that the ARCHERY software layer
respects this constrain and introduce another grouping layer whenever DNS
transport layer limit is reached.

12

5. Security aspects and dynamic information

5.1. ARCHERY Security

Since the underlying DNS infrastructure implements a world-readable dis-
tributed system the service endpoint registry information stored in ARCHERY
also becomes publicly available.

Being worldwide readable the DNS infrastructure offers the information
authenticity and integrity verification, implementing the technology called
DNS Security Extensions (DNSSEC) [19].

At the time of writing the top-level deployment of DNSSEC is 91% and
growing [30] and deployment on the further hierarchy levels is progressing. It is
not mandatory but strongly advised to use DNSSEC for maintaining the DNS
zone Today.

Everything on both client and server side of DNS, including DNSSEC ver-
ification is already in place, does not require re-implementation and does not
change anything in ARCHERY way of DNS usage. For security reasons we
recommend to have DNSSEC configured for ARCHERY DNS zones.

Inserting service registry information or modifying existing records within
the DNS is carried out by following well-established DNS management proce-
dures this way ARCHERY inherits the operation security of the DNS platform.
When it comes to authenticated dynamic updates the Secret Key Transaction
Authentication for DNS (TSIG) used on transactions level.

5.2. Dynamic information in ARCHERY

ARCHERY primarily stores static service endpoint information thus the
attributes of the minimalistic data model are not expected to change frequently.
The few occasional changes are to be handled by deleting the old record and
inserting a new one. Such a typical rare change could be the reconfiguration of a
service endpoint URL that would imply the need of modifying the corresponding
ARCHERY record.

In the distributed e-Infrastructure service availability is dynamically chang-
ing. In order to capture this sort of dynamic behaviour the ARCHERY data
model introduced the optional Endpoint State attribute. These state values
should be updated regularly based on the testing results and set to False if end-
point is not functional. Such a dynamically updated state information is very
useful for optimizing client workload and avoiding unnecessary attempts to ac-
cess the nonoperational services and prevent slow-down in the e-Infrastructure
usage.

Updating the state attribute means solving several related problems: dis-
covering the state of the service endpoint, indicating the validity of information
in the registry and automating the dynamic information updates. All these are
taken care by the ARCHERY software layer (see section @ that includes set of
probes for state discovery, a module to set the TTL value for the RR to control
DNS caching and a utility implementing the Dynamic DNS (DDNS) update
requests [I8] secured with TSIG [20] that ensures remote and secured way of
registry content modification.

13

6. Implementation of the ARCHERY software layer

The proposed method of embedding service endpoint registry into DNS re-
quired minimal additional software development. The actual implementation of
the lightweight software layer was carried out as part of the NorduGrid ARC
middleware [9]. ARCHERY reuses the existing DNS infrastructure services thus
eliminating the need to develop, deploy and operate new set of custom dedicated
services. On the client-side there are numerous libraries and tools available for
interacting with the DNS infrastructure in most of the programming languages
and platforms, making ARCHERY client integration simple.

All what was necessary to develop is an automation tool for injecting and
maintaining DNS records formatted according to the ARCHERY data model
rendering (see section [4.2). To simplify the process of rendering ARCHERY
records and injecting those to the DNS we developed the archery-manage in-
formation management tool (see section [6.1)). The archery-manage utility is
capable modifying data in the DNS zone via dynamic DNS updates over the
network eliminating the need to interact with DNS configuration itself. This
approach also makes the deployment and access rights delegation simple, fully
separating the DNS hosting itself and ARCHERY data management machine.

6.1. The archery-manage tool

The archery-manage tool had been designed to simplify common operations
with ARCHERY, including registry initial bootstrap, data migration from the
other service registries and keeping dynamic information up to date.

The idea behind the archery-manage is to provide a tool that can discover
service endpoints by understanding e-Infrastructure topology and filtering rules
then based on this information generate DNS records suitable for ARCHERY
operations. The various steps of the archery-manage operational workflow are
illustrated on Fig. [{] and explained below.

Step 1. Define e-Infrastructure topology. Topology data defines how services are
grouped within the e-Infrastructure. It comes either from a configuration file or
from other databases that holds such information (including another ARCHERY
instance). Interaction with already established databases (e.g. GOCDB) sim-
plifies the integration and/or migration process.

Step 2. Fetch service data. Topology database provides the pointers to infor-
mation services that can be used to query service data. During this step the
archery-manage tool discovers available endpoints and fetches service informa-
tion.

Step 3. Filter endpoints. Set of discovered endpoints later passed to the filtering
process. Based on the endpoint data (e.g. endpoint type), or additional testing
(e.g. endpoint network availability check) endpoints that does not pass the
filters are excluded. Filters are extensible by design.

14

1. Define e-Infrastructure . " "
topology —>» 2. Fetch service data [—>| 3. Filter endpoints
from File by Type
from ARCHERY by Availability Select
from EGIIS Action
from GOCDB

4a. Incremental
DDNS Update

4b. Output Data

! |

DNS Records Services Endpoints

Figure 7: The archery-manage data processing chain

Step 4a. Incremental DDNS Update. The target automation use-case is to push
the discovered data to the DNS database. This is done automatically with
Dynamic DNS updates [I8] over the network. Comparing the data already
available in the DNS with discovered information, archery-manage constructs
the incremental update that only applies the difference.

Step 4b. Output data. In addition to automatic updating of the DNS database,
we also target the manual operation use-case. For this the tool following the
same processing chain, can be used to print out endpoint or service lists with
their types or the ARCHERY DNS records that can be manually added to DNS
zone configurations.

6.2. Registry information consumers

On the client level ARCHERY benefits from the distributed DNS caching
on many levels, making the registry scalable.

Since DNS client is an integral part of any operating system, obtaining
and processing service endpoint information from ARCHERY comes down to
parsing and interpreting the data obtained from the DNS in accordance to the
ARCHERY data model rendering (see section .

As part of the ARC middleware we provide several tools to fetch ARCHERY
data. One of them is the archery-manage operation tool that itself can be used
to query registry with ARCHERY service specified as the topology source and
displaying the discovered endpoint information as a formatted output.

We have also developed a service endpoint retrieval plugin for the ARC
middleware [9] that uses ARCHERY as an information service to discover avail-
able computing resources for computational job submission. Furthermore an
infrastructure monitoring web application [31] was also updated to be able to
visualize realtime Computing Cluster information obtained via service endpoint
discovery performed using ARCHERY.

15

7. ARCHERY Deployment scenarios

Below we provide two boundary use cases for ARCHERY deployment —
the most minimalist topology serving a small research group and a large scale
example corresponding to the EGI e-Infrastructure. Deploying ARCHERY for
particular projects in most cases will be something in between, depending on
the organization and operation model.

In this section we also present general guidelines for operating a DNS services
since ARCHERY deployment relies on a DNS instance that contains the service
endpoint registry records embedded.

7.1. Operating DNS services for ARCHERY hosting

DNS services configuration and maintenance are beyond the scope of the
ARCHERY itself and already done by networking technicians at every orga-
nization. This is one of the main operations and deployment benefits of the
proposed DNS-embedded service endpoint registry.

Embedding necessary data into the DNS database in the simplest case can
be done by means of manually editing the records withing the DNS zone con-
figuration file. An automated typos-free way of rendering the records in ac-
cordance to the data model — to use archery-manage data output capabilities
(see section [6.1). However this method does not scale well beyond the smallest
e-Infrastructure use cases.

It is recommended to use Dynamic DNS updates to bootstrap and further
operating the ARCHERY data inside DNS database. From DNS services oper-
ations point of view this requires one time initial configuration — allow updates
from archery-manage by means of specifying shared transaction signature key
(TSIG) in DNS service configuration.

It is generally advised to store ARCHERY data in dedicated DNS zones
keeping only ARCHERY information (e.g. use archery.mydomain.org for all
the ARCHERY records). This approach will allow the isolation of the scope
of update operations and eliminate the possibility of record corruption. DNS
infrastructure also implements disturbed administration by means of DNS zone
delegation (using NS type resource records and glue address records in the parent
zone [22]). From the naming point of view, the zone itself is represented by the
sub-domain. The archery-manage tool keeps possible zone delegations in mind
and implies the DNS naming scheme that introduces new sub-domain for each
grouping object in the lower layer of the hierarchy. This allows to distribute
ARCHERY administration (delegate) on the various grouping levels in terms of
both DNS hosting and modifying the data.

7.2. Use-case 1: Single-group registry for a small research community

In this example we present a small research group that needs a minimalist so-
lution to register the available services it makes use of. The MolDynGrid Virtual
Laboratory [32] conducts interdisciplinary research in computational structural
biology and bioinformatics by means of relying on e-Infrastructure for in silico
calculations of molecular dynamics of biological macromolecules. MolDynGrid

16

uses several computing and storage facilities of the Ukrainian National Grid
Infrastructure.

ARCHERY had been deployed for MolDynGrid needs in the simplest possi-
ble manner (Fig. . The topology source for the MolDynGrid ARCHERY is a
simple configuration file containing a list of computing resources. In this case
all the services are grouped under a single ARCHERY group object used as the
entry point in the DNS registry.

index.moldyngrid.org DNS Zone

_archery TXT RRSet ‘

[Lo=grove []

—{ u=dns://d91b974761._archery.index.moldyngrid.org. t=archery.service

l u=dns://d9b05b0008._archery.index.moldyngrid.org. t=archery.service } » d9b05b0008._archery
[ocsee -]

l u=dns://616f87be8e._archery.index.moldyngrid.org. t=archery.service)

g d91b974761._archery TXT RRset l

0=service I

H o=service t=org.nordugrid.arex id=arc.univ.kiev.ua H

l u=https://arc.univ.kiev.ua:443/arex t=org.ogf.glue.emies.activitycreation

L

l u=gsiftp://arc.univ.kiev.ua:2811/jobs t=org.nordugrid.gridftpjob

l u=ldap://arc.univ.kiev.ua:2135/0=glue t=org.nordugrid.ldapglue2 l

1
1
1
1
1
1
1
1
1
]
1
1
]
1
1
]
1
1
.]
1
1
> 616f87be8e._archery 1
1
1
]
1
1
]
1
1
]
1
1
]
1
1
1
1
1
1
1

Figure 8: The MolDynGrid service registry records embedded in the index.moldyngrid.org
zone. Please note that the minimalistic setup requires an ARCHERY group object to store
all the available services. The service TXT RRSets themself are holding their endpoint infor-
mation.

All ARCHERY records are managed within a single dedicated DNS zone
(index.moldyngrid.org). DNS records define one Group Object (-archery
RRSet) referencing a set of Service Objects (e.g. d91b974761. _archery RRSet)
with endpoints data. Notice that DNS names for Service Objects are generated
by archery-manage using hashing algorithm.

The Registry was populated manually by using the archery-manage tool
with 1 day TTL value. In case the service information of the MolDynGrid com-
munity would change then the registry administrator would need to manually
rerun the — archery-manage tool with the updated configuration file.

7.8. Use-case 2: A hierarchical registry for the EGI large scale e-Infrastructure
EGI represents an example of a world-wide large scale e-Infrastructure for
scientific research [2]. The distributed research environment consists of thou-

17

sands of services hosted by hundreds of sites organized by numerous adminis-
trative domains on various levels (Tiers).

Efficient management of information for entire EGI starts with proper topol-
ogy design. Proposed ARCHERY grouping follows the existing EGI hierarchical
organizational structure using the GOCDB [4] as a topology information source.
Within EGI all services are grouped by Sites that in turn further organized in
administrative groupings called the National Grid Infrastructures (NGI).

In this specific deployment example we propose a possible way of organizing
and representing the EGI NGI, Site and service topology within the ARCHERY
registry. Furthermore a full-scale test deployment corresponding to the cur-
rent EGI service catalogue stored in GOCDB was carried out: a DNS-based
ARCHERY instance with real-life EGI service data was setup and analyzed
(see section [3).

The proposed DNS-embeded registry structure is illustrated on Fig. [0} Here
we assume that the e-Infrastructure owners have DNS management rights to
certain DNS zones. A straightforward assumption is that every NGI or ma-
jor administrative domain such as CERN are acting as DNS administrators
of their DNS zones. For example, the top-level entry-point Group Object for
EGI e-Infrastructure stored within _archery.egi.eu RRSet in egi.eu DNS
zone managed by the central EGI organization. This _archery.egi.eu object
groups further grouping objects each of them representing NGIs. We assume a
distributed operation model therefore we propose to introduce dedicated DNS
zones for each NGI. A dedicated DNS zone for NGI can either use independent
domain name e.g. ndgf.org zone managed by the NDGF organization or a
sub-domain such as ua.egi.eu zone managed by Ukrainian NGI.

Authoritative name server for each zone can be located anywhere in the
network. We propose to consider several operational cases for maintaining the
NGI zone data:

1. All NGI-based zones hosted on the central e-Infrastructure name server
(e.g. EGl.eu). Each NGI receives TSIG key to update zone data.

2. Each of the NGI-based zones are hosted on dedicated NGI-managed name
servers. Each NGI defines own update procedures.

3. Both central and NGI-managed approaches are used, depending on the
particular NGI.

The presented use-case illustrates another grouping topology where certain
sites of NGIs are organized in different Tiers. This Tier view can be used
as classification mechanism of sites and their offered resources (Tier-0 is the
central site/service, Tier-1 represents primary sites while Tier-2s are smaller
resources). On the Fig. |§| the _archery.wlcg.cern.ch grouping object stored
in the cern.ch DNS zone implements the above described Tier-based group-
ing. For example, the sites classified as Tier-1, such as NDGF-T1 stored in the
NDGF-T1.ndgf . org RRSet, are grouped within the T1.cern.ch archery group-
ing object of type t=wlcg.tier. Please observe that there is no need to du-
plicate records describing the sites and services that are already present in the

18

ARCHERY hierarchy describing the EGI topology. It is enough to add another
ARCHERY Endpoint reference into tier-based Group Object.

The presented example showed that ARCHERY data model and rendering
allows embedding several hierarchical overlapping e-Infrastructure topologies
into the DNS registry without record duplication.

egi.eu DNS Zone cern.ch DNS Zone

i _archery.egi.eu. l ' ' _archery.wlcg.cern.ch l
H u=dns://T1.cern.ch.

T] s
I t=archery.group
: ——{ u=dns://ndgf.org. t=archery.group l : : l]

: H : Ti.cern.ch L T2.cern.ch l

u=dns://T2.cern.ch.
t=archery.group
> |4

u=dns://T3.cern.ch. ||
t=archery.group

l u=dns://ua.egi.eu. t=archery.group }

. ' l [o=group t=wlcg.tier id=T1 [l l [o=group t=wlcg.tier id=T2 [y

.4 u=dns://NDGF-T1.ndgf.org.
t=archery.group

u=dns://knu.ua.egi.eu.
t=archery.group

ndgf.org DNS Zone

e 2 ndgf.org. l

l [o=group t=egi.ngi id=NGI_NDGF [l

ua.egi.eu. knu.ua.egi.eu.

t=archery.group

u=dns://NDGF-T1.ndgf.org. ‘

E l [o=group t=egi.ngi id=NGI_UA [] l [o=group t=egi.site id=UA-KNU [l
E u=dns://knu.ua.egi.eu. u=dns://s01.knu.ua.egi.eu.

H v t=archery.group t=archery.service

: NDGF-T1.ndgf.org. *

u=dns://s02.knu.ua.egi.eu. ‘ ‘

t=archery.service
s01.knu.ua.egi.eu. ('}— :

‘ \4
s02.knu.ua.egi.eu. l i

l [o=group t=egi.site id=NDGF-T1 [l '

u=dns://s01.NDGF-T1.ndgf.org. i
t=archery.service o=service t=org.nordugrd.arex

id=arc.univ.kiev.ua

|

u=https://arc.univ.kiev.ua:443/arex
t=org.nordugrid.emies

v
s01.NDGF-T1.ndgf.org. l

o=service t=SRM
id=se.univ.kiev.ua

u=httpg://se.univ.kiev.ua:8446/srm

o=service t=org.dcache.storage t=SRM

t=org.| id. | lue2
id=glue:srm.ndgf.org/data org.nordugrid.Idapglue

u=ldap://arc.univ.kiev.ua/o=glue ‘

Figure 9: Hierarchical e-Infrastructure topologies embedded into several DNS zones. The use-
case represents a proposal for storing EGI information in ARCHERY. The egi.eu and cern.ch
zones are the top entries in the two overlapping hierarchies organizing sites either by NGIs or
Tiers.

8. ARCHERY deployments results

What follows we present the results of two ARCHERY deployments, the
first one is the production roll-out of an ARCHERY registry serving the Nordic
e-Science community. This registry operates under the nordugrid.org entry

19

point embedded in the DNS and replacing the previous LDAP-based EGIIS
service.

As a second ARCHERY test deployment we have chosen to set up a ded-
icated ARCHERY registry to accommodate the complete service information
from the EGI e-Infrastructure using the GOCDB [33] as the topology source.
This second registry is operated under the egi.grid.org.ua endpoint and had
been established in a dedicated DNS service for the purpose of various perfor-
mance measurements. Please note that the distributed ARCHERY administra-
tion within different DNS zones as proposed in section [7.3] was not configured
but it is not affecting the performance measurements itself.

8.1. ARCHERY objects

As part of the two deployment cases the ARCHERY DNS service registries
were populated with real-life data. The nordugrid.org production registry
contains data describing typical Nordic e-Infrastructure services such as the
ARC Computing Elements while the egi.grid.org.ua test registry holds site,
organization and service data for all the available EGI services. It is important
to notice that the registries are populated with full-size real data.

This section contains the object size analysis for both ARCHERY deploy-
ments. Thanks to minimalistic data model the total size of ARCHERY database
is small: 145 objects (107.15 kB in total) for the Nordic production deployment
and 1831 objects (917.19 kB in total) for EGI test deployment. Please compare
these numbers to the original 1980’s Hesiod DNS-embedded deployment of 10k
TXT records of 3MB data [21].

Fig. [I0] and Fig. [T1] show the object size analyses for the Nordic and test
EGI deployments respectively.

For the Nordic deployment (Fig. a typical NorduGrid ARC [9] service
may contain up to dozen of endpoints. The most typical objects within the
nordugrid.org ARCHERY correspond to ARC CEs part of the WLCG infras-
tructure. These computing services usually have about five endpoints and the
corresponding service objects have the size between 500 and 800 bytes. The size
of the service object depends on the number of endpoints and mostly affected
by the length of the service endpoint url.

In the case of the EGI test deployment (Fig. most of the objects are
describing various EGI services. The size of those service objects is typically
less than 512 bytes. The small size of these service objects is due to the fact
that a typical EGI service has only one endpoint. Interesting to note that the
largest observed EGI object with a 22 kB size is also a service object (an unique
storage service with around 150 endpoints). In EGI the Site grouping objects
belong to the larger records with about 1kb size. It is because the typical EGI
sites are aggregating around a dozen services. All that said, the 75% of all EGI
objects fit into the 512 bytes.

It is important to notice that the majority of the objects in both deployments
fit to DNS response limit of the default UDP transport protocol. Furthermore,
even the largest occurring object in EGI (of size 22 kB) is much smaller than
the 65 kB TCP limit.

20

Object size distribution

30 T T T T T T T T T T T T

% of Total

(o) (o) [} (o) (=)} [} [« [} (o)} [} (o)} +
o o o o o o <) o o o o S
— N) < n © ~ © o) =} — b3
=3 =) =3 = =3 =3 =) o =) - by o
1) S S S 1Sy 1Sy <3 S S =) 1=} N
= ~ 5 < n © ~ ® & 1) S

S =1

— -

Size, Bytes

Figure 10: ARCHERY Objects size distribution in the production Nordic deployment. The
peak in the middle contains the ARC services within WLCG while the 2nd peak on the right
side contains the general ARC CE objects with typically more endpoints.

8.2. ARCHERY performance analysis

To compare performance of ARCHERY with the existing Top-BDII solution
we had deployed the following test infrastructure: 3 machines with identical
hardware and OS configured to serve:

1. Top-BDII service for EGI,
2. ARCHERY registry embedded in a dedicated ISC BIND [34] DNS service,

3. The archery-manage utility to populate the ARCHERY registry using
the EGI GOCDB as its topology source.

The archery-manage tool had been configured to run periodically by CRON
service. It fetches data and updates the DNS zone using the same 10 minutes
update period as was measured for Top-BDII. We used the sysstat (system
statistics) performance monitoring tools on Linux to measure various system
loads, including CPU activity, memory usage and network utilization simulta-
neously (the time period shown on the three figures represent the same mea-
surement window) .

Network usage of Top-BDII, ISC BIND hosting the ARCHERY registry and
archery-manage is shown on Fig. The network usage is a known limitation
of Top-BDII as clearly visible on the logarithmic-scale graph. Network usage by
archery-manage is smaller by a factor of 100 during the service data fetching.
The ARCHERY-DNS (ISC BIND) network traffic is also small because it needs

21

Object size distribution

35 T T T T T T T T T T T T T

% of Total

(<)) ()] (=] (<)) ()] (<)) ()] (=2 (<)) ()] (=] (<)) +
)) o) o) o I o <) o) o0 <) o
— N m < n © ~ @)) o o) >
=3 =) =3 o =) ° =) =) = T o o o
o o o o o o o o o o =3 o <
— N m < n © ~ @ =) IS) S S

S <] S

— o m

Size, Bytes

Figure 11: ARCHERY Objects size distribution for the EGI test deployment. The large peak
at 300-400 bytes correspond to service objects.

to fetch only appx. 1 MB of data and then issue an even smaller incremental
update.

We had also measured total traffic in addition to throughput: Top-BDII net-
work consumption is near to 800 GB monthly (25.5 GB daily), archery-manage
running on the same update rate is around 18 GB monthly (780 MB daily) and
ARCHERY-DNS uses 1.6 GB monthly (240 MB daily).

Comparing the CPU load (Fig. it is noticeable that Top-BDII uses lot
of CPU power just after the data fetching period (03-06 minutes time interval
on the network traffic figure Fig. which is clearly visible as a CPU load
peak in the 06-09 minutes time interval on the CPU load figure Fig. . It
is because of the data post-processing within the Top-BDII LDAP database
update that is rather CPU intensive. As a comparison the archery-manage
converts data to DNS rendering with minimal CPU usage thanks to minimal
dataset. Please notice that the ARCHERY-DNS in ISC BIND consumes almost
zero CPU therefore not visible on the figure. This is despite the fact that as
part of the incremental registry update performed by the archery-manage tool
the entire ARCHERY data is fetched from the DNS in every update period.
This also serves as a proof for the client-side query scalability of ARCHERY.

Memory usage comparison is shown on Fig. The average Top-BDII
memory consumption is appx. 4.5 GB with an additional 500 MB per update
cycles. Both archery-manage and ARCHERY-DNS does not demonstrate se-
rious memory usage during update cycles and requires less than 1GB RAM to
run the service.

22

Network Traffic
10000 T T T T T T T T T

1000 S P Fmg E

kB/s

H 7 r
/
P !
I I {74 | \,I 1 1 I
o o o o o o o o o o o
o m ©o (=2} o~ n o] — < ~ o
o o o o — — — o~ o~ o~ m
Time
rx (archery-manage) rx (Top-BDII) rx (BIND) ——

tx (archery-manage) - - - - tx (Top-BDIl) —-—-— tx (BIND) —-—

Figure 12: Network traffic comparison for hosts running: archery-manage, Top-BDII and ISC
BIND hosting ARCHERY registry. Please note that the periodic peaks correspond to the
registries updates and the network traffic shown in a logarithmic scale.

9. Summary

In this paper we proposed a novel approach to utilize the DNS infrastruc-
ture as an information source for distributed computing service endpoints. The
underlying DNS infrastructure out-of-the-box provides integrity, fault-tolerance
and network-level caching. Furthermore, the native DNS delegation processes
allow to create federations of service endpoints managed under different DNS
zones. Using incremental dynamic DNS in updates allows us to keep information
up to date and apply filtering based on service availability monitoring.

The proposed approach, including the data model definition was imple-
mented as the ARC Hierarchical Endpoints Registry (ARCHERY) system and
got integrated with the NorduGrid ARC middleware. The software-layer in-
tegration did not require development of additional services since ARCHERY
reuses well-known DNS services that can be simply queried with any DNS li-
brary or command line client, simplifying the client-side integration.

Successful deployments of the ARCHERY system were presented in the pa-
per including performance comparison to existing endpoint registries. In par-
ticular, ARCHERY has been successfully deployed for the Nordic High Energy
Physics community and is used in production and demonstrates stable opera-
tion.

The DNS-based registry specification and the ARCHERY implementation
is general enough to be used for other distributed e-Infrastructures as it was

23

% Utilization

Processor Utilization

25 T T —T T T T T T —T
20 | i
15 . .v : : ; B ‘: .
10 | 4
5 i : 4
.l \. B N
! v g \: -
Sy \ ey , P =
0 —_— I L FOREAN R -
o o o o (=3 o o o o
e S S [S] s} S) S S S
o (=)} o~ n 0 — < ~ o
o o — — — o o~ o~ m
Time
%user (archery-manage) %system (Top-BDIl) —-—-—
%system (archery-manage) - - - - %user (BIND) ——
%user (Top-BDII) %system (BIND) —-—

Figure 13: CPU Utilization comparison for hosts running: archery-manage, Top-BDII and
ISC BIND hosting ARCHERY registry. The generated load of BIND is almost zero therefore
not visible.

shown in the proposed EGI use-case scenario.

References

References

[1]

R. Brun, F. Carminati, G. G. Carminati, From the Web to the Grid and
Beyond: Computing Paradigms Driven by High-Energy Physics, Springer
Science & Business Media, 2012 (2012).

D. Kranzlmiiller, J. M. de Lucas, P. Oster, The European grid initia-
tive (EGI), in: Remote instrumentation and virtual laboratories, Springer,
2010, pp. 61-66 (2010).

R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy, P. Avery,
K. Blackburn, T. Wenaus, F. Wiirthwein, et al., The Open Science Grid
status and architecture, in: Journal of Physics: Conference Series, Vol. 119,
IOP Publishing, 2008, p. 052028 (2008).

G. Mathieu, A. Richards, J. Gordon, C. D. C. Novales, P. Colclough,
M. Viljoen, GOCDB, a topology repository for a worldwide grid infrastruc-
ture, in: Journal of Physics: Conference Series, Vol. 219, IOP Publishing,
2010, p. 062021 (2010).

24

MB

Memory Utilization
5000 T T T T T T T T T

4500~‘\7_/__—~"——‘“N\\ ____,—""”’77\\\”_.—<"“-‘-/\\ R
4000)
3500 |)
3000)
2500 |)
2000)

1500 -

T

1000

I

500

00:00

03:00 |
06:00 |
09:00 |
12:00
15:00
18:00 -
21:00 [
24:00 |
27:00 |
30:00

Time
Used (Top-BDII) - - - - Used (BIND)

Used (archery-manage)

Figure 14: Memory Utilization comparison for hosts running: archery-manage, Top-BDII and
ISC BIND hosting the ARCHERY registry. Note the appx. 500 MB periodic memory load
increase of TOP-BDII.

[5]

[6]

CERN, [The WLCG REsource, Balance and Usage (REBUS).
URL https://wlcg-rebus.cern.ch/apps/topology/

A. Anisenkov, A. Di Girolamo, A. Klimentov, D. Oleynik, A. Petrosyan,
A. Collaboration, et al., AGIS: the ATLAS grid information system, in:
Journal of Physics: Conference Series, Vol. 513, IOP Publishing, 2014, p.
032001 (2014).

K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid information
services for distributed resource sharing, in: High Performance Distributed
Computing, 2001. Proceedings. 10th IEEE International Symposium on,
IEEE, 2001, pp. 181-194 (2001).

CERN, Top-BDIIL
URL http://gridinfo.web.cern.ch/introduction

M. Ellert, M. Grgnager, A. Konstantinov, B. Konya, J. Lindemann,
I. Livenson, J. Nielsen, M. Niiniméki, O. Smirnova, A. Wédnénen, Ad-
vanced resource connector middleware for lightweight computational grids,
Future Generations Computer Systems 23 (2) (2007) 219-240 (2007).
doi:10.1016/j.future.2006.05.008.

L. Field, S. Memon, I. Méarton, G. Szigeti, The EMI Registry: Discovering
Services in a Federated World, Journal of Grid Computing 12 (1) (2014)

25

https://wlcg-rebus.cern.ch/apps/topology/
https://wlcg-rebus.cern.ch/apps/topology/
http://gridinfo.web.cern.ch/introduction
http://gridinfo.web.cern.ch/introduction
https://doi.org/10.1016/j.future.2006.05.008
https://doi.org/10.1007/s10723-013-9284-1
https://doi.org/10.1007/s10723-013-9284-1

[18]

[19]

[20]

29-40 (Mar 2014). |doi:10.1007/s10723-013-9284-1,
URL https://doi.org/10.1007/s10723-013-9284~-1

A. Andrzejak, Z. Xu, Scalable, efficient range queries for grid information
services, in: Peer-to-Peer Computing, 2002.(P2P 2002). Proceedings. Sec-
ond International Conference on, IEEE, 2002, pp. 3340 (2002).

D. Puppin, S. Moncelli, R. Baraglia, N. Tonellotto, F. Silvestri, A grid
information service based on peer-to-peer, in: European Conference on
Parallel Processing, Springer, 2005, pp. 454-464 (2005).

P. Mockapetris, Domain names - concepts and facilities, RFC 1034, IETF
(Nov. 1987).
URL http://tools.ietf.org/rfc/rfc1034.txt

Internet Systems Consortium, DNS RFCs.
URL https://www.isc.org/community/rfcs/dns/

Stichting NLnet Labs, Unbound.
URL https://nlnetlabs.nl/projects/unbound/about/

Internet Assigned Numbers Authority, Root Servers.
URL https://www.iana.org/domains/root/servers

S. Rose, W. Wijngaards, DNAME Redirection in the DNS, RFC 6672,
IETF (Jun. 2012).
URL http://tools.ietf.org/rfc/rfc6672.txt

P. Vixie, S. Thomson, Y. Rekhter, J. Bound, |Dynamic Updates in the
Domain Name System (DNS UPDATE), RFC 2136, IETF (Apr. 1997).
URL http://tools.ietf.org/rfc/rfc2136.txt

R. Arends, R. Austein, M. Larson, D. Massey, S. Rose, [DNS Security In-
troduction and Requirements, RFC 4033, IETF (Mar. 2005).
URL http://tools.ietf.org/rfc/rfc4033.txt

P. Vixie, O. Gudmundsson, D. E. 3rd, B. Wellington, [Secret Key Transac-
tion Authentication for DNS (TSIG), RFC 2845, IETF (May 2000).
URL http://tools.ietf.org/rfc/rfc2845. txt

S. P. Dyer, The hesiod name server., in: USENIX Winter, 1988, pp. 183—
189 (1988).

P. Mockapetris, Domain names - implementation and specification, RFC
1035, IETF (Nov. 1987).
URL http://tools.ietf.org/rfc/rfc1035.txt

R. Rosenbaum, |Using the Domain Name System To Store Arbitrary String
Attributes, RFC 1464, IETF (May 1993).
URL http://tools.ietf.org/rfc/rfcl464.txt

26

https://doi.org/10.1007/s10723-013-9284-1
https://doi.org/10.1007/s10723-013-9284-1
http://tools.ietf.org/rfc/rfc1034.txt
http://tools.ietf.org/rfc/rfc1034.txt
https://www.isc.org/community/rfcs/dns/
https://www.isc.org/community/rfcs/dns/
https://nlnetlabs.nl/projects/unbound/about/
https://nlnetlabs.nl/projects/unbound/about/
https://www.iana.org/domains/root/servers
https://www.iana.org/domains/root/servers
http://tools.ietf.org/rfc/rfc6672.txt
http://tools.ietf.org/rfc/rfc6672.txt
http://tools.ietf.org/rfc/rfc2136.txt
http://tools.ietf.org/rfc/rfc2136.txt
http://tools.ietf.org/rfc/rfc2136.txt
http://tools.ietf.org/rfc/rfc4033.txt
http://tools.ietf.org/rfc/rfc4033.txt
http://tools.ietf.org/rfc/rfc4033.txt
http://tools.ietf.org/rfc/rfc2845.txt
http://tools.ietf.org/rfc/rfc2845.txt
http://tools.ietf.org/rfc/rfc2845.txt
http://tools.ietf.org/rfc/rfc1035.txt
http://tools.ietf.org/rfc/rfc1035.txt
http://tools.ietf.org/rfc/rfc1464.txt
http://tools.ietf.org/rfc/rfc1464.txt
http://tools.ietf.org/rfc/rfc1464.txt

[24]

[28]

[29]

[31]

[32]

[33]

[34]

MIT Kerberos Consorcium, MIT Kerberos Documentation: Realm config-
uration decisionsl
URL https://web.mit.edu/kerberos/

S. Kitterman, Sender Policy Framework (SPF) for Authorizing Use of Do-
mains in Email, Version 1, RFC 7208, IETF (Apr. 2014).
URL http://tools.ietf.org/rfc/rfc7208.txt

D. Crocker, T. Hansen, M. Kucherawy, |[DomainKeys Identified Mail
(DKIM) Signatures, RFC 6376, IETF (Sep. 2011).
URL http://tools.ietf.org/rfc/rfc6376.txt

J. Damas, M. Graff, P. Vixie, Extension Mechanisms for DNS (EDNS(0)),
RFC 6891, IETF (Apr. 2013).
URL http://tools.ietf.org/rfc/rfc6891.txt

M. Lottor, [Domain Administrators Operations Guide, RFC 1033, IETF
(Nov. 1987).
URL http://tools.ietf.org/rfc/rfc1033.txt

R. Bellis, DNS Transport over TCP - Implementation Requirements, RFC
5966, IETF (Aug. 2010).
URL http://tools.ietf.org/rfc/rfcb966.txt

ICANN Research, TLD DNSSEC Report| (2018).
URL http://stats.research.icann.org/dns/tld_report/

O. Smirnova, The Grid Monitor.
URL http://www.nordugrid.org/documents/monitor.pdf

A. Salnikov, I. Sliusar, O. Sudakov, O. Savytskyi, A. Kornelyuk, MolDyn-
Grid virtual laboratory as a part of ukrainian academic grid infrastructure,
in: Intelligent Data Acquisition and Advanced Computing Systems: Tech-
nology and Applications, 2009. IDAACS 2009. IEEE International Work-
shop on, IEEE, 2009, pp. 237-240 (2009).

EGI service provided by STFC, Grid Configuration Database (GOCDB).
URL https://goc.egi.eu/

Internet Systems Consortium, et al., Inc. ISC BIND (2005).

27

https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/
https://web.mit.edu/kerberos/
http://tools.ietf.org/rfc/rfc7208.txt
http://tools.ietf.org/rfc/rfc7208.txt
http://tools.ietf.org/rfc/rfc7208.txt
http://tools.ietf.org/rfc/rfc6376.txt
http://tools.ietf.org/rfc/rfc6376.txt
http://tools.ietf.org/rfc/rfc6376.txt
http://tools.ietf.org/rfc/rfc6891.txt
http://tools.ietf.org/rfc/rfc6891.txt
http://tools.ietf.org/rfc/rfc1033.txt
http://tools.ietf.org/rfc/rfc1033.txt
http://tools.ietf.org/rfc/rfc5966.txt
http://tools.ietf.org/rfc/rfc5966.txt
http://stats.research.icann.org/dns/tld_report/
http://stats.research.icann.org/dns/tld_report/
http://www.nordugrid.org/documents/monitor.pdf
http://www.nordugrid.org/documents/monitor.pdf
https://goc.egi.eu/
https://goc.egi.eu/

	Introduction
	DNS as an ultimate source of domain-specific information
	Benefits of the DNS infrastructure
	Embedding free-form information into DNS records

	Requirements for service endpoint registries
	Embedding a service endpoint registry into the DNS infrastructure.
	ARCHERY data model
	Rendering the data model with DNS data structures
	ARCHERY objects within DNS
	Embedding ARCHERY object relations as part of DNS
	Rendering example

	Implications of DNS Records Size Limits

	Security aspects and dynamic information
	ARCHERY Security
	Dynamic information in ARCHERY

	Implementation of the ARCHERY software layer
	The archery-manage tool
	Registry information consumers

	ARCHERY Deployment scenarios
	Operating DNS services for ARCHERY hosting
	Use-case 1: Single-group registry for a small research community
	Use-case 2: A hierarchical registry for the EGI large scale e-Infrastructure

	ARCHERY deployments results
	ARCHERY objects
	ARCHERY performance analysis

	Summary

