
ATLAS PRODUCTION SYSTEM IN ATLAS DATA CHALLENGE 2

L. Goossens, CERN, Geneva, Switzerland

K. De, UTA, Arlington, USA

Abstract

This paper describes the design, the implementation
and experience with the ATLAS production system in
ATLAS data challenge 2 (DC2). The system, actually a
suite of collaborating components, was designed based
upon the experience gained during DC1 (summer 2002-
spring 2003). The major design objectives were set to be:
minimal human involvement, maximal robustness, and
last but not least interoperability with the three grid
flavours in use within ATLAS and legacy systems. A non-
negligible change of spirit was the switched roles of grid
and non-grid support. The DC1 systems were designed to
be able to run on legacy resources and also run on the
grid. The DC2 production system was designed to run on
the three grid flavours used in ATLAS, and as a backup
solution on legacy resources.

INTRODUCTION
Like the other LHC (Large Hadron Collider) experi-

ments, ATLAS is undertaking a series of data challenges
to validate its computing model, its data model and its
software. The second in this series, DC2, started July
2004 and is planned to finish in early 2005.

DC2 is organised in three phases. In phase one, more
than 10 million events belonging to about 30 different
physics channels will be fully simulated. These events
will be digitized (partly at zero and partly at design
luminosity), mixed, and converted into a byte stream
format similar to what is expected to come out of the on-
line system. This phase started July 2004 and is expected
to finish by November 2004.

The second phase, called the tier-0 exercise, will test
the part of the computing model concerned with the
prompt reconstruction and the distribution of the data to
tier-1 and tier-2 centres. The third phase will test the part
of the computing model addressing distributed analysis.

In the previous DC1 ATLAS deployed two production
systems. The first system, AtCom [1], supported
interactive production through a convenient graphical
user interface. The design of AtCom was based on a
generic core and a number of plug-ins interfacing to
various legacy batch systems and/or grids. Although very
successful, it was clear that AtCom, by design, was not
suited to manage 10,000’s of jobs. The second system,
GRAT [2] was deployed in the US and was a suite of
scripts used to manage jobs on a grid consisting of seven
sites. GRAT used the Globus toolkit for grid middleware.
In spite of the success of GRAT in DC1, it was too simple
and too specialized for use in DC2.

Based on the experience with these two systems
ATLAS decided to develop a new automatic production
system to be deployed on the time scale of DC2.

CONCEPTUAL MODEL
Before starting with the presentation of the actual

design of the production system, it is worthwhile to
briefly present the overall conceptual model and
terminology in use within the ATLAS production context.

The production system distinguishes between two
levels of abstraction (see figure1). On the higher level,
input datasets are transformed into output datasets by
applying a task transformation. The process of doing this
is called a task.

Datasets are usually quite big and realized with a large
number of logical files. On the lower abstraction level,
input logical files are transformed into output logical files
by applying a job transformation. This process is called a
job.

logFile job(transf) logFile

logFile job(transf) logFile

dataset task(transf) dataset

logFile job(transf) logFile

prodDB/AMI

prodDB

Figure 1: Conceptual model.

ARCHITECTURE
The architecture of the production system was designed

with the following goals in mind.
1. The system should be as simple and as flexible as

possible.
2. The system must target automatic (minimal human

intervention) production on each of the three grids in
use within ATLAS, i.e. LCG, NorduGrid and GRID3.
Legacy batch systems must be supported as well as a
backup solution.

3. The system should use GRID middleware services as
much as possible.

The resulting design is shown in figure 2. It is based on

four components: a central production database (prodDB),
a data management system (dms), a supervisor
component and an executor component. In the following
subsections we will address each of these components
separately.

LCG NG Grid3 legacy

LCG
executor

LCG
executor

NG
executor

Grid3
executor

legacy
executor

supervisor supervisor supervisor supervisor super

prodDB dms

LRC RLS RLS

jabber jabber jabber jabber jabber

Figure 2: Architecture.

By adopting a component oriented design and

additionally allowing the components to run as agents on
different servers, communicating asynchronously with
each other, a lot of flexibility, both with respect to the
logical composition of the system and to its physical
realization was made possible.

Note that the design relies heavily on grid services like
the Globus replica location service (RLS), the LCG
information system, the LCG job submission broker, etc.
On the positive side this meant we did not have to invest
effort in producing our own equivalents of these systems.
On the negative side, it was not clear whether these
services would actually work and relying on them
introduced a considerable risk (and indeed we discovered
the hard way that many of them did not work).

jobName
jobXML
currentState
lastAttempt
supervisor
priority
...

jobDefinition
uses
implementation
formalPars
...

jobTrans

logicalFileName
logicalCollection
datasetName
guid
metadata
...

logicalFile

attemptNr
jobstatus
supervisor
executor
joboutputs
metadata
…

jobExecution

Figure 3: Tables in production database.

Production database
There is only a single logical production database. The

physical realization of the database may be distributed
and/or replicated, but to the other components in the
design it will look like a single entity.
The database holds tables with records for
• job transformations
• job definitions
• job executions
• logical files

The relations between these tables are shown in figure 3.

A job transformation record describes a particular

combination of executable and release. The description
includes the signature of the transformation listing each
formal parameter together with its type (restricting the
possible values) and its meta-type (indicating how the
values should be passed to the executable).

Each job definition record points to its associated job
transformation. Other fields allow one to keep track of the
current attempt at executing this job (lastAttempt), which
supervisor component is handling this job (supervisor),
what is the relative priority of this job (priority), etc. The
bulk of the job definition is however stored as an XML
tree in the field jobXML. It lists the actual values to
assign to the formal parameters of the transformation and
additional information about logical input files and logical
output files.

For each job definition there can be zero, one or more
job execution records corresponding with each attempt at
executing the job. Each attempt has a unique number
which is appended to the names (both logical and
physical) of all files produced, ensuring interference-free
operation even in the case of lost and/or zombie jobs. The
execution record also records information like start and
end time of the job, resources consumed, where the
outputs were stored, etc.

In the last table, logicalFile, the production system
stores all meta-data about logical files. Most of the
information is redundant with respect to the information
stored in the respective meta-data catalogues of the grids
(size, guid, md5sum, logicalCollection), but at the time
the production system was developed these meta-data
catalogues did not support schema evolution and ATLAS
did not a priori know what meta-data was needed.
Consequently, it was decided to temporarily deploy our
own catalogue in addition to filling and using the existing
ones.

The DC2 production database was an Oracle database
hosted at CERN.

Supervisor
The next component, called supervisor, takes free jobs

from the production database and hands them out to one
of the executors it is connected with. The information
about jobs is exchanged using XML, usually wrapped in

XMPP (using the Jabber protocol) or wrapped in SOAP
using web services. As its name suggests, the supervisor
will follow up on the job, asking at regular intervals about
the job status until the job is declared ‘done’ by the
executor. At that point, the supervisor will, for successful
jobs, verify the existence of all expected outputs, and, if
all is as expected, will rename them to their final logical
name (by dropping the attempt number from their
temporary logical name). Additionally, the files will be
added to the logicalFile table together with any meta-data
produced by the job and returned by the executor. In the
case of a failed job the supervisor will simply release the
job in the production database, so that it can be picked up
again if the maximum number of attempts is not yet
reached.

The supervisor does not perform any brokering. The
handing out of jobs is based on a simple “how-many-do-
you-want” protocol. The supervisor asks the executor how
many jobs it wants (possibly qualified with resource
requirements) and the executor replies with a number
(possibly qualified with, not necessarily the same,
characteristics). The supervisor may then send a number
of jobs to the executor, which in turn may choose to
process or refuse them. The non-binding nature of the
protocol allows both very sophisticated and very simple
implementations to co-exist on both the executor and
supervisor side.

For efficiency reasons an implementation of the
supervisor can keep state but the design does not require
this. Having a stateless component obviously makes it
more resilient against crashes.

The supervisor implementation for ATLAS is called
Windmill [3]. Each Windmill instance connects with a
specific executor, and manages all jobs processed by this
executor. Since Windmill is stateless, it can be robustly
reconnected to the same executor without loss of job
status information

Executor

 The task of the executor is to interface the supervisor
to the different grid or legacy systems. It translates the
grid/legacy neutral job definition into the grid/legacy
specific language (xrsl, jdl, wrapper scripts, …), possibly
adding some pre and post processing steps like staging
in/out of files. The executor implements a grid/legacy
neutral interface with the usual methods: submit,
getStatus, kill, etc. Again the design does not require the
executor to keep state.

Four executors were developed and deployed within the
context of DC2
• Dulcinea [4] for the NorduGrid
• Capone [5] for Grid3
• Lexor [6] for the LCG
• a set of similar executors for legacy batch systems

like LSF, PBS, BQS [7]

Data Management System
The data management system fulfils two functions:

global cataloguing of files and global movement of files.
In ATLAS we have opted to realize the global catalogue
function by building on the existing catalogues of the
three grid flavours (Globus RLS in the case of NorduGrid
and Grid3, LRC (local replica catalogue) in the case of
the LCG). The data management system acts as a thin
layer channelling catalogue requests to the respective grid
catalogues and collecting/aggregating the answers. At the
same time it presents the users with a uniform interface
on top of the grid native data management tools, both for
the catalogue functions and the data movement functions.

The implementation of the data management system
used in ATLAS is called Don Quijote [8]

EXPERIENCE
Between the start of DC2 in July 2004 and the end of

September 2004, the automatic production system has
submitted about 235K jobs belonging to 158K job
definitions, producing about 250K logical files. These
jobs were approximately evenly distributed over the three
grid flavours. The definitions belonged to 157 different
tasks, exercising 22 different transformations. Overall,
they consumed ~1.5 million SI2K months of cpu (~5000
cpu months on average present day cpu) and produced
more than 30TB of physics data.
By design, the production system was highly dependant
on the services of the grids it interfaces to. This was
known to be a risky dependency from the beginning and
indeed we suffered a lot because of it. The Globus RLS
deployed by both NorduGrid and GRID3 turned out to be
very unstable and became reasonably reliable only after a
series of bug fixes. We had a similar experience with
several of the LCG services, e.g. the resource broker and
the information system. Because the LCG is by design
the most complex system of the three grids requiring
many services to work at the same time to do anything, it
is not surprising that this resulted in the highest failure
rate of the three grids.

But it was not only the grid software that needed many
bug fixes. The data challenge started before the
development, let alone the testing, of the ATLAS
production system was finished. As a result, various bugs
had to be corrected, and new features introduced, during
the data challenge.

More detailed experience reports can be found in [4],
[5] and [6].

CONCLUSION
For the second in its series of data challenges, ATLAS

relied/relies completely on a federation of grids:
NorduGrid, GRID3 and LCG. The ATLAS production
system was designed for automatic production on this
federation of grids. By design the system relied heavily
on the services offered by the grid systems. Stress-testing
these services in the context of a major production
exercise was a new experience and many lessons were
learned.

It was possible but a lot of manpower was needed to
compensate for missing and/or buggy software.

ACKNOWLEDGEMENTS
The authors would like to thank the many people

involved with running the ATLAS data challenge 2.

REFERENCES
[1] V. Berten, L. Goossens, C.L. Tan, “ATLAS

Commander: an ATLAS Production Tool”,
proceedings of CHEP03, 2003.

[2] R. Sturrock et al. – ATLAS Collaboration, “A Step
Towards A Computing Grid For The LHC
Experiments : ATLAS Data Challenge 1”, CERN-
PH-EP-2004-028, CERN, Geneva, 30 Apr 2004.

[3] http://heppc12.uta.edu/windmill/
[4] R. Sturrock et al., “Performance of the NorduGrid

ARC and the Dulcinea Executor in ATLAS Data
Challenge 2”, proceedings of CHEP04, 2004.

[5] M. Mambelli et al., “ATLAS Dara Challenge
Production on Grid3”, proceedings of CHEP04,
2004.

[6] D. Rebatto, “The LCG-2 Executor for the ATLAS
DC2 Production System”, proceedings of CHEP04,
2004.

[7] J. A. Kennedy, “The role of legacy services within
ATLAS DC2”, proceedings of CHEP04, 2004.

[8] M. Branco, “Don Quijote – Data Management for the
ATLAS Automatic Production System”, proceedings
of CHEP04, 2004.

